ESE535:
Electronic Design Automation
Day 6: February 4, 2014
Partitioning 2
(spectral, network flow)
Pem sescrs sping 2015- - oeton

Why this Target?

- Minimize sum of squared wire distances
- Prefer:
- Area: minimize channel width
- Delay: minimize critical path length

Preclass: Initial Placement

- Metrics:
- Wirelength
- Squared wirelength
- Channel width
- Critical path length

Spectral Ordering

Minimize Squared Wire length -- 1D layout

- Start with connection array $C\left(c_{i, j}\right)$
- "Placement" Vector X for x_{i} placement
- Problem:
- Minimize cost $=\quad 0.5 \times \sum \sum c_{i, j}\left(x_{i}-x_{j}\right)^{2}$
- cost sum is $X^{\top} B X$
- $\mathrm{B}=\mathrm{D}-\mathrm{C}$
- $\mathrm{D}=$ diagonal matrix, $\mathrm{d}_{\mathrm{i}, \mathrm{i}}=\Sigma($ over j$) \mathrm{c}_{\mathrm{i}, \mathrm{j}}$

C Matrix						
A B C G H O A 1 B 1 1 C 1 G 1 1 1 H 1 1 1 O 1 1						
Penn EsE525 Spring 2015-- Deton					9	

Preclass Netlist

- Squared wire lengths:

Penn ESE525 Spring 2015 -- DeHon

							X		
	A	B	C	G	H	0			
A	1			-1			$\mathrm{X}_{\text {A }}$		$\mathrm{X}^{-}{ }^{-} \mathrm{X}_{6}$
B		2		-1	-1		X_{B}		$2 X_{B}{ }^{-} \mathrm{X}_{G}-\mathrm{X}_{\mathrm{H}}$
C			1		-1		X_{C}	$=$	$\mathrm{X}_{\mathrm{C}}{ }^{-} \mathrm{X}_{\mathrm{H}}$
G	-1	-1		3		-1	X_{G}		$3 X_{G}-X_{A}-X_{B}-X_{0}$
H		-1	-1		3	-1	X_{H}		$3 X_{H}{ }^{-} \mathrm{X}_{B}-\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{0}$
O				-1	-1	2	X_{O}		$2 X_{0}-X_{G}{ }^{-} \mathrm{X}_{\mathrm{H}}$
	ESE	25 Sp	ng 20	- DeHm					

$X^{\top}(B X)$	
$\begin{gathered} x_{A}{ }^{2}-x_{A} x_{G} \\ +2 x_{B}{ }^{2}-x_{B} x_{G}-x_{B} x_{H} \\ +X_{C}{ }^{2}-x_{C} x_{H} \\ +3 x_{G}{ }^{2}-x_{A} x_{G}-x_{B} x_{G}-x_{G} x_{0} \\ +3 x_{H}{ }^{2}-x_{B} x_{H}-x_{C} x_{H}-x_{H} x_{O} \\ +2 x_{0}{ }^{2}-x_{G} x_{0}-x_{H} x_{O} \end{gathered}$	$\begin{gathered} \left(X_{A}-x_{G}\right)^{2} \\ +2 x_{B}{ }^{2}-x_{B} x_{G}-x_{B} x_{H} \\ +X_{C}{ }^{2}-x_{C} x_{H} \\ +2 x_{G}{ }^{2-} x_{B} x_{G}-x_{G} x_{0} \\ +3 x_{H}{ }^{2}-x_{B} x_{H}-x_{C} x_{H}-x_{H} x_{O} \\ +2 x_{0}{ }^{2}-x_{G} x_{0}-x_{H} x_{0} \end{gathered}$
Peom ESE525 Sping 2015- Defton	15

Can See Will Converage To..

- Squared wire lengths:
$\left(X_{A}-X_{G}\right)^{2}$
$+\left(X_{B}-X_{G}\right)^{2}$
$+\left(X_{B}-X_{H}\right)^{2}$
$+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{H}}\right)^{2}$
$+\left(X_{G}-X_{O}\right)^{2}$
$+\left(X_{H}-X_{O}\right)^{2}$

$$
\begin{gathered}
\left(X_{A}^{-}-X_{G}\right)^{2}+\left(X_{B}{ }^{-} X_{G}\right)^{2} \\
+X_{B}{ }^{2-} X_{B} X_{H} \\
+X_{C}{ }^{2-} X_{C} X_{H} \\
+X_{G}{ }^{2-} X_{G} X_{O} \\
+3 X_{H}{ }^{2-} X_{B} X_{H} X_{C} X_{H}- \\
X_{H} X_{\mathrm{O}} \\
+2 X_{O}{ }^{2-} X_{G} X_{O}-X_{H} X_{O} \\
\hline
\end{gathered}
$$

