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Intro



Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

(Bimatrix game, linear payoff functions)
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Assumption
The other player, called an optimizer, knows your algorithm and will
best-respond (non-myopically).
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Full Information
Knowing the optimizer’s payoff means we can design optimal
algorithms to play with (Stackelberg).
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Assumption
You do not know the optimizer’s payoffs.

?
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

?
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Optimistic
Pointwise (over all optimizers) optimality

?
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Pessimistic
The maximin value, on average.

?
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

A Little Less Pessimistic
Low Regret on every transcript.

?
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Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Our answer
Pareto-Optimality (based on a Partial Ordering over Algorithms)
and No-Regret.

?
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Some Vibes

Pareto Optimality
A property of algorithms based upon a partial order over
algorithms.Two Algorithms A and B are compared over all possible
optimizer payoffs

The algorithms do equally well

Algorithm A does better

Algorithm B does better

Figure 1: Space of Optimizer Payoffs : Three Scenarios
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Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.
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Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.
• Not all No-Regret algorithms are Pareto-optimal.
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Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.
• Not all No-Regret algorithms are Pareto-optimal. Specifically,
Follow-the-Regularized-Leader (FTRL) based algorithms (which
includes Multiplicative Weights Update, Online Gradient
Descent) are Pareto-dominated.
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Other Results/ Questions :

Other Results
• A Geometric View of Algorithms
• A characterization of best-responses to a no-regret algorithm
• A characterization of Pareto-optimal No-Regret Algorithms
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Model



Model

Two players - Learner and Optimizer

16



Model

In Each round
• The Learner has an action set ∆n

• The Optimizer has an action set ∆m

• They play actions xt, yt in the t-th round
• Linear utliity functions uL,uO
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Model : Learning Algorithms

The Learner Perspective
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

x1, x2, ...xt−1

µL

ytA
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Model: Learning Algorithms

The Learner Perspective
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

x1, x2, ...xt−1

µL

ytA

The resulting transcript of play is (x1, y1), (x2, y2) · · · (xt, yt).
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Model : No-Regret

No-Regret
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

T∑
t=1

uL(xt, yt) ≥
(
max
y∗∈[n]

T∑
t=1

uL(xt, y∗)
)

− o(T).
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Model : No-Swap-Regret

No-Regret
A learning algorithm A is a no-swap-regret algorithm if it is the
case that, regardless of the sequence of actions (x1, x2, . . . , xT)
taken by the optimizer, the learner’s utility satisfies

T∑
t=1

uL(xt, yt) ≥ max
π:[n]→[n]

T∑
t=1

uL(xt, π(yt))− o(T).
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Model : No-Regret and No-Swap-Regret

No-Regret and No-Swap-Regret algorithms are known to exist.
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Model : Mean-Based Algorithms

Only moves within o(T) being the historical best-response action get
non-trivial, i.e., ΩT(1) mass.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 2: Space of Cumulative Payoff Vectors
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Model : Mean-Based Algorithms

Only moves within o(T) of being the historical best-response action
get non-trivial, i.e., ΩT(1) mass.

Examples of Mean-Based Algorithms
MWU, FTPL, OGD are all mean-based.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 3: Space of Cumulative Payoff Vectors
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Model : Follow-the-Regularized-Leader (FTRL)

Given that R is continuous and strongly-convex, and ηT =
1

o(T) :

yt = arg max
y∈∆n

( t−1∑
s=1

uL(xs, y)−
R(y)
ηT

)

25



Model : Follow-the-Regularized-Leader (FTRL)

Given that R is continuous and strongly-convex, and ηT =
1

o(T) :

yt = arg max
y∈∆n

( t−1∑
s=1

uL(xs, y)−
R(y)
ηT

)

Examples of FTRL Algorithms
MWU, FTPL, OGD.
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Model

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence
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Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence 1.

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

where yt = A(x1, x2 · · · xt−1)

1Tie-breaking in favor of the learner.
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Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence of actions 2, 3.

