
(AUTOMATED) LISTENING IS MORE MEANINGFUL WITH THE
SOURCE CODE

2

ABSTRACT

Machine Listening encompasses many active areas of re-
search. An especially interesting area is nonhuman audi-
tion of music, including music information retrieval and
music recommendation. Currently, most approaches ana-
lyze music audio data without information about its ori-
gins, i.e. without information about how the audio was
generated. For music audio, this specifically means knowl-
edge of music-making (performance, composition, meta-
composition, etc.). For example, music recommendation
via content-based models might focus on acoustic features
without information about how those features arise within
a generative model of music. In this paper, we focus on
music that is generated partially or wholly by code (i.e.
source-code), and how both simple and more theoretical
knowledge about source-code can (a) inform listener ex-
pectations from an analytic standpoint, as well as (b) re-
veal the dependencies of outputs on inputs for metacom-
posers of music-making systems from a generative stand-
point and (c) resolve problems beyond the reach of SOTA
machcine listening problems while introducing intriguing
new problems. After introducing the spectrum of “coded-
ness” and other algorithmic properties of “coded” mu-
sic, we present three case studies, which progress from a
hermeneutic non-automated analysis of the source code of
a very algorithmic piece of music to progressively more
automated analyses of source code. Ultimately, we discuss
future directions for analysis of source code-audio pairs,
as well as domains which can benefit from a similar inte-
gration of data and data-generator.

1. WHAT IS MUSIC SOURCE CODE, AND WHY
STUDY IT?

One can define music source code relative to a model of
score-interpreter-output. A interpreter P is an interpreter
which takes in a source of some form x, and outputs an
audio signal P (x) = y. In traditional instrumental perfor-
mance, for instance, the source is a visual score, the inter-
preter is an orchestra, and the audio signal is the record-
ing. However, in many musics produced today, the score is
itself a program, and the interpreter is an automated com-
piler that takes in such a program and produces an audio

Copyright: ©2023 et al. This is an open-
access article distributed under the terms of the
http://creativecommons.org/licenses/by/3.0/magentaCreative Com-
mons Attribution License 3.0 Unported, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are credited.

file. Thus, when one talks about music source code, it
refers to any artifact which can be directly processed by an
interpreter to produce an audio output. The word “directly”
implies a useful criterion for evaluating what constitutes
source code material - for instance, a process which caused
a composer to hard code a particular device chain for each
track of their audio project is not itself source code, since
the process isn’t itself evaluated by the interpreter, but the
device chain itself is part of the source code.

1.1 Limitations of Machine Listening

1.1.1 Literature Review on Machine Listening

Machine learning techniques have gained significant mo-
mentum in the field of audio analysis in recent years, par-
ticularly in areas such as audio classification, audio event
detection, and speech recognition. A pioneer in the use
of machine learning for audio analysis is [9], who utilized
traditional techniques for signal processing for audio sig-
nal classification into speech and non-speech categories.
After that, several studies have employed various machine
learning algorithms such as decision trees [7], support vec-
tor machines [13], and other early machine learning algo-
rithms.

In recent years, deep learning models, such as Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs), have been widely adopted for audio anal-
ysis tasks and shown to outperform traditional machine
learning methods [10]; [19]). For instance, [4] proposed a
deep audio feature learning framework that leverages both
CNNs and RNNs to improve the accuracy of music emo-
tion recognition. [14] proposed an attention-based deep
learning model for audio event recognition and showed
that the model outperforms traditional CNN-based meth-
ods. Another study by [20] introduced an attention-augmented
convolutional neural network for music genre classifica-
tion and demonstrated that the attention mechanism helps
to improve the performance of the model.

1.1.2 Literature Review on Musical Machine Listening

In the domain of Machine Listening to music, deep learn-
ing models have shown significant advances in recent years.
One of the key challenges in this area is music classifica-
tion, which involves categorizing music into various gen-
res, moods, or styles. A number of studies have employed
deep learning models such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) to
tackle this problem. For example, [21] proposed a music
genre classification model that leverages a combination of
CNNs and RNNs to capture both local and global features
of music. The study showed that the proposed model out-
performs traditional machine learning algorithms.

Another recent study by [6] introduced a deep transfer
learning framework for music classification that utilizes
pre-trained CNNs to extract high-level features from mu-
sic. The study showed that the proposed method outper-
forms traditional machine learning algorithms and can ef-
fectively handle the challenge of small-sized datasets in
music classification.

