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ESE535: 
Electronic Design Automation 

Day 7:  February 9, 2015 
Scheduled Operator Sharing 
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Today 

•  Sharing Resources 
•  Area-Time Tradeoffs 
•  Throughput vs. Latency 
•  VLIW Architectures 
•  Scheduling (introduce) 

– Maybe start on 

Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Compute Function 

•  Compute:  
   y=Ax2 +Bx +C 

• Assume 
– D(Mpy) > D(Add) 
– A(Mpy) > A(Add) 
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Spatial Quadratic 

•  A(Quad) = 3*A(Mpy) + 2*A(Add) 
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Latency vs. Throughput 

•  Latency: Delay from inputs to output(s) 
•  Throughput: Rate at which can 

introduce new set of inputs 
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Washer/Dryer Example 

•  1 Washer Takes 30 minutes 
•  1 Dryer Takes 45 minutes 
•  How long to do one load of wash? 

–  Wash latency 
•  How long to do 5 loads of wash? 
•  Wash Throughput? 

W D 

45m 

W D 
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Pipelining 
•  Break up the computation graph into stages 

– Allowing us to  
•  reuse portions of the graph for new data,  
•  while older data is still working its way through the 

graph 
– Before it has exited graph 

– Use registers to isolate regions 
– Throughput > (1/Latency) 

•  Relate liquid in pipe 
– Doesn’t wait for first drop of liquid to exit far end 

of pipe before accepting second drop 
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Spatial Quadratic 

•  D(Quad) = 2*D(Mpy)+D(Add) = 21 
•  Throughput 1/(2*D(Mpy)+D(Add)) = 1/21 
•  A(Quad) = 3*A(Mpy) + 2*A(Add) = 32 

Latency? 

Synchronous Discipline 
•  Compute  

– From registers 
– Through combinational logic 
– To new values for registers 

•  Delay through logic sets a lower bound 
on the duration of each clock – the 
clock cycle 
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Terms 

•  Latency: Delay from inputs to output(s) 
•  Cycle Time:  

– Clock period 
– Critical path delay between registers 

•  Throughput: Rate at which can 
introduce new set of inputs 
– Typically, inverse of cycle time 

•  Pipelining: how we separate latency 
from cycle time 

Penn ESE535 Spring 2015 -- DeHon 
11 

Pipelined Spatial Quadratic 

•  D(Quad) =  
3*D(Mpy) = 30 

•  Throughput  =  
1/D(Mpy) = 1/10 

•  A(Quad) =  
3*A(Mpy)+2*A(Add)+6A(Reg) = 35 
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Quadratic with Single 
 Multiplier and Adder? 

•  We’ve seen reuse to perform the same 
operation  
– pipelining 

•  We can also reuse a resource in time to 
perform a different role. 
– Here:  x*x, A*(x*x), B*x 
– also: (Bx)+c, (A*x*x)+(Bx+c) 
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Quadratic Datapath 

•  Start with one of 
each operation 
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Multiplexer 
•  Gate allows us to select data 

from multiple sources 

•  Mux  
– For short 

•  Useful when sharing operators 

select 

i0 
i1 

o=i0*/select+ 
    i1*select 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
–   B*x 

•  Use multiplexer to 
steer data (switch 
interconnections) 
– A(mux) < A(multiply) 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
–   B*x 

•  x, x*x 
•  x,A,B 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
–   B*x 

•  x, x*x 
•  x,A,B 
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Quadratic Datapath 

•  Adder serves 
multiple roles 
–  (Bx)+c 
–  (A*x*x)+(Bx+c) 

•  one always mpy 
output 

•  C, Bx+C 
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Quadratic Datapath 
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Quadratic Datapath 
•  Add input 

register for x 
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Cycle Impact? 

•  Need more cycles 
•  How about the delay of 

each cycle? 
– Add mux delay 
– Register setup/hold time, 

clock skew 
– Limited by slowest 

operation 
– Cycle? 

•  D(Mpy)+2*D(Mux2) = 10.2 
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Quadratic Control 
•  Now, we just need to control the datapath 
•  What control? 
•  Control: 

– LD x 
– LD x*x 
– MA Select 
– MB Select 
– AB Select 
– LD Bx+C 
– LD Y 
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Quadratic Control 
1.  LD_X 
2.  MA_SEL=x,MB_SEL[1:0]=x, LD_x*x 
3.  MA_SEL=x,MB_SEL[1:0]=B 
4.  AB_SEL=C,MA_SEL=x*x, MB_SEL=A, 

LD_Bx+C 
5.  AB_SEL=Bx+C, LD_Y 

[Could combine 1 and 5 and 
   do in 4 cycles;  analysis 
   that follows assume 5 as shown.] 
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Quadratic Memory Control 

