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Motivation
Agents use Learning Algorithms to make Decisions
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Motivation
Agents use Learning Algorithms to play games
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Motivation
Agents use Learning Algorithms to play repeated games

…………………………..
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Motivation
Repeated Ad-Auctions
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Motivation
Repeated Ad-Auctions

Advertising Slot

Output


Winner + Price

Automated 
Auctioneer
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Some Questions

• What are good learning algorithms to use?


• Existing Benchmark : No-Regret


• A New Criterion: Non-Manipulability


• Our Novel Criterion : Pareto-Optimality


• How might other agents respond to these learning algorithms?


• For eg: How should an auctioneer pick a dynamic pricing rule against certain 
bidding algorithms?
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Model
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Model
Two Players - Learner and Optimizer

Two-player bimatrix game

The Learner knows their own 
payoff but not that of the 

optimizer

?

The optimizer has full information 
and best-responds (non-myopically)

(Repeated T times)
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Model
Two Players - Learner and Optimizer

Two-player bimatrix game

The Learner knows their own 
payoff but not that of the 

optimizer

?

The optimizer has full information 
and best-responds (non-myopically)

(Repeated T times)

The learner observes the action 
played by the optimizer in each 

round
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Example - The RPS game
A Two-Player Zero-sum Game

0 -1 1

1 0 -1

-1 1 0

0 1 -1

-1 0 1

1 -1 0

Unknown to the Learner

Learner Payoffs Optimizer Payoffs
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Example - The RPS game

0 -1 1

1 0 -1

-1 1 0

1 0 0

0 1 0

0 0 1

Unknown to the Learner

Learner Payoffs Optimizer Payoffs
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Model: Notation
In Each Round

• The learner has action set 


• The optimizer has action set 


• They play actions  in the t-th round.


• Linear utility function 

Δm

Δn

yt, xt

uL, uO

?
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Model : Learning Algorithms
The Learner Perspective

Without knowing , the learner commit to an algorithm mapping 
(deterministically) from histories of play of length t-1 to a distribution  over 
actions in the t-th round

uO
yt

x1,x2, ...xt−1

µL

ytA
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Model 
The Optimizer Perspective

With full information (payoffs, learner algorithm), the optimizer plays a best-
response sequence of actions

x1, x2⋯xT ∈ argmax(x1,x2⋯xT)∈ΔT
m

1
T

T

∑
t=1

uO(xt, yt)

Where yt = 𝒜(x1, x2⋯xt−1)
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Model 
Learner Payoff

With full information (payoffs, learner algorithm), the optimizer plays a best-
response sequence of actions

x1, x2⋯xT ∈ argmax(x1,x2⋯xT)∈ΔT
m

1
T

T

∑
t=1

uO(xt, yt)

Where yt = 𝒜(x1, x2⋯xt−1)

The learner gets payoff 

VL(𝒜, uO, T ) =
1
T

T

∑
t=1

uL(xt, yt)
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Model : The Stackelberg Perspective

The Learner Commits to a  
Learning Algorithm

The Optimizer plays a best-
response sequence

A, Collina, Kearns - Solves the full information version of this problem


Our question - What is a good algorithm for the learning version?

The Learner wants 
to maximize their 
resulting payoff
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Pareto-Optimality
Re-defining optimality over all possible optimizers

   A property of algorithms based upon a partial order over algorithms.Two Algorithms A and B$are compared over all 
possible optimizer payoffs 


The algorithms do equally well

Algorithm A does better

Algorithm B does better

Three Scenarios:

   A property of algorithms based upon a partial order over algorithms.Two Algorithms $A$ and $B$ are compared over 
all possible optimizer payoffs 
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Pareto-Optimality
Re-defining optimality over all possible optimizers

Algorithm A Pareto-dominates algorithm B for some payoff  if:

1. 

