ESE 568: Mixed Signal Circuit Design and Modeling

Lec 1: August 28, 2019 Introduction and Overview

- Analog VLSI Circuit Design (analog design)
- Convex Optimization (system design)
 - System Hierarchical Optimization
- Biomedical Electronics
- Biometric Data Acquisition (signal processing)
 - Compressive Sampling
- ADC Design (mixed signal)
- Low Energy Circuits (digital design)
 - Adiabatic Charging

- Analog VLSI Circuit Design (analog design)
- Convex Optimization (system design)
 - System Hierarchical Optimization
- Biomedical Electronics
- Biometric Data Acquisition (signal processing)
 - Compressive Sampling
- ADC Design (mixed signal)
- Low Energy Circuits (digital design)
 - Adiabatic Charging
- □ CIRCUITS, CIRCUITS, CIRCUITS

- □ Cadence?
- **•** ESE 419/572?
- Circuit knowledge
- Diagnostic Survey/Quiz in Canvas
 - Due Friday, not graded

- □ Cadence?
- □ ESE 419/572?
- Circuit knowledge
- Diagnostic Survey/Quiz in Canvas
 - Due Friday, not graded
- WARNING: You should have already take ESE
 419/572 or be taking it at the same time as this class

- Course Topics Overview
- Course Structure
- Course Policies
- Course Content
- Mixed Signal Systems
- Course Objectives

Course Topics Overview

- Ideal Sampling and Quantization
- Static and Spectral Performance Metrics
- Sampling Circuits
- Switched Capacitor Circuits
- Comparators, DACs
- SAR ADCs
- □ Flash ADCs
- Pipeline ADCs
- **D** Time Interleaving, Oversampling
- Other Converter Topologies
- Industry Trends
- F(igure)O(f)M(erit)

□ In other words...

ADCs, ADCs, ADCs

Analysis, Design, and Testing

□ MW Lecture, 4:30-6:00pm in Towne 309

- Start 5 minutes after, end 5 minutes early (~80min)
- □ Website (http://www.seas.upenn.edu/~ese568/)

Mixed Signal Circuit Design and Modeling

Course: ESE568

Units: 1.0 CU Terms: Fall When: MW 4:30-6pm Where: Towne 309 Instructor: Tania Khanna (Moore 201Q, seas: taniak) (office hours: W 1-3pm or by appointment) TA: Han Hao (seas: hanhao) (office hours: TBD)

Prerequisites: ESE 319, ESE 419 or permission of instructor Quick Links: [Course Objectives] [Grading] [Policies] [Fall 2019 Calendar] [Syllabus] [Reading] [Piazza]

Catalog Level Description: This course will introduce design and analysis of mixed-signal integrated circuits. Topics include: Sampling and quantization, Sampling circuits, Switched capacitor circuits and filters, Comparators, Offset compensation, DACs/ADCs (flash, delta-sigma, pipeline, SAR), Oversampling, INL/DNL, FOM. The course will include two mini-projects towards the end of the class using analysis and design techniques learned in the course. Students must provide a written report with explanations to their design choices either with equations or simulation analysis/insight along with performance results.

Role and Objectives

Students will:

- Apply principles of hierarchical mixed signal CMOS VLSI, from the transistor up to the system level, to the understanding of CMOS circuits and systems that are suitable for CMOS fabrication.
- · Design simulated experiments using Cadence to verify the integrity of a CMOS circuit.
- Design mixed signal circuits in CMOS.
- Apply their course knowledge and the Cadence VLSI CAD tools in a team based capstone design project that involves much the same design flow they would encounter in a semiconductor design and fabrication flow. Capstone project is presented in a formal report due at the end of the semester.

