
Pareto-Optimal Learning Algorithms for
Repeated Games
Penn Theory Seminar

Eshwar Ram Arunachaleswaran, Natalie Collina, Jon Schneider
February 20, 2024

University of Pennsylvania, Google Research

Table of contents

1. Introduction

2. Model

3. Menus

4. No-Swap-Regret Algorithms are Pareto-Optimal

5. Multiplicative Weights (and friends) are Pareto-Dominated

1

Intro

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

(Bimatrix game, linear payoff functions)

2

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Assumption
The other player, called an optimizer, knows your algorithm and will
best-respond (non-myopically).

3

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Full Information
Knowing the optimizer’s payoff means we can design optimal
algorithms to play with (Stackelberg).

4

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Assumption
You do not know the optimizer’s payoffs.

?

5

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

?

6

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Optimistic
Pointwise (over all optimizers) optimality

?

7

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Pessimistic
The maximin value, on average.

?

8

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

A Little Less Pessimistic
Low Regret on every transcript.

?

9

Some Vibes

What is a good algorithm to commit to in a repeated 2-player game?

Our Setting
Starting with no information with the other player, what is a
reasonable guarantee to ask for?

Our answer
Pareto-Optimality (based on a Partial Ordering over Algorithms)
and No-Regret.

?

10

Some Vibes

Pareto Optimality
A property of algorithms based upon a partial order over
algorithms.Two Algorithms A and B are compared over all possible
optimizer payoffs

The algorithms do equally well

Algorithm A does better

Algorithm B does better

Figure 1: Space of Optimizer Payoffs : Three Scenarios

11

Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.

12

Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.
• Not all No-Regret algorithms are Pareto-optimal.

13

Overview of Main Results

Main Results
• All No-Swap-Regret Algorithms are Pareto-optimal.
• Not all No-Regret algorithms are Pareto-optimal. Specifically,
Follow-the-Regularized-Leader (FTRL) based algorithms (which
includes Multiplicative Weights Update, Online Gradient
Descent) are Pareto-dominated.

14

Other Results/ Questions :

Other Results
• A Geometric View of Algorithms
• A characterization of best-responses to a no-regret algorithm
• A characterization of Pareto-optimal No-Regret Algorithms

15

Model

Model

Two players - Learner and Optimizer

16

Model

In Each round
• The Learner has an action set ∆n

• The Optimizer has an action set ∆m

• They play actions xt, yt in the t-th round
• Linear utliity functions uL,uO

17

Model : Learning Algorithms

The Learner Perspective
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

x1, x2, ...xt−1

µL

ytA

18

Model: Learning Algorithms

The Learner Perspective
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

x1, x2, ...xt−1

µL

ytA

The resulting transcript of play is (x1, y1), (x2, y2) · · · (xt, yt).

19

Model : No-Regret

No-Regret
Without seeing uO, the Learner commits to an algorithm A mapping
(deterministic) from histories of play of length t− 1 to distributions
over actions yt in round t.

T∑
t=1

uL(xt, yt) ≥
(
max
y∗∈[n]

T∑
t=1

uL(xt, y∗)
)

− o(T).

20

Model : No-Swap-Regret

No-Regret
A learning algorithm A is a no-swap-regret algorithm if it is the
case that, regardless of the sequence of actions (x1, x2, . . . , xT)
taken by the optimizer, the learner’s utility satisfies

T∑
t=1

uL(xt, yt) ≥ max
π:[n]→[n]

T∑
t=1

uL(xt, π(yt))− o(T).

21

Model : No-Regret and No-Swap-Regret

No-Regret and No-Swap-Regret algorithms are known to exist.

22

Model : Mean-Based Algorithms

Only moves within o(T) being the historical best-response action get
non-trivial, i.e., ΩT(1) mass.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 2: Space of Cumulative Payoff Vectors

23

Model : Mean-Based Algorithms

Only moves within o(T) of being the historical best-response action
get non-trivial, i.e., ΩT(1) mass.

Examples of Mean-Based Algorithms
MWU, FTPL, OGD are all mean-based.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 3: Space of Cumulative Payoff Vectors
24

Model : Follow-the-Regularized-Leader (FTRL)

Given that R is continuous and strongly-convex, and ηT =
1

o(T) :

yt = arg max
y∈∆n

(t−1∑
s=1

uL(xs, y)−
R(y)
ηT

)

25

Model : Follow-the-Regularized-Leader (FTRL)

Given that R is continuous and strongly-convex, and ηT =
1

o(T) :

yt = arg max
y∈∆n

(t−1∑
s=1

uL(xs, y)−
R(y)
ηT

)

Examples of FTRL Algorithms
MWU, FTPL, OGD.

