
1

Penn ESE535 Spring 2015 -- DeHon
1

ESE535:
Electronic Design Automation

Day 7: February 9, 2015
Scheduled Operator Sharing

Penn ESE535 Spring 2015 -- DeHon
2

Today

•  Sharing Resources
•  Area-Time Tradeoffs
•  Throughput vs. Latency
•  VLIW Architectures
•  Scheduling (introduce)

– Maybe start on

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

Penn ESE535 Spring 2015 -- DeHon
3

Compute Function

•  Compute:
 y=Ax2 +Bx +C

• Assume
– D(Mpy) > D(Add)
– A(Mpy) > A(Add)

Penn ESE535 Spring 2015 -- DeHon
4

Spatial Quadratic

•  A(Quad) = 3*A(Mpy) + 2*A(Add)

Penn ESE535 Spring 2015 -- DeHon
5

Latency vs. Throughput

•  Latency: Delay from inputs to output(s)
•  Throughput: Rate at which can

introduce new set of inputs

Penn ESE535 Spring 2015 -- DeHon
6

Washer/Dryer Example

•  1 Washer Takes 30 minutes
•  1 Dryer Takes 45 minutes
•  How long to do one load of wash?

–  Wash latency
•  How long to do 5 loads of wash?
•  Wash Throughput?

W D

45m

W D

2

Pipelining
•  Break up the computation graph into stages

– Allowing us to
•  reuse portions of the graph for new data,
•  while older data is still working its way through the

graph
– Before it has exited graph

– Use registers to isolate regions
– Throughput > (1/Latency)

•  Relate liquid in pipe
– Doesn’t wait for first drop of liquid to exit far end

of pipe before accepting second drop
Penn ESE535 Spring 2015 -- DeHon

7

W D

Penn ESE535 Spring 2015 -- DeHon
8

Spatial Quadratic

•  D(Quad) = 2*D(Mpy)+D(Add) = 21
•  Throughput 1/(2*D(Mpy)+D(Add)) = 1/21
•  A(Quad) = 3*A(Mpy) + 2*A(Add) = 32

Latency?

Synchronous Discipline
•  Compute

– From registers
– Through combinational logic
– To new values for registers

•  Delay through logic sets a lower bound
on the duration of each clock – the
clock cycle

Penn ESE535 Spring 2015 -- DeHon
9

Penn ESE535 Spring 2015 -- DeHon
10

Terms

•  Latency: Delay from inputs to output(s)
•  Cycle Time:

– Clock period
– Critical path delay between registers

•  Throughput: Rate at which can
introduce new set of inputs
– Typically, inverse of cycle time

•  Pipelining: how we separate latency
from cycle time

Penn ESE535 Spring 2015 -- DeHon
11

Pipelined Spatial Quadratic

•  D(Quad) =
3*D(Mpy) = 30

•  Throughput =
1/D(Mpy) = 1/10

•  A(Quad) =
3*A(Mpy)+2*A(Add)+6A(Reg) = 35

Penn ESE535 Spring 2015 -- DeHon
12

Quadratic with Single
 Multiplier and Adder?

•  We’ve seen reuse to perform the same
operation
– pipelining

•  We can also reuse a resource in time to
perform a different role.
– Here: x*x, A*(x*x), B*x
– also: (Bx)+c, (A*x*x)+(Bx+c)

3

Penn ESE535 Spring 2015 -- DeHon
13

Quadratic Datapath

•  Start with one of
each operation

Penn ESE535 Spring 2015 -- DeHon
14

Multiplexer
•  Gate allows us to select data

from multiple sources

•  Mux
– For short

•  Useful when sharing operators

select

i0
i1

o=i0*/select+
 i1*select

Penn ESE535 Spring 2015 -- DeHon
15

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
–  B*x

•  Use multiplexer to
steer data (switch
interconnections)
– A(mux) < A(multiply)

Penn ESE535 Spring 2015 -- DeHon
16

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
–  B*x

•  x, x*x
•  x,A,B

Penn ESE535 Spring 2015 -- DeHon
17

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
–  B*x

•  x, x*x
•  x,A,B

Penn ESE535 Spring 2015 -- DeHon
18

Quadratic Datapath

•  Adder serves
multiple roles
–  (Bx)+c
–  (A*x*x)+(Bx+c)

•  one always mpy
output

•  C, Bx+C

4

Penn ESE535 Spring 2015 -- DeHon
19

Quadratic Datapath

Penn ESE535 Spring 2015 -- DeHon
20

Quadratic Datapath
•  Add input

register for x

Penn ESE535 Spring 2015 -- DeHon
21

Cycle Impact?

