Latent phenotypic complexity of adaptation in a single environment

Grant Kinsler Stanford University

Latent phenotypic complexity of adaptation in a single environment

Grant Kinsler Stanford University

Kerry Geiler-Samerotte

Organisms are integrated, so mutations should affect many traits

Adaptive mutations affect few fitness-relevant phenotypes

Adaptive mutations affect few fitness-relevant phenotypes

How do we test this?

- 1. Need many adaptive mutants to study
- 2. Need to identify fitness-relevant phenotypes types
- 3. Need to quantify effect on fitness locally and far away

DNA barcoding allows us to track and isolate thousands of adaptive mutants

Levy and Blundell et al. (2015)

Many strongly adaptive mutants

Venkataram and Dunn et al. (2016)

Genotype-to-Phenotype-to-Fitness Map

Genotype-to-Phenotype-to-...-to-Phenotype-to-Fitness Map

Mutation 1 Mutation 2 Mutation 3

Environmental Trait Importance

*C*₃

Ck

Environments

Orthogonal Trait Effects

Mutation 1 Mutation 2 Mutation 3 Mutation 4

Environmental Trait Importance

 C_3

Ck

Mutation 1 Mutation 2 Mutation 3 Mutation 4

Singular Value Decomposition

Singular Value Decomposition

Singular Value Decomposition

Singular Value Decomposition

Mutation 1 Mutation 2 Mutation 3 Mutation 4

Singular Value Decomposition

We Measured Fitness In Many Environments Using Barcoding

9 batches of Evolution Condition **Fermentation Series** 8 hour fermentation 4 lag 28 resp 12 hour fermentation 4 lag 28 resp 18 hour fermentation 4 lag 28 resp 22 hour fermentation 4 lag 28 resp **Respiration/Stationary Series** 1 Day Transfer 3 Day Transfer 4 Day Transfer 5 Day Transfer 6 Day Transfer 7 Day Transfer **Glucose/Oxygenation** w/ 1.4% glucose w/ 1.8% glucose 1.5% in Baffled flask x2 1.4% 1.6% 1.7% 1.8% 2.5% glucose

in Baffled

Drugs + 8.5uM GdA x2 + 17uM GdA + 0.5ug FCZ + 2ug FCZ + 0.4ug Benomyl + 2ug Benomyl + DMSO

Carbon Sources

+ 0.5% Raf + 1% Raf + 1% Glycerol + 1% EtOH

+ 1% Suc 1% Raf

Salts

+ 0.2M NaCl + 0.5M NaCl + 0.2M KCl + 0.5M KCl

We Measured Fitness In Many Environments Using Barcoding

9 batches of Evolution Condition	Drugs	
Fermentation Series 8 hour fermentation 4 lac 28 rosp 12 hour ferme 18 hour ferme 22 hour ferme	+ 8.5uM GdA x2	+ 17uM GdA '· 2ug FCZ ?ug Benomy
Respiration~400 mutants1 Day Transffor a4 Day Transf~18,000 fitnes6 Day Transf~18,000 fitnes	total of ss measurements	r ces + 1% Raf 1% EtOH
Glucos w/ 1.4% glucose w/ 1.8% glucose 1.5% in Baffled flask x2 1.4% 1.6% 1.7% 1.8% 2.5% glucose in Baffled	+ 0.2M NaCl + 0.2M KCl	+ 0.5M NaCl + 0.5M KCl

The phenotype space from subtle perturbations clusters mutations by gene

Use Cross-Validation to Test Predictive Power

Construct model w/ subtle perturbations

Use Cross-Validation to Test Predictive Power

Use Cross-Validation to Test Predictive Power

Phenotype space can predict fitness in strong perturbations!

Phenotype space can predict fitness in strong perturbations!

Smallest 3 components add predictive power in strong perturbations

Smallest 3 components add predictive power in strong perturbations

Condition

Smallest 3 components add predictive power in strong perturbations

Thanks!

Dmitri Petrov

Yuping Li Sandeep Venkataram Atish Agarwala

> Monica Sanchez Tuya Yokoyama

Kerry Geiler-Samerotte

Adaptive mutations affect few fitness-relevant phenotypes

Latent phenotypic effects represent global phenotypic diversity generated by local adaptation

grantkinsler@gmail.com

8th component drives significant improvement in 6 Day condition

Specific mutant effects in 8th component drive improvement

6 Day condition

