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Lecture Outline 

!  Elementary track-and-hold  
"  Nonidealities (con’t) 
"  First order improvements 

!  Advanced techniques  
"  Clock bootstrapping (for reference only) 
"  Bottom plate sampling 

!  Switched Capacitor Circuits 
"  Charge Redistribution Track-and-hold 
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Last time... 

!  Elementary track-and-hold circuit and its non-
idealities 

!  First order improvements to elementary track-and-
hold (finish today) 
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Nonidealities 

!  kTC noise 
!  Finite acquisition time 
!  Tracking nonlinearity 
!  Signal dependent hold instant 
!  Charge injection and clock feedthrough 
!  Hold mode feedthrough and leakage 
!  Clock jitter 
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Charge Injection and Clock Feedthrough 

!  Analyze two cases  
"  Very Large Tf (slow-gating) 
"  Very Small Tf (fast-gating) 
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Slow Gating Model for t>toff 
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!  Example: 



Fast Gating 

!  Channel charge cannot 
change instantaneously 

!  Resulting surface potential 
decays via charge flow to 
source and drain (charge 
injection) 

!  Charge divides between 
source and drain 
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Interpretation 

!  This means that in practice split will have 
dependence on impedances seen on either side of 
transistors 

!  Remember: Slightly more charge will go to side with 
lower impedance (higher capacitance) 
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Fast Gating Model for t>toff 

9 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  



Fast Gating Model for t>toff 
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Fast Gating Model for t>toff 

11 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  



Fast Gating Model for t>toff 

12 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  

!  Example: 



Fast Gating Model for t>toff 
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!  Example: 

Slow gating 



Transition Fast/Slow Gating 

!  |ε| and |VOS| decrease as the clock fall time increases and 
approaches the limit of slow gating 

!  Practical cases are closer to fast-gating side 
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Impact of Technology Scaling 

!  Charge injection error to speed ratio benefits from 
short channels and increases in mobility 
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Impact of Technology Scaling 

!  Charge injection error to speed ratio benefits from 
short channels and increases in mobility 
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First order improvements  
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Improvements 

!  CMOS switch 
"  Try to balance nonidealities of nMOS with parallel pMOS 

!  Charge cancelation 
"  Try to cancel charge injection with dummy switch 

!  Differential Sampling 
"  Differential signaling to suppress offset 
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CMOS Switch Resistance 

!  In principle, adding PMOS helps with signal 
dependent Ron in track mode 
"  Parallel resistance of MOS devices roughly constant 
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Analysis 

!  Independent of Vin # too good to be true! 
!  Missing factors 

"  Backgate effect 
"  Short channel effects 
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Real CMOS Switch 

!  Design 
"  Size P/N ratio to minimize change in R over input range 

!  PMOS bring limited benefit unless the input signal 
range is large or centered near VDD 
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Charge Cancellation: CMOS Switch 

!  Partial cancellation of offset error 
!  Assuming fast gating, 50/50 charge split and WnLn=WpLp 

!  Charges full cancel for Vin=(VH-VL)/2=VDD/2 and Vtn=-Vtp 
"  Still signal dependent residual injection 
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Charge Cancellation: Dummy Switch 

!  Cancellation is never perfect, since channel charge of M1 will 
not be 50/50 split 
"  If Rs small, most of charge will flow toward the input voltage source 
"  ~80% cancellation 

!  Not precision technique, just a partial clean-up attempt 
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Differential Sampling 
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Differential Sampling 
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Differential Sampling 
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Differential Sampling 

!  Assuming good matching between the two half 
circuits, we have all benefits of differential signaling 
"  Small residual offset in VOD 

"  Good rejection of coupling noise, supply noise, … 
"  Small common-mode to differential-mode gain 

!  Unfortunately, VOD has same gain error as basic 
single-ended circuit 

!  Also have nonlinear terms 
"  Simplistic models assume channel charge linearly related 

to Vin (ignoring higher order effects, e.g. backgate effect) 
"  Expect to see nonlinear distortion along with gain error 
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Advanced Techniques 



Clock Bootstrapping (Reference) 