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

where yt = A(x1, x2 · · · xt−1)

2Tie-breaking in favor of the learner.
3Cheating slightly here!
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Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence of actions

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

The learner gets payoff VL(A,uO, T) = 1
T
∑T

t=1 uO(xt, yt)
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Model : Asymptotics

Limit Payoffs
• The learner’s limit payoff is VL(A,uO) = limT→∞ VL(A,uO, T).
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Model : Asymptotics

Limit Payoffs
• The learner’s limit payoff is VL(A,uO) = limT→∞ VL(A,uO, T).
• Motivation : Do not care about oT(1) differences in average
payoff.
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Model : Pareto-Domination

Algorithm A dominates algorithm B for some payoff uL if:
• For all µO : VL(A,uO) ≥ VL(B,uO).
• ∃µO s.t. VL(A,uO) > VL(B,uO) 4.

The algorithms do equally well

Algorithm A does better

Algorithm B does better

4In fact equivalent to a positive measure set
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Model : Pareto-Domination

Algorithm A dominates algorithm B for some payoff uL if:
• For all µO : VL(A,uO) ≥ VL(B,uO).
• ∃µO s.t. VL(A,uO) > VL(B,uO) 5.

All our Pareto-domination results are for a positive-measure set of
learner payoffs.

5In fact equivalent to a positive measure set
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Model : Pareto-Optimality

Pareto-optimality of Algorithms
Algorithm A is Pareto-optimal if it is not Pareto-dominated by any
other algorithm B.
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Related Work

• Learning in Games - [BSV24], [DSS19], [MMSS22]
• Stackelberg Equilibria in Repeated Games - [CAK23], [HLNW22]
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Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

39



Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

{
φ ∈ ∆mn : ∃x1, x2 · · · xT s.t. φ =

1
T

T∑
t=1

xt ⊗ yt

}
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Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

{
φ ∈ ∆mn : ∃x1, x2 · · · xT s.t. φ =

1
T

T∑
t=1

xt ⊗ yt

}

Take their convex hull and call this set the menuM(AT).
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Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

Take their convex hull and call this set the menuM(AT).

M(AT )

Figure 4: A Simple Menu
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Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
• Consider all possible distribution of action pairs generated over
sequences over optimizers.

• Take their convex hull and call this set the menuM(AT).

M(AT )

uO

φ∗

Figure 5: An Optimizer’s Choice on a Simple Menu
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Menus : The Optimizer Best-Response, An Alternate View

Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).
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Menus : The Optimizer Best-Response, An Alternate View

• Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).

• So, we would have to optimize over an infinite sequence of
menus and take the limit.
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Menus : The Optimizer Best-Response, An Alternate View

• Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).

• So, we would have to optimize over an infinite sequence of
menus and take the limit.

• Instead, take the limit menu and optimize over it!
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Menus : The limit Menu Suffices

• So, we would have to optimize over an infinite sequence of
menus and take the limit.

• Instead, take the limit menu and optimize over it!
• The limit menu is defined asM(A) = limT→∞ M(AT).

M(A)

uO

φ∗

Figure 6: An Optimizer’s Choice on the limit Menu
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Menus are all you need

Comparing two algorithms A1 and A2 for a given uO:

Key Idea
The learner (and optimizer) payoffs can be entirely inferred from
the limit menus.

M(A1)

uO

ϕ1

M(A2)

ϕ2

uO
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Menus are all you need

Comparing two algorithms A1 and A2 for a given uO:

Key Idea
Algorithms can be replaced by their limit menus while discussing
Pareto-domination (and optimality).

M(A1)

uO

ϕ1

M(A2)

ϕ2

uO
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Menus : Examples

[A B

P x x
Q x x

]
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Menus: Examples

[A B

P x x
Q x x

]
Learning Algorithm A1: Always play P
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Menus: Examples

Learning Algorithm A1: Always play P

(A⊗ P ) (B ⊗ P )
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Menus: Examples

[A B

P x x
Q x x

]
Learning Algorithm A2: Play Q as long as the Optimizer has always
played A. Otherwise, play P.
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Menus: Examples

Learning Algorithm A2: Play Q as long as the Optimizer has always
played A. Otherwise, play P.

(A⊗Q)

(A⊗ P ) (B ⊗ P )

ϕ

54



What do menus look like in general?
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What do menus look like in general?

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.
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What do menus look like in general?

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

Theorem

A closed, convex subsetM ⊆ ∆mn is an limit menu iff it is
approachable.
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Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu.
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Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu

• Menus are Upwards-Closed
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Upwards Closedness
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Upwards Closedness
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Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu

• Menus are Upwards-Closed

Putting these together:
Every approachable set S is a valid menu
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Menu Characterization

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

Theorem

A closed, convex subsetM ⊆ ∆mn is an limit menu iff it is
approachable.
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No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.
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No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.