26

Model

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence

27

Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence 1.

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

where yt = A(x1, x2 · · · xt−1)

1Tie-breaking in favor of the learner.

28

Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence of actions 2, 3.

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

where yt = A(x1, x2 · · · xt−1)

2Tie-breaking in favor of the learner.
3Cheating slightly here!

29

Model : Optimizer Behaviour

The Optimizer Perspective
With full information (payoffs, learner algorithm), the optimizer
plays a best-response sequence of actions

x1, x2 · · · xT ∈ argmax
(x1,x2···xT)∈∆T

m

1
T

T∑
t=1

uO(xt, yt)

The learner gets payoff VL(A,uO, T) = 1
T
∑T

t=1 uO(xt, yt)

30

Model : Asymptotics

Limit Payoffs
• The learner’s limit payoff is VL(A,uO) = limT→∞ VL(A,uO, T).

31

Model : Asymptotics

Limit Payoffs
• The learner’s limit payoff is VL(A,uO) = limT→∞ VL(A,uO, T).
• Motivation : Do not care about oT(1) differences in average
payoff.

32

Model : Pareto-Domination

Algorithm A dominates algorithm B for some payoff uL if:
• For all µO : VL(A,uO) ≥ VL(B,uO).
• ∃µO s.t. VL(A,uO) > VL(B,uO) 4.

The algorithms do equally well

Algorithm A does better

Algorithm B does better

4In fact equivalent to a positive measure set
33

Model : Pareto-Domination

Algorithm A dominates algorithm B for some payoff uL if:
• For all µO : VL(A,uO) ≥ VL(B,uO).
• ∃µO s.t. VL(A,uO) > VL(B,uO) 5.

All our Pareto-domination results are for a positive-measure set of
learner payoffs.

5In fact equivalent to a positive measure set

34

Model : Pareto-Optimality

Pareto-optimality of Algorithms
Algorithm A is Pareto-optimal if it is not Pareto-dominated by any
other algorithm B.

35

Related Work

• Learning in Games - [BSV24], [DSS19], [MMSS22]
• Stackelberg Equilibria in Repeated Games - [CAK23], [HLNW22]

36

References i

William Brown, Jon Schneider, and Kiran Vodrahalli.
Is learning in games good for the learners?
Advances in Neural Information Processing Systems, 36, 2024.

Natalie Collina, Eshwar Ram Arunachaleswaran, and Michael
Kearns.
Efficient stackelberg strategies for finitely repeated games.
In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pages 643–651,
2023.
Yuan Deng, Jon Schneider, and Balasubramanian Sivan.
Strategizing against no-regret learners.
Advances in neural information processing systems, 32, 2019.

37

References ii

Nika Haghtalab, Thodoris Lykouris, Sloan Nietert, and Alexander
Wei.
Learning in stackelberg games with non-myopic agents.
In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 917–918, 2022.

Yishay Mansour, Mehryar Mohri, Jon Schneider, and
Balasubramanian Sivan.
Strategizing against learners in bayesian games.
In Conference on Learning Theory, pages 5221–5252. PMLR, 2022.

38

Menus

Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

39

Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

{
φ ∈ ∆mn : ∃x1, x2 · · · xT s.t. φ =

1
T

T∑
t=1

xt ⊗ yt

}

40

Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

{
φ ∈ ∆mn : ∃x1, x2 · · · xT s.t. φ =

1
T

T∑
t=1

xt ⊗ yt

}

Take their convex hull and call this set the menuM(AT).

41

Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
Consider all possible distribution of action pairs generated over
sequences over optimizers.

Take their convex hull and call this set the menuM(AT).

M(AT)

Figure 4: A Simple Menu

42

Menus : The Optimizer Best-Response, An Alternate View

Correlated Strategy Pairs (CSPs)
• Consider all possible distribution of action pairs generated over
sequences over optimizers.

• Take their convex hull and call this set the menuM(AT).

M(AT)

uO

φ∗

Figure 5: An Optimizer’s Choice on a Simple Menu

43

Menus : The Optimizer Best-Response, An Alternate View

Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).

44

Menus : The Optimizer Best-Response, An Alternate View

• Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).

• So, we would have to optimize over an infinite sequence of
menus and take the limit.

45

Menus : The Optimizer Best-Response, An Alternate View

• Recall that the learner’s limit payoff is
VL(A,uO) = limT→∞ VL(A,uO, T).