•  Need more cycles
•  How about the delay of

each cycle?
– Add mux delay
– Register setup/hold time,

clock skew
– Limited by slowest

operation
– Cycle?

•  D(Mpy)+2*D(Mux2) = 10.2
Penn ESE535 Spring 2015 -- DeHon

22

Quadratic Control
•  Now, we just need to control the datapath
•  What control?
•  Control:

– LD x
– LD x*x
– MA Select
– MB Select
– AB Select
– LD Bx+C
– LD Y

Penn ESE535 Spring 2015 -- DeHon
23

Quadratic Control
1.  LD_X
2.  MA_SEL=x,MB_SEL[1:0]=x, LD_x*x
3.  MA_SEL=x,MB_SEL[1:0]=B
4.  AB_SEL=C,MA_SEL=x*x, MB_SEL=A,

LD_Bx+C
5.  AB_SEL=Bx+C, LD_Y

[Could combine 1 and 5 and
 do in 4 cycles; analysis
 that follows assume 5 as shown.]

Penn ESE535 Spring 2015 -- DeHon
24

Quadratic Memory Control

1.  LD_X
2.  MA_SEL=x,

MB_SEL[1:0]=x,
LD_x*x

3.  MA_SEL=x,
MB_SEL[1:0]=B

4.  AB_SEL=C,
MA_SEL=x*x,
MB_SEL=A, LD_Bx
+C

5.  AB_SEL=Bx+C, LD_Y

5

Penn ESE535 Spring 2015 -- DeHon
25

Quadratic Datapath

•  Latency/Throughput/Area?
•  Latency: 5*(D(MPY)+D(mux3))=51
•  Throughput: 1/Latency ~= 0.02
•  Area: A(Mpy)+A(Add)+5*A(Reg)

+2*A(Mux2)+A(Mux3)+A(Imem)=17.5+
A(Imem)

Penn ESE535 Spring 2015 -- DeHon
26

Quadratic with 2 Mult, 1 Add

•  Latency/Throughput/Area?

step X X +
1 X*X B*X

2 A*(X*X) (B*X)+C

3 (A*X*X*X)
+(B*X+C)

Penn ESE535 Spring 2015 -- DeHon
27

Quadratic with 2 Mult, 1 Add

•  Latency = 3*(D(Mpy)+D(Mux))=30.3
•  Throughput = 1/30.3 ~=0.03
•  Area = 2*A(Mpy)+4*A(Mux2)+A(Add)

+3*A(Reg) = 26.5

step X X +
1 X*X B*X

2 A*(X*X) (B*X)+C

3 (A*X*X*X)
+(B*X+C)

Penn ESE535 Spring 2015 -- DeHon
28

Quadratic: Area-Time Tradeoff

Design Area Throughput Latency
3M2A (pipe) 35 0.1 30
2M1A 26.5 0.03 30.3
1M1A 17.5 0.02 51

Penn ESE535 Spring 2015 -- DeHon
29

RegistersMemory

•  Generally can see many registers
•  If # registers >> physical operators

– Only need to access a few at a time
•  Group registers into memory banks

Penn ESE535 Spring 2015 -- DeHon
30

Memory Bank Quadratic
•  Store x
•  x*x
•  B*x
•  A*x2; B*x+c
•  (A*x2)+(B*x+c)

X +

6

Penn ESE535 Spring 2015 -- DeHon
31

Memory Bank Quadratic
•  Store x
•  x*x
•  B*x
•  A*x2; B*x+c
•  (A*x2)+(B*x+c)

X +

x
x2

x
B
A

Bx
Ax2

c
Bx+c

Penn ESE535 Spring 2015 -- DeHon
32

Cycle Impact?
How cycle changed?
•  Add mux delay
•  Register setup/hold

time, clock skew
•  Memory read/write

–  Could pipeline

X +

Penn ESE535 Spring 2015 -- DeHon
33

Cycle Impact?
•  Add mux delay
•  Register setup/hold

time, clock skew
•  Memory read/write

–  Could pipeline
–  Impact?