Rough Syllabus (by weeks)

Introduction
 Ideal Sampling and Quantization

- □ MW Lecture, 4:30-6:00pm in Towne 309
 - Start 5 minutes after, end 5 minutes early (~80min)
- □ Website (http://www.seas.upenn.edu/~ese568/)
 - Course calendar is used for all handouts (lectures slides, assignments, and readings)
 - Canvas used for assignment submission and grades
 - Piazza used for announcements and discussions

- □ Course Staff (complete info on course website)
- Instructor: Tania Khanna
 - Office hours Wednesday 1-3:00 pm or by appointment
 - Email: <u>taniak@seas.upenn.edu</u>
 - Best way to reach me
- TAs: Han Hao
 - Office Hours TBD
- Piazza for questions

Lectures

- Statistically speaking, you will do better if you come to lecture
- Better if interactive, everyone engaged
- Review/Q&A Lectures
- Textbook
 - Analog Integrated Circuit Design, Carusone, Johns, and Martin, 2nd edition
 - Great reference text with lots of detail
 - Additional Reference:
 - Design of Analog CMOS Integrated Circuits, Behzad Razavi, 1st edition

- □ Cadence
 - Schematic simulation (SPECTRE simulator)
 - Design, analysis and test
 - No Layout
 - Will get started with it in HW 2

Course Structure - Assignments/Exams

- Diagnostic Survey/Quiz in Canvas
 - Complete by Friday this week, already out
- □ Homework 1 week long (5 total) [35%]
 - Due Sundays at midnight
 - No late assignments, no grace period
- □ Midterm exam [25%]
- □ 3 Projects 2-3 weeks long [40%]
 - Design oriented
 - Do well on the projects \rightarrow Do well in the class

ESE568 Fall 2019 Working Schedule

W	Lect	Date	Techne		Due	Reading
H.	Lett.	Date		Sildes	Due	Keading
1	1	8/28 W	Introduction and Overview	[lec1] [lec1_6up]		page completely
		8/30 F			Diagnostics Quiz	
2		9/2 M	Labor Day			
	2	9/4 W	MOS Models: Devices and Large Signal			1.2
		9/8 Su			HW 1 HW1.xls	
	3	9/9 M	MOS Models: Small Signal, CMOS Subcircuits			3.1-3.3, 3.7-3.8
3	4	9/11 W	Differential Amplifier, Basics of Opamp Design			6.1-6.2
		9/15 Su			HW2	
	5	9/16 M	Basic Opamp Design			6.4-6.7
4	6	9/18 W	Basic Opamp Design (con't), Advanced Opamp Design			9.1, 9.3
		9/22 Su			HW3	
	7	9/23 M	Sampling, Reconstruction, Quantization, Static Performance Metrics			15.1-15.3
5	8	9/25 W	Static Performance Metrics			15.1-15.3
		9/29 Su				
	9	9/30 M	Spectral Performance Metrics			15.5
6	10	10/2 W	Sampling Circuits			11.1-11.2 14.4
		10/6 Su			Proj1	
	11	10/7 M	Switched Capacitor Circuits			14.1-14.2
7	12	10/9 W	Comparators			10.1-10.2, 10.4
		10/13 Su			HW4	
8	13	10/14 M	Latch Comparators			10.1-10.2, 10.4
		10/16 W	Review and Q&A			17.5
		10/20 Su			HW5	
6	14	10/21 M	Flash ADCs, Pipeline ADCs			17.5, 17.4
Ľ	15	10/23 W	Pipeline ADCs (con't)			17.4
10		10/28 M	MIDTERM EXAM in class			
10	16	10/30 W	Pipeline ADCs (con't)			17.4
11	17	11/4 M	SAR ADCs			17.2-17.3
	18	11/6 W	Nyquist Rate DACs, Interleaved ADCs			18.1-18.2.1
	19	11/11 M	Oversampling, Delta Sigma ADC/DACs			18.3
12		11/14 W	Review and Q&A			
		11/18 Su			Proj2	
12	20	11/18 M	Data Converter Testing			15.5-15.6
113						

See web page for full details

- Turn homework in Canvas
 - Anything handwritten/drawn must be clearly legible
 - Submit CAD generated figures, graphs, results when specified
 - NO LATE HOMEWORKS!
- Individual work (except projects)
 - CAD drawings, simulations, analysis, writeups
 - May discuss strategies, but acknowledge help

- Analog IC basics review
- Data converter basics
- Switched Capacitor Circuits
- Data converter
 - Architectures
 - Testing
 - Trends
- Frequency synthesis/layout

[3 weeks] [1.5 week] [2 weeks] [7 weeks]

[1.5 week]

- Analog IC basics review
 - Microelectronics review
 - MOS models
 - CMOS subcircuits
 - Opamp design
 - Noise models
 - Project 1: Design opamp

[3 weeks]

Data converter basics

[1.5 week]

- Signal abstraction level
 - Reconstruction and Quantization
 - Going from analog to digital and vice versa
 - Static and Spectral Perf. Metrics
 - VTC
 - INL/DNL
 - SNR/SNDR
 - ENOB, etc.