In addition to music classification, deep learning models
have also been applied to other tasks in Machine Listening
to music such as music auto-tagging [11] and music sim-
ilarity measurement [17]. These studies demonstrate the
potential of deep learning models for various tasks in Ma-
chine Listening to music and highlight the need for further
research in this area.

1.1.3 Limitations of Current Machine Listening

Machine Listening, and machine listening to music in par-
ticular, is in its infancy. Even determining what instru-
ments are playing [18], or how to annotate in MIDI any
instrumental parts [5], is extremely non-trivial and usually
imperfect.

One possible explanation for difficulty making progress
in machine listening is that integrated analysis is neces-
sary for understanding interdimensionality of highly com-
plex or multidimensional systems, such as nonlinear ef-
fects in nonlinear systems. Blind source separation is often
provably undedetermined. According to most paradigms,
the key to solving underdeterminism is locating and then
imposing external structural constraints [12]. Integrated
listening implicitly proposes structural constraints by nar-
rowing the space of possible phenomena that can be occur-
ring so that they fit all modalities.

1.2 Source-code analysis reveals new research
directions in (automated) listening

Quoting from Scheirer’s thesis on music listening [15], one
important auditory scene analysis task is determining whether
two pieces are similar. On the surface, this may seem sim-
ple with the correct tools (some sort of metric of audio sim-
ilarity between small bits of audio combined with a way to
process ordered sequences). However, when we consider
the program, a key question arises: Do we define a piece
with similar meta-orchestration (use of basic materials and
sound processing techniques) as similar, even if we can’t
necessarily hear the similarity? To realize that this might
be something we’d want to consider, note the extended
analysis performed on Charles Ives’ String Quartet in re-
lation to the roles assigned to various instruments. These
instruments can’t be source-annotated by audio alone (pos-
sibly even by a human), because they are voiced by Violins
1 and 2. Similarly, suppose two electronic artists come up
with what sounds like very similar files, but one artist used
100 different sound sources in their piece, while the sec-
ond used a single sound source processed in 100 ways. Is
it the same piece?

1.3 Music as perceptual/conceptual/neurosymbolic

Cognitively, we deal with highly structured data (e.g., pro-
grams) and gestalts (e.g., raw audio) differently. “Music”
is both! Part of the music creation process is about hear-
ing things that are perceptually appealing (e.g., I really like

this sound more with more reverb added), and another part
can be about constructing a narrative or logical process
that is logically appealing or elegant (e.g., Occam’s razor).
Research in both machine learning and cognitive psychol-
ogy groups have focused on ”Neurosymbolic” learning, or
learning about the relationship between the perceptual and
the logical/conceptual [8].

1.4 Even non-machine analysis can benefit from a
focus on codedness and source code

In this paper we focus on integrated listening where the in-
tegration is between source code x, an interpreter P , and
the audio y that results by applying P (x). In terms of
causality, the implications of this paradigm is that when
we read source code in a language such as Max/MSP or
Ableton, we are dealing with a very special case where we
know how our causal model should operate - we know the
semantics of Max/MSP, so given a program and a audio
file, we know how we should be able to interpret the lat-
ter as being caused by the former. This does not always
mean that we will be able to predict the audio before lis-
tening to it from the source code - the code may involve
randomness or complexity beyond our cognitive capabili-
ties to process in advance. But we can be sure that what we
are listening to is nevertheless caused by that code being
executed by the interpreter. Such a situation occurs more
often than one would thing - one can interpret a Mozart
string quartet visual score as x, and the string quartet play-
ers as P , leading to a recording y. Such generalization is
useful, for example, when measuring “codedness” (a met-
ric defined below): There’s a difference between how we
analyze a Beethoven score and a graphic Morton Feldman
score, and this can be analagous to the difference between
analyzing a DAW project that only uses MIDI + instru-
ments without modification, and analyzing the output of
a Max/MSP program; as such, measuring “codedness” in
the context of digital performance also could be applied
to modern graphic and process music. However, there are
also useful distinctions to be made between performers and
programs which interpret source code: The relationship
between source code and audio output is often determin-
istic, or only non-deterministic in very prespecified ways.
Even if the source code is non-deterministic, the “code in-
terpreter” has a predefined semantics, unlike in human mu-
sic where the composer won’t know the “semantics” of the
first violin player.