!  Phase 1 
"  Cboot is precharged to VDD 

"  Sampling switch is off 

!  Phase 2  
"  Sampling switch is on with VGS=VDD=const. 
"  To first order, both RON and channel charge are signal independent 
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Waveforms (Reference) 
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Basic Clock Bootstrap Circuit (Reference) 
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Boosted Clock 



Circuit Implementation (Reference) 
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!  Efficacy of  bootstrap 
circuit is reduced by 
"  Backgate effect 
"  Parasitic Capacitance 

between at top plate of  C3 



Performance of Bootstrapped Samplers (Reference) 

!  Bootstrapped sampling tends to work well up to 
~10bit resolution 
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Bottom Plate Sampling 

!  What if we want to do much better, e.g. 16 bits? 
!  Basic idea  

"  Sample signal at the "grounded" side of the capacitor to achieve 
signal independence  

!  References  
"  D. J. Allstot and W. C. Black, Jr., “Technological Design 

Considerations for Monolithic MOS Switched-Capacitor Filtering 
Systems,” Proc. IEEE, pp. 967-986, Aug. 1983.  

"  K.-L. Lee and R. G. Meyer, “Low-Distortion Switched- Capacitor 
Filter Design Techniques,” IEEE J. Solid-State Circuits, pp. 
1103-1113, Dec. 1985.  

!  First look at single ended circuit 
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Bottom Plate Sampling Analysis 
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Bottom Plate Sampling Analysis 

!  Turn M2 off "slightly" before M1  
!  Typically a few hundred ps delay 

between falling edges of φe and 
φ  

36 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  



Bottom Plate Sampling Analysis 

!  Turn M2 off "slightly" before M1  
!  Typically a few hundred ps delay 

between falling edges of φe and 
φ  

!  During turn off, M2 injects charge  

!  To first order, charge injected by 
M2 is signal independent!  

!  Voltage across CH  
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Bottom Plate Sampling Analysis 

!  Next, turn off M1  
!  Since bottom plate of CH is 

floating, there is no way to change 
its stored charge  
"  M1 cannot inject any charge onto CH  
"  Most of M1's charge injection goes to 

input source and/or onto parasitics at 
node VO  
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Bottom Plate Sampling Analysis 

!  Next, turn off M1  
!  Since bottom plate of CH is 

floating, there is no way to change 
its stored charge  
"  M1 cannot inject any charge onto CH  
"  Most of M1's charge injection goes to 

input source and/or onto parasitics at 
node VO  

!  But, is the bottom plate really 
floating?  
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Bottom Plate Sampling Analysis 

!  Bottom plate not really 
floating… 
"  There must be some parasitic cap, 

e.g. M2 drain-to-bulk capacitance  

!  So, in real life, M1 does inject 
charge onto CH  
"  How much?  
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Bottom Plate Sampling Analysis 
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!  Interesting observation  
"  Even if  M1 injects some 

charge onto CH, the total 
charge at node X cannot 
change!  



Bottom Plate Sampling Analysis 
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!  Interesting observation  
"  Even if  M1 injects some 

charge onto CH, the total 
charge at node X cannot 
change!  

!  Idea  
"  Process total charge at node X 

instead of  looking at voltage 
across CH  

Vo 



Nonidealities 

!  kTC noise 
!  Finite acquisition time 
!  Tracking nonlinearity 
!  Signal dependent hold instant 
!  Charge injection and clock feedthrough 
!  Hold mode feedthrough and leakage 
!  Clock jitter 
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Hold Mode Feedthrough 

!  Want to make Rout as small as possible 
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Vout
Vin hold

≈
Cov
CH

RoutCovs
2RoutCovs+1



Hold Mode Feedthrough 

!  T-Switch for low speed applications 
!  Cross coupling for high speed applications 
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T-switch 



Hold Mode Leakage 
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Gate Leakage Data 

!  In 65nm CMOS, gate capacitance droop rate is 1V/μs! 
!  Later process use high-k dielectrics 

47 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  



Sampling Jitter 

!  In any sampling circuit, electronic noise causes random 
timing variations in the actual sampling clock edge 
"  Adds “noise” to samples, especially if dVin/dt is large 

!  Analysis 
"  Consider sine wave input signal 
"  Assume Δt is random with zero mean and standard deviation σt 
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Analysis  