- Switched Capacitor Circuits
 - Sampling Circuits
 - Ideal sampling
 - Sampling non-idealities
 - Switch Capacitor Circuits
 - T/H, Differance amps, Integrators
 - Comparators
 - Opamp comparators, latch comparators
 - Analyze and compare given comparator designs
 - **Project 2**: Design Sample and Hold circuit

[2 weeks]

- Data converter architectures
 - ADC architectures
 - Nyquist ADCs
 - Flash, Pipeline, SAR
 - Nyquist DACs
 - Unit-element, Binary weighted
 - Oversampling (non-Nyquist)
 - Interleaved ADCs
 - Delta-Sigma ADC/DACs
 - Data Converter Testing
 - Strategies in simulation and lab settings
 - Performance measure (FOM)
 - Performance trends and limits
 - Project 3: Design and characterize ADCs!!

Penn ESE 568 Fall 2019 - Khanna

[7 weeks]

Course Content

□ Frequency synthesis/Layout

- VCOs
- PLL/DLLs
- Layout Techniques
 - Floor planning
 - Common centroid
 - Decoupling

[1.5 week]

Mixed Signal VLSI

- Information is increasingly being stored, processed and communicated in digital form
- Since physical signals are analog in nature, we need
 A/D and D/A conversion interfaces

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

- Front-end amplification boosts the sensor's signal above the noise floor of the interface electronics
- □ Filtering rejects interference, noise, provides antialiasing
- System level optimization is needed
 - Don't want to waste power, money, area, accuracy, etc.

- Information is increasingly being stored, processed and communicated in digital form
- Since physical signals are analog in nature, we need
 A/D and D/A conversion interfaces

ADC Design Motivation (con't)

- Benefits of digital signal processing
 - Reduced sensitivity to "analog" noise
 - Enhanced functionality and flexibility
 - Amenable to automated design & test
 - Direct benefit from the scaling of VLSI technology "Arbitrary" precision
- Issues

- Data converters are difficult to design
 - Especially due to ever-increasing performance requirements (eg. mobility, use models, and size)
- Data converters often present a performance bottleneck
 - Speed, resolution or power dissipation of the A/D or D/A converter can limit overall system performance, especially in the case of small mobile devices

Figure 4.3: 1954 "DATRAC" 11-bit, 50-kSPS SAR ADC Designed by Bernard M. Gordon at EPSCO

http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html

- Consumer electronics
 - Audio, TV, Video
 - Digital Cameras
 - Automotive control
 - Appliances
 - Toys
 - MEDICAL ELECTRONICS
- Communications
 - Smart Phones
 - WirelessTransceivers
 - Routers/Modems

Applications (con't)

- Computing and Control
 - Storage media
 - Sound Cards
 - Data acquisition cards
- Instrumentation
 - Lab bench equipment
 - Semiconductor test equipment
 - Scientific equipment
 - Medical equipment

- High performance digital oscilloscopes rely on extremely high performance ADCs
- Example
 - 20 GSample/s, 8-bit ADC
 - 10 W Power dissipation

- Schvan, ISSCC 2008
- Time interleaved architecture using 160 (!) SAR ADCs for optical networks

- A typical cell phone contains:
 - 4 Rx ADCs
 - 4 Tx DACs
 - 3 Auxiliary ADCs
 - 8 Auxiliary DACs
- Dual Standard, I/Q
- Audio, Tx/Rx power control, Battery charge control, display, ...

A total of 19 data converters!

- A typical cell phone contains:
 - 4 Rx ADCs
 - 4 Tx DACs
 - 3 Auxiliary ADCs
 - 8 Auxiliary DACs
- Dual Standard, I/Q
- Audio, Tx/Rx power control, Battery charge control, display, ...
- A total of 19 data converters!