Trying to Minimize

- Squared wire lengths:
$\left(X_{A}-X_{G}\right)^{2}$
$+\left(X_{B}-X_{G}\right)^{2} \quad$ Make all X_{i} 's same? $+\left(X_{B}-X_{H}\right)^{2}$
$+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{H}}\right)^{2} \quad$ - ...but, we probably $+\left(X_{G}-X_{O}\right)^{2} \quad$ need to be in unique $+\left(X_{H}-X_{O}\right)^{2}$ positions.

Penn ESE525 Spring 2015 -- DeHon

- Which we know is also $X^{\top} B X$

Spectral Ordering

- Add constraint: $\mathrm{X}^{\top} \mathrm{X}=1$
- prevent trivial solution all x_{i} 's $=0$
- Minimize cost=$=X^{\top} B X$ w/ constraint
- minimize $\mathrm{L}=\mathrm{X}^{\top} \mathrm{BX}-\lambda\left(\mathrm{X}^{\top} \mathrm{X}-1\right)$
$-\partial L / \partial X=2 B X-2 \lambda X=0$
- (B- λl) $X=0$
- What does this tell us about X, λ ?
$-X \rightarrow$ Eigenvector of B
- cost is Eigenvalue λ

Eigenvector for B
For this B Matrix

	A	B	C	G	H	O
A	1			-1		
B		2		-1	-1	
C			1		-1	
G	-1	-1		3		-1
H		-1	-1		3	-1
O				-1	-1	2

Eigenvector is:

X_{A}
X_{B}
X_{C}
X_{G}
X_{H}
X_{O}
:---
$1.116 \mathrm{E}-14$
-0.6533
0.2706
-0.2706
$1.934 \mathrm{E}-14$

Eigenvector for B

Eigenvector is:
Order?

X_{A}
X_{B}
X_{C}
X_{G}
X_{H}
X_{O}
:---
$1.116 \mathrm{E}-14$
-0.6533
0.2706
-0.2706
$1.934 \mathrm{E}-14$

Penn ESE525 Spring 2015 -- DeHon
23

Spectral Solution

- Smallest eigenvalue is zero
- Corresponds to case where all x_{i} 's are the same \rightarrow uninteresting
- Second smallest eigenvalue (eigenvector) is the solution we want

Spectral Ordering

- X (x_{i} 's) continuous
- use to order nodes
- We need at discrete locations
- this is one case where can solve ILP from LP
- Solve LP giving continuous x_{i} 's
- then move back to closest discrete point

Eigenvector is:

X_{A}
X_{B}
X_{C}
X_{G}
X_{H}
X_{O}
:---
$1.116 \mathrm{E}-14$
-0.6533
0.2706
-0.2706
$1.934 \mathrm{E}-14$

Spectral Ordering Option - Can encourage "closeness" - Making some $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$ larger							
- Must allow		A	B	C	G	H	0
not close	A	1			-1		
- Could use $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$	B		2		-1	-1	
for power opt	C			1		-1	
$-\mathrm{c}_{\mathrm{i}, \mathrm{j}}=\mathrm{P}_{\text {switch }}$	G	-1	-1		3		-
	H		-1	-1		3	-
Penn ESE525 Spring 2015 - Dethon	0				-1	-1	2

Spectral Partitioning

- Can form a basis for partitioning
- Attempts to cluster together connected components
- Create partition from ordering
- E.g. Left half of ordering is one half, right half is the other

Spectral Partitioning Options

- Can bisect by choosing midpoint
- (not strictly optimizing for minimum bisect)
- Can relax cut critera
- min cut w/in some δ of balance
- Ratio Cut
- Minimize (cut/|A||B|)
- idea tradeoff imbalance for smaller cut
- more imbalance \rightarrow smaller $|A||B|$
- so cut must be much smaller to accept
- Easy to explore once have spectral ordering
- Compute at each cut point in $\mathrm{O}(\mathrm{N})$ time