• So, we would have to optimize over an infinite sequence of
menus and take the limit.

• Instead, take the limit menu and optimize over it!

46

Menus : The limit Menu Suffices

• So, we would have to optimize over an infinite sequence of
menus and take the limit.

• Instead, take the limit menu and optimize over it!
• The limit menu is defined asM(A) = limT→∞ M(AT).

M(A)

uO

φ∗

Figure 6: An Optimizer’s Choice on the limit Menu

47

Menus are all you need

Comparing two algorithms A1 and A2 for a given uO:

Key Idea
The learner (and optimizer) payoffs can be entirely inferred from
the limit menus.

M(A1)

uO

ϕ1

M(A2)

ϕ2

uO

48

Menus are all you need

Comparing two algorithms A1 and A2 for a given uO:

Key Idea
Algorithms can be replaced by their limit menus while discussing
Pareto-domination (and optimality).

M(A1)

uO

ϕ1

M(A2)

ϕ2

uO

49

Menus : Examples

[A B

P x x
Q x x

]

50

Menus: Examples

[A B

P x x
Q x x

]
Learning Algorithm A1: Always play P

51

Menus: Examples

Learning Algorithm A1: Always play P

(A⊗ P) (B ⊗ P)

52

Menus: Examples

[A B

P x x
Q x x

]
Learning Algorithm A2: Play Q as long as the Optimizer has always
played A. Otherwise, play P.

53

Menus: Examples

Learning Algorithm A2: Play Q as long as the Optimizer has always
played A. Otherwise, play P.

(A⊗Q)

(A⊗ P) (B ⊗ P)

ϕ

54

What do menus look like in general?

55

What do menus look like in general?

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

56

What do menus look like in general?

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

Theorem

A closed, convex subsetM ⊆ ∆mn is an limit menu iff it is
approachable.

57

Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu.

58

Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu

• Menus are Upwards-Closed

59

Upwards Closedness

60

Upwards Closedness

61

Menu Properties

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

• For every convex approachable set S, there is someM ⊆ S
which is a valid menu

• Menus are Upwards-Closed

Putting these together:
Every approachable set S is a valid menu

62

Menu Characterization

Approachable Sets
A set S is approachable if, for every x ∈ ∆m, there exists a y ∈ ∆n

such that x⊗ y ∈ S.

Theorem

A closed, convex subsetM ⊆ ∆mn is an limit menu iff it is
approachable.

63

No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.

64

No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.

T∑
t=1

uL(xt, yt) ≥ max
π:[n]→[n]

T∑
t=1

uL(xt, π(yt)).

65

No(-Swap)-Regret Redux

No(-Swap)-Regret is a property of just the CSPs.

A CSP φ is no-swap-regret if, for each j ∈ [n], it satisfies

∑
i∈[m]

φijuL(i, j) ≥ max
j∗∈[n]

∑
i∈[m]

φijuL(i, j∗).

where φ = 1
T
∑T

t=1 xt ⊗ yt.

66

No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNSR is the set of all CSPs that are no-swap-regret.

67

No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNSR is the set of all CSPs that are no-swap-regret.

Observation
MNSR is a polytope.

MNSR

68

No(-Swap)-Regret Redux

A natural set of CSPs vis-a-vis no-regret:

MNR is the set of all CSPs that are no-regret.

Observation
The limit menuM of any no-swap-regret algorithm is contained in
MNSR.

MNSR

69

Third Main Result

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

MNSR

70

Third Main Result

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Particularly interesting in the context of multiple, seemingly
different, approaches to NSR algorithms.

71

No-Swap-Regret Algorithms are
Pareto-Optimal

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

72

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)

73

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.

74

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.

75

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.

76

Hey what the heck are these new definitions

Definition: Inclusion-Minimality
A menuM1 is inclusion-minimal if there is no menuM2 such that
M2 ⊊ M1.

Definition: φ+

u+L = x∗ ⊗ y∗, where (x∗, y∗) = argmax(x,y) uL(x, y).

77

NSR is minimal

Recall: MNSR is the convex hull of all CSPs of the form x⊗ y, with
x ∈ ∆m and y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)

78

NSR includes φ+

Recall: MNSR is the convex hull of all CSPs of the form x⊗ y, with
x ∈ ∆m and y ∈ BRL(x).

MNSR

x1 ⊗BR(x1)

x2 ⊗BR(x2)

x3 ⊗BR(x3)

79

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.

80

No Swap Regret Algorithms are Pareto-Optimal

Theorem
All no-swap-regret algorithms A have the same limit menu, which is
MNSR.