1.5 (Automated) listening as a composer can be
enhanced by focus on the source code

One way of learning how to compose music of a certain
kind is imitation. It is much easier to learn to imitate how
a particular reverb is used by learning how it’s parameters
change in response to time or other changes in the piece
then trying to audiate that - we simply don’t have the ed-
ucational system for that kind of audiation. Furthermore,
in learning to compose algorithmic music, it’s crucial to
understand the algorithms that produced them if you want
to produce something that’s equally algorithmic. Mecha-
nistic/rule based methods in composition have always been
around, but with computers have proliferated; it is impor-
tant to study compound, complex rules, algorithms or pro-

grams, such as their complexity, logical control flow, etc
in order to understand how to make “realistic” music in
many genres, not exclusively to “algorithmic music” (note
the many tutorials on Youtube dedicated to explaining how
to chain effects in Ableton, an interpreter used for creating
popular hip-hop).

1.6 Defining codedness

While the above examples show that codedness is clearly a
spectrum, and there are several intuitive ways of thinking
about the level of codedness, we only provide a tentative
definition:

Relative to a listener L (who is abstracted as a function
from an audio file y to facts that are definitely true to the
listener about the audio file y) and a universe of predicates
that could be true about any audio file y′, how many addi-
tional facts can be obtained by having the source code? To
see this is a viable definition in an integrative framework,
consider the difference between a sonata by Mozart and the
output of a Markov Model on melodies. A composer with
perfect ability to transcribe playback of a Mozart piano
sonata by MuseScore or the same piano soundfont play-
ing a Markov model-generated piece would learn noth-
ing new about the Mozart sonata by being given the piece
as a visual score (as they would be able to ascertain ev-
ery such fact by listening), but would learn a considerable
amount about the Markov model piece, such as its likeli-
hood among all the possible pieces that could have been
generated by the “composer”, or that the most unexpected
moment in the piece should have been when the motif ”A
C B” was followed by ”A B C”. Note that this definition
assumes that “facts about the piece” include its likelihood
of having been generated, which some consider outside of
the scope of analysis of the given file. Thus, we can only
define codedness (as noted above) relative to a universe
in which a class of predicates exist. In a universe where
probabilistic information is relevant, the Markov piece is
more coded than the Mozart sonata; in a different universe
it might not be. Similarly, if the universe includes facts
about both instrument identity and instrument sound, such
as a hermeneutically rich universe, and if the listener has
perfect transcription abilities, a piece which manipulates
a pair of instruments into radically different timbres us-
ing an additive synthesis algorithm is more coded than a
traditional score for a Woodwind Quintet with equivalent
sound, because we learn “which instruments did what” in
the first case, while in the second we learn nothing new in
this respect. Finally, in a universe where the composer’s
mental process is relevant (an intentional universe), we
learn a great deal more by examining a deterministic algo-
rithm involving morphing Euclidean rhythms which gen-
erates MIDI than by examining a MIDI piano-roll alone
(and thus the algorithm is more coded), because the algo-
rithm tells us that the composer intended for it to display
the nature of evolution of nearly-circular rhythms.

Other problematic definitions of codedness One might
argue that there are better definitions of codedness that
don’t require parameterizing on a listener model and a rel-
evance universe. Here we present several alternative can-
didates and why they are problematic.

1. Kolmogorov complpexity may seem like a natural

fit. However, note that we are measuring not how
well a piece of music could be coded, but how coded
the implementation actually is. Two pieces with iden-
tical output but different implementations are coded
differently, even if they’d have the same Kolmogorov
complexity.

2. Ratio of file size to output length (for comparing be-
tween programs in a similar language) - such an ap-
proach may work when we are comparing a python
program which literally hard-codes a MIDI sequence
than a Markov model which generates MIDI, for in-
stance. However, in general file size is not a good
measure of codedness, as, for instance, in an Able-
ton file the use of a single device with a long defi-
nition will cause file size to grow massively, even if
one is only using that device as a MIDI interpreter
without changing any of its parameters.