2. 


uL
∀μO : VL(A, uO) ≥ VL(B, uO)

∃μO s.t. VL(A, uO) > VL(B, uO)

An algorithm is Pareto-Optimal if it is not Pareto-dominated

(All results are for positive measure sets and limit average payoffs)
19



A Basic Guarantee : No-Regret

Pick action 
yt ∈ Y

Get feedback from an adaptive 
adversary.  ft : Y → [−1,1]

Objective : Guarantee that the performance is comparable to the single best action in hindsight


i.e.  
T

∑
t=1

ft(yt) ≥ max
y*∈Y

T

∑
t=1

ft(y*) − o(T)
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Realized utility Best response in hindsight



No-Regret : Applications
Algorithms exists given convexity

• Online Shortest Path Problem (All s-t paths)


• Online Classification (All classifiers in a concept class)


• Boosting Weak Classifiers (via Minimax Computation)


• Bidders behavior in online auctions is consistent with no-regret learning 
algorithms [Nekipelov et al., 2015]
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No-Regret : Applications
Algorithms exists given convexity

In our setting : 
T

∑
t=1

uL(xt, yt) ≥ max
y*∈Δn

T

∑
t=1

uL(xt, y*) − o(T)

For example: Rock, Paper and Scissors:

Learner Sequence

Optimizer Sequence ……

……
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FTRL
A Popular class of No-Regret Algorithms 

All Follow-the-Regularized Leader type algorithms, including Multiplicative Weights (Hedge), Online Gradient Descent 
are Mean-Based No-Regret Algorithms

Given that R is continuous and strongly-convex, and  :
ηT =
1

o(T)

yt = arg max
y∈Δn (

t−1

∑
s=1

uL(xs, y) −
R(y)
ηT )
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A Stronger Guarantee : No-Swap-Regret

Pick action 
yt ∈ Y Get feedback.  ft : Y → [−1,1]

Objective : Guarantee that the performance is comparable to any swap function in-hindsight


i.e.  
T

∑
t=1

ft(yt) ≥ max
π:Y→Y

T

∑
t=1

ft(π(yt)) − o(T)
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No-Swap-Regret
A Stronger version of No-Regret

• Calibrated Forecasting


• Boosting for Regression


• Stronger Guarantees exist for context-based subsequences
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Non-Manipulability

The optimizer has an asymptotic best-response that is just playing a static strategy over 
time 
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Is there an algorithm that has all three properties - No-Regret, 
Pareto-Optimality and Non-Manipulability?

Trivial to achieve any one property



Our Results
Main Results
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All No-Swap-Regret algorithms are Pareto-Optimal and non-manipulable.

Result 1:

PS: The non-manipulability result was already proved by Deng et al. (2019), via a different sequence of arguments



Our Results
Main Results
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Not all No-Regret algorithms are Pareto-optimal. Specifically, Follow-the-Regularized-
Leader (FTRL) based algorithms (which includes Multiplicative Weights Update, Online 

Gradient Descent) are Pareto-dominated.

Result 2:



Our Results
Other Results

• A Geometric View of Algorithms


• A characterization of best-responses to mean-based no-regret algorithms (i.e. 
how to manipulate them)


•  A characterization of Pareto-optimal No-Regret Algorithms
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RL Experiment for Optimizer
Best-Response to Multiplicative Weights
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Rock, Paper, Scissors for T=1000 Modified RPS (Non zero sum) for T=100



RL Experiment for Optimizer
Best-Response to Multiplicative Weights
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Rock, Paper, Scissors for T=1000 Modified RPS (Non zero sum) for T=1000



Talk Plan

• Geometric View of Learning Algorithms - Menus


• NSR is Non-Manipulable (Intuition)


• FTRL is Pareto-dominated (Intuition) (Time Permitting)


• Future Directions/ Related Work



Menus
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Summaries of Play
Transcripts and Correlated Strategy Profiles (CSPs)

Transcript of Play 

Sequence of action pairs 
{xt, yt}T

t=1

Correlated Strategy 
Profile 

Empirical distribution over 
all resulting pure action 

pairs


ϕ =
1
T

T

∑
t=1

xt ⊗ yt

CSPs are sufficient to check for no-regret/ no-swap-regret
35



CSP : Example
Transcripts and Correlated Strategy Profiles (CSPs)

Learner Sequence

Optimizer Sequence ……

…… Algorithm : Mimic the optimizer

Sequence: Alternate Paper and Rock

CSP: ϕ = 1/2(R ⊗ P) + 1/2(P ⊗ R)
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Menus
All possible CSPs

For every optimizer sequence , record the induced CSP


Menu of an Algorithm : Take the convex hull of this set 

x1, x2, ⋯xT

M(AT )

Implicitly : The Limit Menu as T → ∞
37



Menus: An Example
All possible CSPs

A B

P X X

Q X X

Learning Algorithm A1: Always play P
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Menus: Example 1
All possible CSPs