Even more with smartphones --~15 ADC/DACs in Audio codec chip alone

- Fitbit Surge
 - Microcontroller Solution (32-Bit ARM Cortex-M3)
 - Successive Approximation Register (SAR) architecture
 - 8 channel, 12-bit, 1Ms/s

- Low-cost, single chip solutions require embedded data conversion
- Example: 802.11g Wireless LAN chip
 - 2x 11-bit DAC, 176 MSamples/s
 - 2x 9-bit ADC, 80 MSamples/s

Example 6 – Cardiac Pacemaker System

Example 6 – Cardiac Pacemaker System

Example 6 – Cardiac Pacemaker System

B. Murmann, "ADC Performance Survey 1997-2013," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

B. Murmann, "ADC Performance Survey 1997-2013," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

B. Murmann, "ADC Performance Survey 1997-2013," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

B. Murmann, "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

- Read state-of-the-art ADC design publications (2019) and fill out EXCEL spec sheet
- □ Watch video of ADC performance trends (2014)

						SSCS		
Image: Second	martArt Formulas D Art abc	Image: Section of the section of t	Number	2019.xis	Format Good Neutral	5	A/D Converter Figures of Me and Performance Trends	erit
Peste	A V B A A A A A A A A A A A A A A A A A	hannel SAR-Assisted Pipeli	ned ADC with Temperatur	e-Compensated Dynamic	GmeR-Based Amplifier			
Article Title (IEEE International Solid-State Circuits Conference, Volume 62, Issue 1, Feb. 2019)	B System application(s) for the ADC	C ADC architecture (SAR, Delta-Sigma, etc.)	D Technology/Minimum feature size (nm)	E Resolution (bits)	F G Sampling Frequency (MHz) Power Dissipation	(Boris Murmann	
2013) 32 A 7.6mW 1GS/s 60dB SNDR Single-Channel SAR-Assisted Pipelined ADC with Temperature-Compensated Dynamic Gm-R- Based Amplifier						-	Stanford University	
3.4 A 0.01mm2 25µW 2MS/s 74dB-SNDR Continuous-Time Pipelined-SAR ADC with 120/F Input Capacitor						_		(ISSCC)
3.5 A 0.6V 13b 20MS/s Two-Step TDC-Assisted SAR ADC with PVT Tracking and Speed-Enhanced Techniques								
3.6 A 6-to-800MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm 5								
3.7 A 10mW 16b 15MS/s Two-Step SAR ADC with 95dB DR Using Duai-Deadzone Ring-Amplifier								
11.1 A 5.37mWiChannel Pitch-Matched Ultrasound ASIC with Dynamic-Bit-Shared SAR ADC and 13.2V Charge-Recycling TX in Standard CMOS for Intracardiac Echocardiography								
20.2 A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET								
20.3 A 50MHz-Bandwidth 70.4dB-SNDR Calibration-Free Time- Interleaved 4th-Order Noise-Shaping SAR ADC								
20.5 A 76.8dB-SNDR 50MHz-BW 29.2mW Noise-Coupling- Assisted CT Sturdy MASH ΔΣ Modulator with 1.5bl4b 10 Quantizers in 28nm CMOS								
20.6 An 80MHz-BW 31.9U/conv-step Fittering ΔΣ ADC with a Built-In DAC-Segmentation/ELD-Compensation 65 960MS/s SAR-Quantizer in 28mm LP for 802.11ax Applications 11								

- Read state-of-the-art ADC design publications (2019) and fill out EXCEL spec sheet
- □ Watch video of ADC performance trends (2014)
- Warning: I don't expect you to understand any of it
 Goal: At the end of the course you will

Course Objective

- Acquire a thorough understanding of the basic principles and challenges in data converter design
 - Focus on concepts that are unlikely to expire within the next decade
 - Preparation for further study of state-of-the-art "finetuned" realizations (I.e. Picking the right part for the right problem)
- Strategy
 - Acquire breadth via a complete system walkthrough and a survey of existing architectures
 - Acquire depth through projects that entail design and thorough characterization of a specific circuit example in modern(ish) technology

- Review Course Websites
 - http://www.seas.upenn.edu/~ese568
 - https://piazza.com/upenn/fall2019/ese568/
 - https://canvas.upenn.edu/courses/
- Complete Diagnostic Quiz!
 - Out now
 - Complete by Friday midnight
- □ HW 1 out now
 - Look at different performance concerns for ADC