3. User-facing complexity (measuring complexity only
of the aspects that the user interfaces with) or Human-
Resource-Weighted File Length - the idea here would
be to either measure the expressivity of the parts of
the code that the user is relying along non-trivially
(parameterized by some definition on non-triviality
of usage), or weight the file size by how labor-intensive
doing each action manually would be. This is proba-
bly the most successful alternative definition. How-
ever, it is even more arbitrarily parametric than our
proposed definition, since it requires knowing what
is a “trivial” usage of a device as opposed to a “coded”
use of it (just passing the problem farther along), and
weighting lines of code by resource consumption re-
quires making arbitrary guesses about how much ef-
fort goes into each piece of the code, and, by exten-
sion, how each piece of the code is produced. Note
that we are only given the source code, not the steps
the composer took to achieve the source code!

1.7 Properties associated with but not equivalent to
codedness

1.7.1 Diversity of Behavior

Many pieces of music that are “coded” to some extent are
not only non-deterministic, but can produce very different
sounding output in each performance, for example open
form. It is definitely true that more algorithmic pieces
tend to produce a wider variety of behavior if they do ex-
hibit nondeterminism, since this non-determinism may be
more structural. However, it is possible to create pieces
which are completely algorithmic and not deterministic at
all. Young’s work on sonifying algorithms [22] provide
several examples - according to the author, there was a
strict bijection between the algorithms being sonified and
the output, so that the output was strictly determined by the
source material, and the same source material wasn’t able
to produce two different outputs.

1.7.2 Audiational agency

“Audiational agency” is a quantification of the level of un-
certainty a composer has about how their music will sound
at any point before, during, or after composition (intention-
consequence gap, which arises because of uncertainty about

the line of actualization from premusic to music). Un-
like codedness, audiational agency in its truest sense is not
completely determined by the code itself - some composers
write the whole algorithm before listening, some will listen
back after every change. It also depends on how complex
of interactions we imagine the composer can precalculate
in their head.
We will choose to define audiational agency of individual
changes to the code and relative to an “audiational task”
and a resource (short term/long term memory, computing
abilities, pitch sensitivity) model R. Fix an audiational “task”
that a listener might have to accomplish (e.g., what pitches
are playing, what the dynamics are, which instruments are
more salient, etc.) How much does the one change to
the code influence the composer’s ability to predict the re-
sults of performing the task on the code’s output, assuming
they’ve heard the output right before changing the code?
Again, more codedness tends to coincide with less audia-
tional agency, but a listener can’t assume this relationship
is strict. From hermeneutic to automated analysis of
source code-audio pairs: three case studies

2. A CLOSE READING OF THE SOURCE AND
OUTPUT OF “MIXING” BY MATTHEW CHUNG

How might a listener be informed by the source-code of an
algorithmic composition?

A recent example in algorithmic composition is Chung’s
Mixing system [3], a program that generates an indefinite
number (a class) of renditions, each of which is presentable
as a complete musical work itself. Each rendition has a
unique, autonomously (without human intervention) gen-
erated musical form (macrostructure), phrasing (mesostruc-
ture), and synthesis texture (microstructure). The source-
code is in Python, SuperCollider, and Open Sound Control.
A listener can consider (i) a single piece, (ii) a set of pieces,
or (iii) the entire set of all pieces generated by the Mixing
system, and can also consider from the perspectives of (iv)
analyzing the system itself, and (v) the methodology by
which the system was created (metacreation).

Perhaps the most straightforward value is that knowing
the source-code helps one listen with informed expecta-
tions or confirm aspects of a listening. For example, one
can learn simple information from the source-code of Mix-
ing that could be equivalently inferred from multiple lis-
tenings to multiple renditions, e.g. that there is only one
stream of grains using FM synthesis, that Lorenz attractors
are used, how random variables and conditionals are used,
and that some parameters are hard-coded while others are
left configurable by the user. In general, studying how
the program produces music is a kind of ‘ultimate answer
guide’ to many questions that can be uncertainly answered
by inference and multiple listenings, especially those ques-
tions that have to do with expectations (e.g. tension aris-
ing from uncertainty about the fulfillment or subversion of
expectations). Source-code informed or confirmed expec-
tations in turn can help one direct resources to essential
features of the work and avoid wasting energy deciding
whether a feature is relevant or not. For example, one can
study the source-code of algorithmic compositions to in-
fer typical features of distributions by either statistical or
algorithmic methods. Thus, source-code can help inform

listener expectations: what to expect about one particular
rendition, about a statistically typical rendition, about all
renditions, and also what not to expect, such as what is not
possible in any renditions. This closely resembles listening
to a more traditional piece of music with the score, where
one can visually confirm aural information.