1.  LD_X 
2.  MA_SEL=x, 

MB_SEL[1:0]=x, 
LD_x*x 

3.  MA_SEL=x, 
MB_SEL[1:0]=B 

4.  AB_SEL=C, 
MA_SEL=x*x, 
MB_SEL=A, LD_Bx
+C 

5.  AB_SEL=Bx+C, LD_Y 
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Quadratic Datapath 

•  Latency/Throughput/Area? 
•  Latency: 5*(D(MPY)+D(mux3))=51 
•  Throughput: 1/Latency ~= 0.02 
•  Area: A(Mpy)+A(Add)+5*A(Reg)  

+2*A(Mux2)+A(Mux3)+A(Imem)=17.5+
A(Imem) 
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Quadratic with 2 Mult, 1 Add 

•  Latency/Throughput/Area? 

step X X + 
1 X*X B*X 

2 A*(X*X) (B*X)+C 

3 (A*X*X*X)
+(B*X+C) 
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Quadratic with 2 Mult, 1 Add 

•  Latency = 3*(D(Mpy)+D(Mux))=30.3 
•  Throughput = 1/30.3 ~=0.03 
•  Area = 2*A(Mpy)+4*A(Mux2)+A(Add)

+3*A(Reg) = 26.5 

step X X + 
1 X*X B*X 

2 A*(X*X) (B*X)+C 

3 (A*X*X*X)
+(B*X+C) 
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Quadratic: Area-Time Tradeoff 

Design Area Throughput Latency 
3M2A (pipe) 35 0.1 30 
2M1A 26.5 0.03 30.3 
1M1A 17.5 0.02 51 
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RegistersMemory 

•  Generally can see many registers 
•  If # registers >> physical operators  

– Only need to access a few at a time 
•  Group registers into memory banks 
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Memory Bank Quadratic 
•  Store x 
•  x*x 
•  B*x 
•  A*x2; B*x+c 
•  (A*x2)+(B*x+c) 

X + 
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Memory Bank Quadratic 
•  Store x 
•  x*x 
•  B*x 
•  A*x2; B*x+c 
•  (A*x2)+(B*x+c) 

X + 

x 
x2 

x 
B 
A 

Bx 
Ax2 

c 
Bx+c 
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Cycle Impact? 
How cycle changed? 
•  Add mux delay 
•  Register setup/hold 

time, clock skew 
•  Memory read/write 

–  Could pipeline 

X + 
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Cycle Impact? 
•  Add mux delay 
•  Register setup/hold 

time, clock skew 
•  Memory read/write 

–  Could pipeline 
–  Impact? 

•  Latency 
•  Throughput? 

X + 

Impact 

•  When have big operators 
– Like multiplier 

•  Can share them to reduce area 
– At cost of throughput 
– Maybe at cost of latency, energy 

•  This gives a rich trade space 
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Details 

•  At extreme, number of “big” operators is 
dominant cost 
– Total number for area 
– Number in path for delay 

•  Does cost additional area, delay to 
share them 
– sometimes a lower order cost 

Penn ESE535 Spring 2015 -- DeHon 
35 

VLIW 
•  Very Long 

Instruction Word 
•  Set of operators 

–  Parameterize 
number, distribution 
(X, +, sqrt…) 

•  More operators 
less time, more area 

•  Fewer operators 
more time, less area 

•  Memories for 
intermediate state 
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+ X X 
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VLIW 
•  Very Long Instruction Word 
•  Set of operators 

–  Parameterize number, distribution (X, +, sqrt…) 
•  More operators less time, more area 
•  Fewer operators more time, less area 

•  Memories for intermediate state 
•  Memory for “long” instructions 

+ X X 

Address Instruction 
Memory 
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VLIW 

+ X X 

Address 
Instruction 
Memory 
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VLIW 
•  Very Long Instruction Word 
•  Set of operators 

–  Parameterize number, distribution (X, +, sqrt…) 
•  More operators less time, more area 
•  Fewer operators more time, less area 

•  Memories for intermediate state 
•  Memory for “long” instructions 
•  Schedule compute task  
•  General framework for specializing to problem 

–  Wiring, memories get expensive 
–  Opportunity for further optimizations 

•  General way to tradeoff area and time 
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VLIW 

+ X X 

Address 
Instruction 
Memory 
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Review 

•  Reuse physical operators in time 
•  Share operators in different roles 
•  Allows us to reduce area at expense of 

increasing time 
•  Area-Time tradeoff 
•  Pay some sharing overhead 

– Muxes, memory 
•  VLIW – general formulation for shared 

datapaths 

Design Automation 

Sets up two problems for us: 
•  Provisioning 

–  (Architecture Selection) 
– End of next week (after…) 

•  Scheduling 
– Start introducing now 
– Next two lectures 
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Behavioral  
(C, MATLAB, …) 

RTL 

Gate Netlist 

Layout 

Masks 

Arch. Select 
Schedule 

FSM assign 
Two-level,  
Multilevel opt. 
Covering 
Retiming 

Placement 
Routing 
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Time Permitting 
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General Problem 
•  Resources are not free 

– Wires, io ports 
– Functional units 

•  LUTs, ALUs, Multipliers, …. 