Spectral Ordering Option

- With iteration, can reweigh connections to change cost model being optimized
- linear
- (distance) $)^{1 . X}$
$C_{i, j}=\frac{1}{\sqrt{\left|X_{i}-X_{j}\right|}}$
$C_{i, j}\left(X_{i}-X_{j}\right)^{2}=\frac{\left(X_{i}-X_{j}\right)^{2}}{\sqrt{\left|X_{i}-X_{j}\right|}}=\left(X_{i}-X_{j}\right)^{15}$
Penn ESE525 Spring 2015 -- DeHon

	A	B	C	G	H	O
A	1			-1		
B		2		-1	-1	
C			1		-1	
G	-1	-1		3		-1
H		-1	-1		3	-1
O				-1	-1	2

Spectral Ordering

- Midpoint bisect isn't necessarily best place to cut, consider:

Penn ESE525 Spring 2015 -- DeHon

Fanout

- How do we treat fanout?

- As described assumes point-to-point nets
- For partitioning, pay price when cut something once
- I.e. the accounting did last time for KLFM
- Also a discrete optimization problem
- Hard to model analytically

Penn ESE525 Spring 2015 -- DeHon
Spectral Fanout

- Typically:
- Treat all nodes on a single net as fully
connected
- Model links between all of them
- Weight connections so cutting in half counts
as cutting the wire - e.g. $1 /($ nodes 1)
- Threshold out high fanout nodes
- If connect too many things give no information
Penn EsE525 sping 2015- - Detion

Spectral Note

- Unlike KLFM, attacks global connectivity characteristics
- Good for finding "natural" clusters
- hence use as clustering heuristic for multilevel algorithms
- After doing spectral
- Can often improve incrementally using KLFM pass
- Remember spectral optimizing squared wirelength, not directly cut width

Spectral Fanout Cut Approximation

Weight edges: $1 /(4-1)=1 / 3$

Improving Spectral

- More Eigenvalues
 - look at clusters in n-d space

- But: 2 eigenvectors is not opt. solution to 2D placement
- Partition cut is plane in this higher-dimensional space
-5--70\% improvement over EIG1

MaxFlow

- Set all edge flows to zero
- $\mathrm{F}[\mathrm{u}, \mathrm{v}]=0$
- While there is a path from s,t
- (breadth-first-search)
- for each edge in path $f[u, v]=f[u, v]+1$
- $f[v, u]=-f[u, v]$
- When $c[v, u]=f[v, u]$ remove edge from search
- O(|E|*cutsize)
- [Our problem simpler than general case CLR]

MinCut Goal

- Find maximum flow (mincut) between a source and a sink
- no balance guarantee

Technical Details

- For min-cut in graphs,
- Don't really care about directionality of cut
- Just want to minimize wire crossings
- Fanout
- Want to charge discretely ...cut or not cut
- Pick start and end nodes?

Observation

- Can use residual flow from previous cut when computing next cuts
- Consequently, work of multiple network flows is only $\mathrm{O}\left(|E|^{*}\right.$ final_cut_cost)

Picking Nodes

- Randomly pick
- (maybe try several starting points)
- With small number of adjacent nodes, - could afford to branch on all

Extend to Balanced Cut

- Pick a start node and a finish node
- Compute min-cut start to finish
- If halves sufficiently balanced, done
- else
- collapse all nodes in smaller half into one node
- pick a node adjacent to smaller half
- collapse that node into smaller half
- repeat from min-cut computation

FBB -- Yang/Wong ICCAD'94
Penn ESE525 Spring 2015 -- DeHon

Picking Nodes

- Optimal:
- would look at all s,t pairs
- Just for first cut is merely N-1 "others"
- ...N/2 to guarantee something in second half
- Anything you pick must be in separate halves
- Assuming there is a perfect/ideal bisection
- If pick randomly, probability different halves: 50\%
-Few random selections likely to yield s,t in different halves
- would also look at all nodes to collapse into smaller
- could formulate as branching search

Penn ESE525 Spring 2015 -- DeHon

Big Ideas

- Divide-and-Conquer
- Techniques
- flow based
- numerical/linear-programming based
- Transformation constructs
- Exploit problems we can solve optimally
- Mincut
- Linear ordering

Penn ESE525 Spring 2015 -- DeHon

Admin

- Assign 3 due on Thursday
- Reading for Monday online
- Assignment 4 exercise out
- Should be small part
- Most effort on partitioning project