•  Latency
•  Throughput?

X +

Impact

•  When have big operators
– Like multiplier

•  Can share them to reduce area
– At cost of throughput
– Maybe at cost of latency, energy

•  This gives a rich trade space

Penn ESE535 Spring 2015 -- DeHon
34

Details

•  At extreme, number of “big” operators is
dominant cost
– Total number for area
– Number in path for delay

•  Does cost additional area, delay to
share them
– sometimes a lower order cost

Penn ESE535 Spring 2015 -- DeHon
35

VLIW
•  Very Long

Instruction Word
•  Set of operators

–  Parameterize
number, distribution
(X, +, sqrt…)

•  More operators
less time, more area

•  Fewer operators
more time, less area

•  Memories for
intermediate state

Penn ESE535 Spring 2015 -- DeHon
36

+ X X

7

Penn ESE535 Spring 2015 -- DeHon
37

VLIW
•  Very Long Instruction Word
•  Set of operators

–  Parameterize number, distribution (X, +, sqrt…)
•  More operators less time, more area
•  Fewer operators more time, less area

•  Memories for intermediate state
•  Memory for “long” instructions

+ X X

Address Instruction
Memory

Penn ESE535 Spring 2015 -- DeHon
38

VLIW

+ X X

Address
Instruction
Memory

Penn ESE535 Spring 2015 -- DeHon
39

VLIW
•  Very Long Instruction Word
•  Set of operators

–  Parameterize number, distribution (X, +, sqrt…)
•  More operators less time, more area
•  Fewer operators more time, less area

•  Memories for intermediate state
•  Memory for “long” instructions
•  Schedule compute task
•  General framework for specializing to problem

–  Wiring, memories get expensive
–  Opportunity for further optimizations

•  General way to tradeoff area and time

Penn ESE535 Spring 2015 -- DeHon
40

VLIW

+ X X

Address
Instruction
Memory

Penn ESE535 Spring 2015 -- DeHon
41

Review

•  Reuse physical operators in time
•  Share operators in different roles
•  Allows us to reduce area at expense of

increasing time
•  Area-Time tradeoff
•  Pay some sharing overhead

– Muxes, memory
•  VLIW – general formulation for shared

datapaths

Design Automation

Sets up two problems for us:
•  Provisioning

–  (Architecture Selection)
– End of next week (after…)

•  Scheduling
– Start introducing now
– Next two lectures

Penn ESE535 Spring 2015 -- DeHon
42

Behavioral
(C, MATLAB, …)

RTL

Gate Netlist

Layout

Masks

Arch. Select
Schedule

FSM assign
Two-level,
Multilevel opt.
Covering
Retiming

Placement
Routing

8

Time Permitting

Penn ESE535 Spring 2015 -- DeHon
43

Penn ESE535 Spring 2015 -- DeHon
44

General Problem
•  Resources are not free

– Wires, io ports
– Functional units

•  LUTs, ALUs, Multipliers, ….

– Memory access ports
– State elements

•  memory locations
•  Registers

– Flip-flop
– loadable master-slave latch

– Multiplexers (mux)

select

i0
i1

o=i0*/select+
 i1*select

Penn ESE535 Spring 2015 -- DeHon
45

Trick/Technique

•  Resources can be shared (reused) in time
•  Sharing resources can reduce

–  instantaneous resource requirements
–  total costs (area)

•  Pattern: scheduled operator sharing

Penn ESE535 Spring 2015 -- DeHon
46

Example

Penn ESE535 Spring 2015 -- DeHon
47

Example
Assume unit delay operators.
How many operators do I need to evaluate this computation
 in ~5 time units.