A B

P X X

Q X X

Learning Algorithm A1: Always play P


(A⊗ P ) (B ⊗ P )
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Menus: An Example
All possible CSPs

A B

P X X

Q X X

Learning Algorithm A2: Play Q as long as the Optimizer has always played A. Otherwise, play P
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Menus: Example 2
All possible CSPs

A B

P X X

Q X X

Learning Algorithm A2: Play Q as long as the Optimizer has always played A. Otherwise, play P

(A⊗Q)

(A⊗ P ) (B ⊗ P )

ϕ
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Menus are all you need
Learner and Optimizer Payoffs

M(A)

uO

φ∗

The optimizer “picks” their favorite extreme point
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Menus are all you need
Pareto-Optimality

M(A1)

uO

ϕ1

M(A2)

ϕ2

uO
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Menus are all you need
No-Regret : Property of the CSPs

44

A CSP  is no-regret if, for each , it satisfies





ϕ j ∈ [n]

∑
i∈[m]

ϕijuL(i, j) ≥ max
j*∈[n] ∑

i∈[m]

ϕijuL(i, j*) .



Menus are all you need
Non-Manipulability

All Extreme points of the algorithm’s menu are product distributions
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Menus are all you need
Non-Manipulability : A Negative Example

All Extreme points of the algorithm’s menu are product distributions

Learner Sequence

Optimizer Sequence ……

……

Algorithm : Follow the Leader

Corresponding CSP 1/3(P ⊗ R) + 1/3(S ⊗ P) + 1/3(R ⊗ S)
46



Menus: Proving Pareto-Optimality
Inclusion-Minimality implies Pareto-Optimality

Every inclusion-minimal menu that contains  is Pareto-Optimal.
ϕ+
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Menus: Proving Pareto-Optimality
Inclusion-Minimality implies Pareto-Optimality

Definition: Inclusion-Minimality


48

A menu  is inclusion-minimal if there is no menu  such that . M1 M2 M2 ⊊ M1

Definition:  
φ+

 where ϕ+ = x* ⊗ y*, (x*, y*) = arg max
(x,y)

uL(x, y)



Menus: Proving Pareto-Optimality
-Inclusion-Minimality implies Pareto-Optimalityϕ+
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Lemma : If  contains  and , then there is an Optimizer payoff 
such that 

M1 φ+ M2\M1 ≠ ∅ uO

VL(M1, uO) > VL(M2, uO)

Negating Pareto-domination of one algorithm by another requires only a single certificate



Menus: Proving Pareto-Optimality
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Lemma : If  contains  and , then there is an Optimizer payoff such that M1 φ+ M2\M1 ≠ ∅ uO

VL(M1, uO) > VL(M2, uO)

Special case: Both menus are polytopes

uL
M(A1) M(A2)



Menus: Proving Pareto-Optimality
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Take the convex hull of the union
uL

M(A1) M(A2)



Menus: Proving Pareto-Optimality
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Start with an “extra” vertex in M2

Key

M(A2) \M(A1)

M(A1)



Menus: Proving Pareto-Optimality
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1. Start with an “extra” vertex in 

2. Construct a path of strictly increasing  value

3. Find a “crossover” edge

M2
uL

Key

M(A2) \M(A1)

M(A1)



Menus: Proving Pareto-Optimality
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1. Start with an “extra” vertex in 

2. Construct a path of strictly increasing  value

3. Find a “crossover” edge

M2
uL

uL
M(A1) M(A2)

Key

M(A2) \M(A1)

M(A1)



No-Swap-Regret
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No-Swap-Regret
Characterization (implying Non-Manipulability)

Theorem : The menu of every NSR algorithm is the convex hull of all CSPs of the form , with  and x ⊗ y x ∈ Δm
y ∈ BRL(x)

56

Proof : Via showing that the optimizer always has a static best-response



No-Swap-Regret
Characterization (implying Non-Manipulability)
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Proof : Via showing that the optimizer always has a static best-response

…..….