Theorem: MNSR Characterization
MNSR is the convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and
y ∈ BRL(x).
Theorem: MNSR Minimality
MNSR is inclusion-minimal and includes φ+.
Theorem: φ+-minimality implies optimality
Every inclusion-minimal menu that contains u+L is pareto-optimal.

81

φ+-minimality implies pareto-optimality

Sufficient to prove:

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

82

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+

83

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)

84

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)
• M2 does contain φ+

85

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Proof:
Two cases:

• M2 does not contain φ+ (easy)
• M2 does contain φ+ (a little trickier)

86

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

Special Case
Both Menus are Polytopes.

uL

M(A1) M(A2)

87

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)

88

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)

89

φ+-minimality implies pareto-optimality

Lemma
IfM1 contains φ+ andM2\M1 ̸= ∅, then there is an Optimizer payoff
uO such that

VL(M1,uO) > VL(M2,uO)

uL

M(A1) M(A2)

90

φ+-minimality implies pareto-optimality

Take the convex hull of the union.

uL

M(A1) M(A2)

91

φ+-minimality implies pareto-optimality

Take the convex hull of the union.

Key

M(A2) \M(A1)

M(A1)

92

φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).

Key

M(A2) \M(A1)

M(A1)

93

φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.

Key

M(A2) \M(A1)

M(A1)

94

φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

Key

M(A2) \M(A1)

M(A1)

95

φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

Key

M(A2) \M(A1)

M(A1)

96

φ+-minimality implies pareto-optimality

• Start with an “extra” vertex inM(A2).
• Construct a path of strictly increasing uL value.
• Find a crossover edge.

uL

M(A1) M(A2)

Key

M(A2) \M(A1)

M(A1)

97

Multiplicative Weights (and
friends) are Pareto-Dominated

Theorem
All FTRL algorithms are Pareto-dominated.

98

Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

99

Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.

100

Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
• The Learner must have more than 2 actions.

101

Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
• The Learner must have more than 2 actions. Since No-Regret
with two actions implies no-swap-regret.

102

Theorem
All FTRL algorithms are Pareto-dominated.

• What’s the smallest-size game in which we can hope to prove
this?

• The optimizer must have more than one action.
• The Learner must have more than 2 actions. Since No-Regret
with two actions implies no-swap-regret.

We prove this for a non-degenerate set of 3× 2 games.

103

Theorem
All FTRL algorithms are Pareto-dominated.

Proof Sketch
• All FTRL algorithms induce the same menu.
• And the menu is a polytope (with a succinct description) 6

6implicitly gives the optimizer their exact best response information

104

All FTRL algorithms induce the same menu

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 7: Space of Cumulative Payoffs
105

All FTRL algorithms induce the same menu

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 8: Space of Cumulative Payoffs

106

All FTRL algorithms induce the same menu

”Mean-Based” Trajectory
Trajectory has a “clear” leader for all but o(T) time steps.

B

A

C

SAB

SAB

SBC

SAC

HAB

HBC

SBC

HAC SAC

Figure 9: Space of Cumulative Payoffs

107

All FTRL algorithms induce the same menu

”Mean-Based” Trajectory
Convert arbitrary trajectories to mean-based trajectories.

B

A

C

uA − uC

uB − uC

SAB

HAB

SAB

Figure 10: Space of Cumulative Payoffs

108

Oh No I Stopped Listening!!!

• hi

109

Oh No I Stopped Listening!!!

• hi
• it’s not too late

110

Oh No I Stopped Listening!!!

• hi
• it’s not too late
• here’s what we want you to know

111

Takeaways

• Pareto-Optimality
• Menus

112

Takeaways

• Pareto-Optimality
• Incomparable with No-Regret

• Menus

113

Takeaways

• Pareto-Optimality
• Incomparable with No-Regret
• No-Swap-Regret Algorithms are Pareto-Optimal

• Menus

114

Takeaways

• Pareto-Optimality
• Incomparable with No-Regret
• No-Swap-Regret Algorithms are Pareto-Optimal

• Menus
• Progress towards understanding FTRL

115

Takeaways

• Pareto-Optimality
• Incomparable with No-Regret
• No-Swap-Regret Algorithms are Pareto-Optimal

• Menus
• Progress towards understanding FTRL
• A new paradigm for algorithm design

116

Thank you!

Figure 11: Us, being happy you listened to our talk

117

	Introduction
	Model
	Menus
	No-Swap-Regret Algorithms are Pareto-Optimal
	Multiplicative Weights (and friends) are Pareto-Dominated