Penn ESE535 Spring 2015 -- DeHon
48

Sharing

•  Does not have to increase delay
– w/ careful time assignment
– can often reduce peak resource

requirements
– while obtaining original (unshared) delay

•  Alternately: Minimize delay given fixed
resources

9

Penn ESE535 Spring 2015 -- DeHon
49

Schedule Examples

time

resource

Penn ESE535 Spring 2015 -- DeHon
50

More Schedule Examples

Penn ESE535 Spring 2015 -- DeHon
51

Scheduling

•  Task: assign time slots (and resources)
to operations
–  time-constrained: minimizing peak

resource requirements
•  n.b. time-constrained, not always constrained

to minimum execution time
– resource-constrained: minimizing

execution time

Penn ESE535 Spring 2015 -- DeHon
52

Resource-Time Example

Time Constraint:
 <5 → --

 5 → 4
 6,7 → 2
 >7 → 1

Time

A
re

a

Penn ESE535 Spring 2015 -- DeHon
53

Scheduling Use

•  Very general problem formulation
– HDL/Behavioral → RTL
– Register/Memory allocation/scheduling
–  Instruction/Functional Unit scheduling
– Processor tasks
– Time-Switched Routing

•  TDMA, bus scheduling, static routing

– Routing (share channel)

Penn ESE535 Spring 2015 -- DeHon
54

Two Types (1)

•  Data independent
– graph static
–  resource requirements and execution time

•  independent of data

– schedule staticly
– maybe bounded-time guarantees
–  typical ECAD problem

10

Penn ESE535 Spring 2015 -- DeHon
55

Two Types (2)

•  Data Dependent
–  execution time of operators variable

•  depend on data

–  flow/requirement of operators data dependent
–  if cannot bound range of variation

•  must schedule online/dynamically
•  cannot guarantee bounded-time
•  general case (I.e. halting problem)

–  typical “General-Purpose” (non-real-time) OS
problem

Penn ESE535 Spring 2015 -- DeHon
56

Unbounded Resource Problem

•  Easy:
– compute ASAP schedule (next slide)

•  I.e. schedule everything as soon as
predecessors allow

– will achieve minimum time
– won’t achieve minimum area

•  (meet resource bounds)

Penn ESE535 Spring 2015 -- DeHon
57

ASAP Schedule
As Soon As Possible (ASAP)

•  For each input
–  mark input on successor
–  if successor has all inputs marked, put in visit

queue
•  While visit queue not empty

–  pick node
–  update time-slot based on latest input
–  mark inputs of all successors, adding to visit

queue when all inputs marked

Penn ESE535 Spring 2015 -- DeHon
58

ASAP Example

Work
Example

Penn ESE535 Spring 2015 -- DeHon
59

ASAP Example

1 5 4 3 2

3

2

2

Penn ESE535 Spring 2015 -- DeHon
60

Also Useful to Define ALAP

•  As Late As Possible
•  Work backward from outputs of DAG
•  Also achieve minimum time w/

unbounded resources

Rework
Example

11

Penn ESE535 Spring 2015 -- DeHon
61

ALAP Example

1 5 4 3 2

4

4

4

Penn ESE535 Spring 2015 -- DeHon
62

ALAP and ASAP
•  Difference in labeling between ASAP and

ALAP is slack of node
– Freedom to select timeslot
– Class theme: exploit freedom to reduce costs

•  If ASAP=ALAP, no freedom to schedule

1 5 4 3 2

3

2

2

1 5 4 3 2

4

4

4

Penn ESE535 Spring 2015 -- DeHon
63

ASAP, ALAP, Difference
1 5 4 3 2

3

2

2

1 5 4 3 2

4

4

4
0 0 0 0 0

1

2

2

ASAP

ALAP

Penn ESE535 Spring 2015 -- DeHon
64

Big Ideas:

•  Scheduled Operator Sharing
•  Area-Time Tradeoffs

Penn ESE535 Spring 2015 -- DeHon
65

Admin

•  Assignment 2, 3 feedback on canvas
•  Assignment 4 due Thursday
•  Reading for Wednesday online