A value for composers is that one can study the particu-
lar way an algorithmic composition is implemented, which
can be thought of as a kind of reverse engineering. This is
much like studying the brushwork of a painter or orches-
tration approaches of a composer. How did they produce
that visual or aural effect? For algorithmic composers, how
did they invent particular algorithms to solve general com-
positional problems, such as producing music that is inter-
esting for its entire duration, that exhibits diverse behavior
between renditions, that exhibits musical spontaneity, and
so forth? In the case of Mixing, a particular important as-
pect is that the source-code is autonomous, i.e. produces
a complete musical work without any intermediate human
assistance. This required inventing not only a parameter
space that was interesting in many regions but also trajec-
tories that consistently passed through them in interesting
ways. This involved compositional intuition about what
sounds or parameter configurations might be interesting,
which was formalized and captured by the source-code.
Thus, one can study source-code of algorithmic music to
extract formalizations of compositional intuitions. This re-
sembles listening to those aspects of music that ‘work’ and
studying the score to learn why (note that one must listen
to know what ‘works’).

Generalizing this discussion, it is valuable to recognize
that the same ends can be reached by entirely independent
means. For example, a feature that seems perceptually im-
portant might be produced as an accidental artifact, an in-
stance of randomized behavior, or specifically hard-coded.
Furthermore, this sometimes communicates composer in-
tent; the feature might have been produced intentionally by
the composer through meticulous craft, or ‘discovered’ as-
is and left carefully undisturbed (any visual artist knows it
is almost as important to know when to stop adding and
adjusting!), or unimportant to (or simply unnoticed by) the
composer. Thus, knowing the means taken to achieve a
particular end might help one understand the end better,
sometimes but not always including understanding com-
poser intention. In terms of Mixing, there is a rendition
called Sensory Maps, Version C which features a few un-
usually long, low-frequency grains about 9 minutes in, that
sound like held tones and might stand out perceptually to
some listeners simply due to the nature of human hearing
and traditional listener conditioning. A listener might won-
der if this ostensible anomaly is hard-coded, accidental, or
simply atypical but still entirely algorithmic. Source-code
would verify that it is atypical but purely algorithmic (i.e. a
statistical outlier). Thus, source-code can sometimes help
understand composer intentions, but ultimately only serves
as a record of particular means taken to arrive at the mu-
sic.

3. A SEMI-AUTOMATED ANALYSIS OF
“EUCLIDEAN SYMPHONY” USING HOARE

LOGIC

3.1 Ableton, Max4Live, and user-facing expressivity

Ableton is one of the industry standard Digital Audio Work-
stations (DAW’s). As such, it is used by many producers in
a variety of genres, as well as occasionally playing a role
in the nice area of algorithmic composition. The full lan-
guage’s expressivity is greatly enhanced by the inclusion
of several devices which were built in a more expressive
language (Max, similar to PD described above), and with
the inclusion of just 3 of these basic devices Ableton can be
shown to be Turing complete. There is a library dedicated
to enabling anyone to create a Max patch, and develop a
user interface for it in Ableton such that the user doesn’t
need to know about the inner workings of the code.

There is no “typical user” of Ableton; however, a cur-
sory glance at youtube’s hip-hop tutorial pages shows that
a huge niche is “device consumers” - those who don’t have
the programming skills to write their own devices, but will
pay for devices which look useful. We can model these
users as “shallow” programmers - programmers who can
only write code with a finite, predetermined set of func-
tions. Thus, we need a language for analyzing the usage of
a finite set of devices with fixed but black-box semantics.

3.2 Non-determinism in Ableton and the need for
provable properties

Many max4live devices are designed to rely heavily on
randomness, as are certain built-in devices. As such, the
output each time one renders a given file may be vastly
different. Therefore, one cannot understand the space of
ideas the composer was willing to entertain without find-
ing out facts for which logic can prove that they hold in all
cases, since even if, e.g., you listen to a piece 90 times and
never hear a violin, there is no guarantee that the composer
didn’t include a violin sound somewhere in the piece.

3.3 Hoare Logic and its applications to Ableton pieces

We suggest that Hoare logic is a useful tool in this case.
Hoare logic, as pioneered by Tony Hoare, is a type of log-
ical reasoning which is not itself automated, but for which
validity can be automatically verified.[1] In Hoare logic,
we are given rules about the semantics of a function in
terms of PF (f)Q. P , the precondition, states what we’re
assuming we know is true about the state of the program
before we invoke function f . F (f) describes a way of us-
ing f . Q states what we then know is true of the state
of the program after this invokation. There can be mul-
tiple “Hoare triples” per function, reflecting the multiple
propositions that can be true of a function, and the multi-
ple conclusions we will arrive at based on starting initial
assumptions.