Consider the optimal transcript, and color based on learner actions 



No-Swap-Regret
Characterization (implying Non-Manipulability)
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Proof : Via showing that the optimizer always has a static best-response

Consider the optimal transcript, and color based on learner actions 


Collect all the time steps, by action played (dividing fractionally on steps with mixed strategies) 



No-Swap-Regret
Characterization (implying Non-Manipulability)

59

Proof : Via showing that the optimizer always has a static best-response

Collect all the time steps, by action played (dividing fractionally on steps with mixed strategies);

 Record the optimizer marginals for each color 

xblue

xblack

xpink



No-Swap-Regret
Characterization (implying Non-Manipulability)
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Collect all the time steps, by action played (dividing fractionally on steps with mixed strategies);

 Record the optimizer marginals for each color 

xblue

xblack

xpink

No-Swap-Regret: Blue, black and pink are respectively best-responses to ,  and xblue xblack xpink



No-Swap-Regret
Characterization (implying Non-Manipulability)
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xblue

xblack

xpink

No-Swap-Regret: Blue, black and pink are respectively best-responses to ,  and xblue xblack xpink

The optimal CSP is now a convex combination of CSPs of the form , with  and  x ⊗ y x ∈ Δm y ∈ BRL(x)



No-Swap-Regret
Characterization (implying Non-Manipulability)
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No-Swap-Regret: Blue, black and pink are respectively best-responses to ,  and xblue xblack xpink

The optimal CSP is now a convex combination of CSPs of the form , with  and  x ⊗ y x ∈ Δm y ∈ BRL(x)

Might as well play a single distribution x and let the NSR learner learn 
a best-response to x

Reduces to the Stackelberg Equilibrium problem, solvable using m linear programs



No-Swap-Regret
Characterization (proving Pareto-Optimality)

Theorem : The menu of every NSR algorithm is the convex hull of all CSPs of the form , with  and x ⊗ y x ∈ Δm
y ∈ BRL(x)

63

With a little more effort, we can show that this menu is inclusion-minimal, with some additional 
characterization of valid menus, i.e., convex sets that can be realized by some learning algorithm.



FTRL is Pareto-dominated
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Recall : FTRL
Only moves within  of being the historical best-response action get non-trivial, i.e.,   mass. o(T ) ΩT(1)

All Follow-the-Regularized Leader type algorithms, including Multiplicative Weights (Hedge), Online Gradient Descent 
are Mean-Based No-Regret Algorithms

Given that R is continuous and strongly-convex, and  :
ηT =
1

o(T)

yt = arg max
y∈Δn (

t−1

∑
s=1

uL(xs, y) −
R(y)
ηT )
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Mean-Based Algorithms (FTRL)
Only moves within  of being the historical best-response action get non-trivial, i.e.,   mass. o(T ) ΩT(1)

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

(Paper)

(Rock)

(Scissors)

Space of Cumulative Payoffs

Optimizer Sequence ……
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FTRL is Pareto-dominated
What’s the smallest size-game in which we can prove this?

• The optimizer must have more than one action.

• The Learner must have more than 2 actions. Since No-Regret with two actions implies no-swap-regret.

We prove this for a non-degenerate set of $3 \times 2$ games.
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FTRL is Pareto-dominated

Theorem: All FTRL algorithms are Pareto-dominated.

1. All FTRL algorithms induce the same menu

2. And the menu is a polytope with a succinct description (implicitly gives the optimizer their exact best response 

information).

Proof Sketch:
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All FTRL algorithms induce the same menu

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Cumulative Payoffs over time
69



All FTRL algorithms induce the same menu
Mean-Based Trajectories

Trajectory has a ``clear" leader for all but o(T) time steps.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC
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All FTRL algorithms induce the same menu
Mean-Based Trajectories

Convert arbitrary trajectories to mean-based trajectories.

B

A

C

uA − uC

uB − uC
SAB

HAB

SAB
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Future Directions



Future Directions/ Related Work
Direction 1 : Auctions as repeated Bayesian Games

73

The learner receives a private context in each round drawn from a prior distribution, for eg., a click through rate prediction for an ad slot

• Mansour et al. (2022) show non-manipulability results via a notion of regret against policies mapping contexts to actions


• Kumar et al. [2024]  show similar properties for Online Mirror Descent when used in repeated first price auctions

The Pareto-Optimality question remains open in this setting



Future Directions/ Related Work
Direction 2 : Repeated Auctions with a Budget

74

The learner has a total budget that they can spend, and must optimize spending, possibly based on private contexts

How do learning 
algorithms for the budget 

pacing problem fare 
against each other?



Thanks for Listening. Questions?