49 
Penn ESE 568 Fall 2019 - Khanna adapted from Murmann 
EE315B, Stanford  



Result 
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ADC Performance Survey (ISSCC & VLSI) 
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Significance of Jitter 

!  In light of the above, sampling jitter has become one of the 
main showstoppers for further improvements in the ADC 
speed-resolution product 

!  Example 
"  Fin=10MHz, σt=300ps # SNRjitter = 34.5dB 

!  Not great, but in many applications, the signal is not a 
sinusoid, but spread in some way across frequency 

!  Proper analysis must take into account signal properties 
"  See Da Dalt, TCAS1, 9/2002 
"  Autocorrelation analysis 
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Switched Capacitor Circuits 



Interesting Switched Capacitor Circuits 

!  Track & Hold 
"  Charge redistribution T/H with common mode cancellation  
"  Flip-around T/H  

!  SC Difference amplifiers 
"  Used e.g. in pipeline ADCs  

!  SC Integrators 
"  Used e.g. in sigma-delta ADCs  

!  Passive charge redistribution networks 
"  Used e.g. in successive approximation ADCs  
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Ideal Track-and-Hold Circuit 
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Charge Redistribution Track&Hold 
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Vin 
CH 

CF 

X 



Charge Redistribution Track&Hold 
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!  With bottom plate sampling 



Circuit during ϕ1 
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!  Total charge at node X:  QX = -CHVIN 



Circuit during ϕ1e Going Low 
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!  Total charge at node X:         QX = -CHVIN – ΔQ2 



Circuit during ϕ1 Going Low 
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!  Total charge at node X:         QX = -CHVIN – ΔQ2 

"  Q1 charge injection changes voltage across all caps, but 
total charge at X remains unchanged 



Circuit during ϕ2 
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!  Opamp forces voltage at node X to zero 
"  Charge at X must redistribute among capacitors 



Charge Conservation 

!  Sampled Charge:   

!  After Redistribution:   

!  Charge Conservation:   

!  Output has signal independent offset 
"  Can easily cancel through full differential circuit 
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Fully Differential Circuit 
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Analysis 
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Analysis 
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Analysis 

!  Subtracting 1) and 2) yields 

!  Adding 1) and 2) yields 

!  Variation in VIC show up as common mode 
variations at the amp input 
"  Need good CMRR 
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T/H with Common Mode Cancellation (Reference) 

!  Short switch allows to re-distribute only differential charge 
on sampling capacitors 

!  Common mode at OPAMP input becomes independent of 
common mode at circuit input terminals (IN+/IN-) 
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Analysis (Reference) 

!  Charge conservation at Vip, Vim and Vfloat 
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Analysis (Reference) 

!  Common mode charge conservation at amplifier 
inputs 

!  Amplifier input common mode (VXC) is 
independent of 
"  Input common mode  
"  Output common mode 
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Flip-Around Track and Hold 
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Flip-Around T/H 

!  Sampling caps are “flipped around” and used as feedback 
capacitors during ϕ2 

!  Pros: improved feedback factor (lower noise, higher speed), 
smaller area 

!  Cons: Amp is subjected to input common mode variations 
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Clock Generation 
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!  Non-overlapping clocks 



Difference Amplifier  

!  Useful for computing differences of signals 
"  Application example: Pipeline ADC (more later)  
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Difference Amplifier  

!  Useful for computing differences of signals 
"  Application example: Pipeline ADC (more later)  
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Integrator 

!  Cf accumulates charge packets acquired during φ1 
"  "Discrete time integrator"  

!  Used e.g. in switched capacitor sigma-delta ADCs  
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Big Ideas 

!  Elementary track-and-hold circuit  
"  Many nonidealities 
"  First order improvements can improve performance 

!  Track-and-hold topologies 
"  Charge redistribution – add common mode cancellation 

"  Bottom plate sampling – charge injection cancellation 
"  Fully differential – eliminate signal dependent offset 

"  Flip-around 
"  Faster 

!  Clock generation – non overlapping clocks 
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Admin 

!  Proj 1 
"  Due Tuesday 10/8 

!  HW 4  
"  Due Sunday 10/13 
"  ADC static and spectral metrics 
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