Usually, Hoare triples are used in sequential imperative
programs, such as the following:

Triples given:
x % 2 == 0 {x = f(x)} x == 0
y % 3 == 0 {y = g(y)} y == 1
z % 4 == 1 {z = h(z)} z % 2 == 1

Program:
def y():

x = 4
x = f(x) + g(x)
x = z(x)
return x

Program Annotated with triples;
{tautology} x = 0 {x % 2 == 0 /\ x % 3 == 0};
{x % 2 == 0 /\ x % 3 == 0} x = f(x) + g(x); {x == 1}
{x % 4 == 1} x = z(x) {x % 2 == 1}

Conclusion:
y() % 2 definitiely equals 1

In our analysis below, we will assume that we have been
given a fixed set of Hoare triples for each device we care
about. Our task is then to use those Hoare triples to de-
termine provable facts about a piece which uses these de-
vices. Note that it is common in partially-automated theo-
rem proving to be given a description of the behavior of a
black-box object, and to make conclusions based on these
descriptions.

3.3.1 Defining Hoare logic in Ableton

In general, Hoare logic in Ableton will be based on Able-
ton’s sequential device model, in which an arbitrary list of
models which transform MIDI are followed by an instru-
ment which turns MIDI into audio, followed by an arbi-
trary number of effects which turn audio into audio. Pre-
conditions then, depending on the type of device (MIDI
device, instrument, or audio device), have as preconditions
facts about MIDI or audio, and have as postconditions how
facts about MIDI or audio. For an example, consider the
following devices: We have a MIDI effect “ComplexSe-
quencer” which ignores its input and produces arbitrar-
ily complicated MIDI about which we can say nothing, a
“Scale” MIDI effect which states that regardless of input,
the output will be in C Major, a “Note length” MIDI instru-
ment which affects note length but preserves pitches, an
instrument which preserves harmonic spectra, and a “nor-
malizer” audio effect that sets the average volume within a
single FFT frame to 1db as well as a “compressor” audio
effect which preserves harmonic spectra but affects volume
by dividing it in two.

Hoare Triples:
{True} {input = Scale(input)} {input in C Major}
{pitches(input) = x} {input = NoteLength(input)} ->

{pitches(input) = x}
{pitchesInScale(input, x)} {input = Instrument(input)} ->

{spectraInScale(x)}
{spectra(input) = y} {input = Normalizer(input)} ->

{spectra(input) = y}
{spectra(input) = y} {input = Compressor(input)} ->

{spectra(input) = y}

Note the difference in strength of these different Hoare
triples. In the first Hoare triple, we have a strong precon-
dition and a tautology post-condition, telling us nothing
about the output given any information about the input. In
contrast, the second Hoare triple tells us that regardless of
the MIDI given, we will always know that the output will
be in C major - a much more informative piece of informa-
tion.

To use these to prove that a piece has a harmonic spec-
trum consisting of notes in C major, we will simply chain
those Hoare triples together as shown in Appendix A:

3.3.2 Analysis of “Euclidean Symphony” by Halley
Young

“Euclidean Symphony” [23] is a piece which relies on orchestral-
sounding samples, but has a distinctly electronic sound do
to the heavy use of audio effects. In the version of it in-
cluded on soundcloud, it includes a driving pulse which
morphs into a more chaotic rhythm before “resolving” to
the same pulsing beat. What we can learn about Euclidean
Symphony by observing its source code and applying some
Hoare logic:

1. This piece which relies on several devices allowing
little audiational agency and some non-determinism
(remove a random x% of notes, use complicated melody-
generating device relying on randomness)

2. This piece provably moves across 3 scales through-
out the piece regardless of how many times it is re-
generated

3. This piece relies heavily on nonlinear processes by
using a signal envelope to modulate note length on
one track, which effects volume (and future input to
signal envelope)

4. This piece relies heavily on continuous “gestures”
(creating long curves of automation of devices). See
Smith on the importance of continuous gestures in
many types of electronic music.