T∑
t=1

uL(xt, yt) ≥ max
π:[n]→[n]

T∑
t=1

uL(xt, π(yt)).
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No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.

A CSP φ is no-swap-regret if, for each j ∈ [n], it satisfies

∑
i∈[m]

φijuL(i, j) ≥ max
j∗∈[n]

∑
i∈[m]

φijuL(i, j∗).

where φ = 1
T
∑T

t=1 xt ⊗ yt.
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No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNSR is the set of all CSPs that are no-swap-regret.

67



No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNSR is the set of all CSPs that are no-swap-regret.

Observation
MNSR is a polytope.

MNSR
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No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNR is the set of all CSPs that are no-regret.

Observation
The limit menuM of any no-swap-regret algorithm is contained in
MNSR.

MNSR
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Third Main Result

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

MNSR
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Third Main Result

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Particularly interesting in the context of multiple, seemingly
different, approaches to NSR algorithms.
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No-Swap-Regret Algorithms are
Pareto-Optimal



No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.
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Hey what the heck are these new definitions

Definition: Inclusion-Minimality
A menuM1 is inclusion-minimal if there is no menuM2 such that
M2 ⊊ M1.

Definition: φ+

u+L = x∗ ⊗ y∗, where (x∗, y∗) = argmax(x,y) uL(x, y).
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NSR is minimal

Recall: MNSR is the convex hull of all CSPs of the form x⊗ y, with
x ∈ ∆m and y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)
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NSR includes φ+

Recall: MNSR is the convex hull of all CSPs of the form x⊗ y, with
x ∈ ∆m and y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.
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No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.
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φ+-minimality implies pareto-optimality

Sufficient to prove:

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)
• M2 does contain φ+
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)
• M2 does contain φ+ (a little trickier)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Special Case
Both Menus are Polytopes.

uL

M(A1) M(A2)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)
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φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)
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φ+-minimality implies pareto-optimality

Take the convex hull of the union.

uL

M(A1) M(A2)
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φ+-minimality implies pareto-optimality

Take the convex hull of the union.

Key

M(A2) \M(A1)

M(A1)
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φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).

Key

M(A2) \M(A1)

M(A1)

93



φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.

Key

M(A2) \M(A1)

M(A1)
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φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

Key

M(A2) \M(A1)

M(A1)
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φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

Key

M(A2) \M(A1)

M(A1)
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φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

uL

M(A1) M(A2)

Key

M(A2) \M(A1)

M(A1)

97



Multiplicative Weights (and
friends) are Pareto-Dominated



Theorem
All FTRL algorithms are Pareto-dominated.
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Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?
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Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
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Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
• The Learner must have more than 2 actions.
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Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
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Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
• The Learner must have more than 2 actions. Since No-Regret
with two actions implies no-swap-regret.

We prove this for a non-degenerate set of 3× 2 games.
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Theorem
All FTRL algorithms are Pareto-dominated.

Proof Sketch
• All FTRL algorithms induce the same menu.
• And the menu is a polytope (with a succinct description) 6

6implicitly gives the optimizer their exact best response information
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All FTRL algorithms induce the same menu
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Figure 7: Space of Cumulative Payoffs
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All FTRL algorithms induce the same menu
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Figure 8: Space of Cumulative Payoffs
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All FTRL algorithms induce the same menu

”Mean-Based” Trajectory
Trajectory has a “clear” leader for all but o(T) time steps.
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Figure 9: Space of Cumulative Payoffs
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All FTRL algorithms induce the same menu

”Mean-Based” Trajectory
Convert arbitrary trajectories to mean-based trajectories.

B

A

C

uA − uC

uB − uC

SAB

HAB

SAB

Figure 10: Space of Cumulative Payoffs

108



Oh No I Stopped Listening!!!

• hi
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Oh No I Stopped Listening!!!

• hi
• it’s not too late
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Oh No I Stopped Listening!!!

• hi
• it’s not too late
• here’s what we want you to know
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Takeaways

• Pareto-Optimality
• Menus
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Takeaways

• Pareto-Optimality
• Incomparable with No-Regret
• No-Swap-Regret Algorithms are Pareto-Optimal

• Menus
• Progress towards understanding FTRL
• A new paradigm for algorithm design
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Thank you!

Figure 11: Us, being happy you listened to our talk
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