– Memory access ports 
– State elements 

•  memory locations 
•  Registers 

– Flip-flop 
– loadable master-slave latch 

– Multiplexers (mux) 

select 

i0 
i1 

o=i0*/select+ 
    i1*select 
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Trick/Technique 

•  Resources can be shared (reused) in time 
•  Sharing resources can reduce  

–  instantaneous resource requirements 
–  total costs (area) 

•  Pattern: scheduled operator sharing 
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Example 
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Example 
Assume unit delay operators. 
How many operators do I need to evaluate this computation 
 in ~5 time units. 
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Sharing 

•  Does not have to increase delay 
– w/ careful time assignment 
– can often reduce peak resource 

requirements 
– while obtaining original (unshared) delay 

•  Alternately: Minimize delay given fixed 
resources 
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Schedule Examples 

time 

resource 
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More Schedule Examples 
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Scheduling 

•  Task:  assign time slots (and resources) 
to operations  
–  time-constrained: minimizing peak 

resource requirements 
•  n.b. time-constrained, not always constrained 

to minimum execution time 
– resource-constrained: minimizing 

execution time 
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Resource-Time Example 

Time Constraint: 
          <5 → -- 

  5 → 4 
         6,7 → 2 
          >7 → 1 

Time 

A
re

a 
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Scheduling Use 

•  Very general problem formulation 
– HDL/Behavioral → RTL 
– Register/Memory allocation/scheduling 
–  Instruction/Functional Unit scheduling 
– Processor tasks 
– Time-Switched Routing 

•  TDMA, bus scheduling, static routing 

– Routing (share channel) 
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Two Types (1) 

•  Data independent 
– graph static 
–  resource requirements and execution time 

•  independent of data 

– schedule staticly 
– maybe bounded-time guarantees 
–  typical ECAD problem 



10 

Penn ESE535 Spring 2015 -- DeHon 
55 

Two Types (2) 

•  Data Dependent 
–  execution time of operators variable  

•  depend on data 

–  flow/requirement of operators data dependent 
–  if cannot bound range of variation 

•  must schedule online/dynamically 
•  cannot guarantee bounded-time 
•  general case (I.e. halting problem) 

–  typical “General-Purpose” (non-real-time) OS 
problem 
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Unbounded Resource Problem 

•  Easy: 
– compute ASAP schedule (next slide) 

•  I.e. schedule everything as soon as 
predecessors allow 

– will achieve minimum time 
– won’t achieve minimum area  

•  (meet resource bounds) 
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ASAP Schedule 
As Soon As Possible (ASAP) 

•  For each input 
–  mark input on successor 
–  if successor has all inputs marked, put in visit 

queue 
•  While visit queue not empty 

–  pick node 
–  update time-slot based on latest input 
–  mark inputs of all successors, adding to visit 

queue when all inputs marked 
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ASAP Example 

Work  
Example 
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ASAP Example 

1 5 4 3 2 

3 

2 

2 
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Also Useful to Define ALAP 

•  As Late As Possible 
•  Work backward from outputs of DAG 
•  Also achieve minimum time w/ 

unbounded resources 

Rework  
Example 
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ALAP Example 

1 5 4 3 2 

4 

4 

4 
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ALAP and ASAP 
•  Difference in labeling between ASAP and 

ALAP is slack of node 
– Freedom to select timeslot 
– Class theme: exploit freedom to reduce costs 

•  If ASAP=ALAP, no freedom to schedule 

1 5 4 3 2 

3 

2 

2 

1 5 4 3 2 

4 

4 

4 
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ASAP, ALAP, Difference 
1 5 4 3 2 

3 

2 

2 

1 5 4 3 2 

4 

4 

4 
0 0 0 0 0 

1 

2 

2 

ASAP 

ALAP 
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Big Ideas: 

•  Scheduled Operator Sharing 
•  Area-Time Tradeoffs 
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Admin 

•  Assignment 2, 3 feedback on canvas 
•  Assignment 4 due Thursday 
•  Reading for Wednesday online 