4. HOW TO ANALYZE PIECES BUILT IN
RENOISE - AN INTRODUCTION TO AUTOMATED

STATIC ANALYSIS OF CODE + SOUNDS

4.0.1 How Renoise Works

Renoise is a somewhat unusual Digital Audio Worksta-
tion. It is organized into a pattern editor, sample editor,
sample modulation sets, and track effect chains, which in-
teract with each other. The pattern editor, while provid-
ing one command for non-determinacy, is immutable and
states how samples used in the piece are supposed to be
initially processed, as well as how each track is to be post-
processed after the initial production of sound. The sample
editor specifies default settings for processing of samples,
including which modulation set should be applied to each
sample. A modulation set specifies ways of modulating the
pitch, panning, volume, resonance, and filter on a sample,
and is composed of chains of devices multiplied or added
together. Similarly, an effect chain consists of a sequence
of common effects (compressors, reverbs, etc.) as well as
more interesting meta-devices (such as a hydra which can
take input from any signal and send it to any parameter in
any other device). Each file is a compression of an XML
file containing all data except the samples, and a folder
containing the samples used.

4.0.2 Renoise and the field of automated static analysis

Automated static analysis is the term used to describe pro-
grams which are given a class of programs in a given lan-
guage, and produce analyses with a given goal fact or set
of facts to be determined. For instance, in Doop, a tool
used to analyze Java, one of the goals is to determine if
you ever have provably infinite loops, or whether a certain
function is defined but provably never used. It is referred
to as “static” analysis because it is accomplished through a
careful analysis of the source code, and not by running the
code and seeing what happens. Static analysis usually in-
volves two steps: parsing the code for “surface-level” facts,
and performing inductive analysis in a language such as
Datalog [16] to learn more complex facts. For instance,
parsing a java program may easily provide clauses such as

Java program contains:
public int func1()

var1 = 3
return var

end

Parser outputs:
definedInFunction(func1, var1, 3)

Then, the inductive rules find more general facts.

Datalog program inputs:

definedInFunction(func1, var1, 3)

constantValueInFunction(func, var) :-
definedInFunction(func, var, val),
not isPointer(val),
not (assignedInFunction(func, var2, val2),
val != val2)$.

Output:
constantValueInFunction(func1, var1).

4.1 Applying static analysis to Renoise

As in our example with Java, there are certain facts that can
be parsed easily from a Renoise XML file - for instance

modulationAppliedToSample(sample1, chain3).

In addition, we can perform all the typical analyses on the
audio samples that the renoise file uses to produce addi-
tional clauses: e.g.

hasLowSignalToNoiseRatio(sample1).
hasEstimatedPitch(sample2, 20).
isClassifiedByCNN(sample3, "string").

Finally, we can apply inductive logic to learn more inter-
esting facts about the piece:

Datalog Program Fragment:

modulationAppliedToSample(sample2, chain3).
chainIncludesDevice(chain3, "randomStepper").
hasLowSignalToNoiseRatio(sample2).
sampleUsedInPattern(sample2, 3).

pieceRandomizesDrumSoundInPattern(pat) :-
modulationAppliedToSample(sample, chain),
chainIncludesDevice(chain, "randomStepper"),
hasLowSignalToNoiseRatio(sample),
sampleUsedInPattern(sample, pat).

Output conclusion:
pieceRandomizesDrumSoundInPattern(3).

4.1.1 A case study - “LFO” by Danoise

There are a lot of fascinating conclusions that can be drawn
by analyzing a piece titled “LFO” as a program. “LFO”
is a piece which would probably be considered “EDM”
in the quality of its sounds and in some of its rhythmic
grooves, but has moments of irregular pure ambience. It
pays homage to the Renoise software with occasional punc-
tuations of the acronym “RNS” presented in a robotic voice.
Here are just a few things we learned from looking at it as
a set of materials (samples) that a program is applied to:

1. The variation in timbre in the strings is entirely ran-
dom, not modulated (something you could never know
for sure without seeing the project file)

2. In general, he relies on developing more complex in-
struments and exposing that complexity as opposed
to making more complex track audio effects or using
many different instruments

3. He tends to hard-code repetition of phrases, and or-
ganize sample material into 1-second chunks which
are concatenated into these phrases

4. He tends towards using simple materials (sine waves,
triangle waves, etc. - samples which can be described
using ¡200 individual points of sample material) ex-
cept when using speech

5. “DISTANT LISTENING” AND CORPUS
ANALYSIS OF A DATASET OF RENOISE FILES

We can also do basic learning on a corpus of Renoise files.
A total of 2796 renoise files were collected for this pur-
pose. We considered asking a few questions as an entry
into exploratory data analysis: For instance, we can look
at the likelihood of different sub-programs to see which
types of effects are typically evokes contiguously inside a
track device-subprogram 5 5.

5.1 Can we develop methods to quantify and visualize
the spectrum of non-determinism?

Methods of non-determinism in Renoise There are sev-
eral ways of introducing non-determinism into renoise. For
instancee, one can have non-determinism in the hard-coded
commands attached to each individual note or line - you
can always include a Y command to either make a line
not be executed within a track or to choose exclusively be-
tween different notes or phrases. “1 Instrument - 32 Lines”
by Bellows [2] includes Y commands nested within instru-
ment phrases, leading to an incredibly complex piece from
32 lines (2 measures) and a single sample.

There also is the possibility of non-determinism in the
instruments. The “Stepper” device has a setting which

('r
ev

er
bd

ev
ice

',
'ch

or
us

2d
ev

ice
')

('l
fo

de
vi

ce
',

'ri
ng

m
od

de
vi

ce
')

('f
ilt

er
3d

ev
ice

',
'fi

lte
r3

de
vi

ce
')

('l
fo

de
vi

ce
',

'lf
od

ev
ice

')

('e
q5

de
vi

ce
',

'co
m

pr
es

so
rd

ev
ice

')

('k
ey

tra
ck

in
gd

ev
ice

',
'lf

od
ev

ice
')

('s
ig

na
lfo

llo
we

rd
ev

ice
',

'h
yd

ra
de

vi
ce

')

('s
en

dd
ev

ice
',

'se
nd

de
vi

ce
')

('c
om

pr
es

so
rd

ev
ice

',
'co

m
pr

es
so

rd
ev

ice
')

('e
q5

de
vi

ce
',

'se
nd

de
vi

ce
')

('s
eq

ue
nc

er
tra

ck
de

vi
ce

',
'fi

lte
r3

de
vi

ce
')

('f
ilt

er
3d

ev
ice

',
'co

m
pr

es
so

rd
ev

ice
')

('s
eq

ue
nc

er
tra

ck
de

vi
ce

',
'e

q1
0d

ev
ice

')

('r
in

gm
od

de
vi

ce
',

'lf
od

ev
ice

')

('l
fo

de
vi

ce
',

'in
st

ru
m

en
ta

ut
om

at
io

nd
ev

ice
')

0

1000

2000

3000

4000

5000

Histogram of most common length-2 subprograms

Figure 1. A histogram of the top 15 bigrams in renoise subprograms.
('l

fo
de

vi
ce

',
'ri

ng
m

od
de

vi
ce

',
'lf

od
ev

ice
')

('k
ey

tra
ck

in
gd

ev
ice

',
'lf

od
ev

ice
',

'ri
ng

m
od

de
vi

ce
')

('l
fo

de
vi

ce
',

'lf
od

ev
ice

',
'lf

od
ev

ice
')

('r
in

gm
od

de
vi

ce
',

'lf
od

ev
ice

',
'ri

ng
m

od
de

vi
ce

')

('r
in

gm
od

de
vi

ce
',

'lf
od

ev
ice

',
'co

m
bd

ev
ice

')

('c
om

pr
es

so
rd

ev
ice

',
'si

gn
al

fo
llo

we
rd

ev
ice

',
'h

yd
ra

de
vi

ce
')

('s
en

dd
ev

ice
',

'se
nd

de
vi

ce
',

'se
nd

de
vi

ce
')

('h
yd

ra
de

vi
ce

',
'fi

lte
r3

de
vi

ce
',

'fi
lte

r3
de

vi
ce

')

('l
fo

de
vi

ce
',

'h
yd

ra
de

vi
ce

',
'fi

lte
r3

de
vi

ce
')

('k
ey

tra
ck

in
gd

ev
ice

',
'lf

od
ev

ice
',

'h
yd

ra
de

vi
ce

')

('f
ilt

er
3d

ev
ice

',
'fi

lte
r3

de
vi

ce
',

'fi
lte

r3
de

vi
ce

')

('e
q5

de
vi

ce
',

'co
m

pr
es

so
rd

ev
ice

',
'se

nd
de

vi
ce

')

('d
oo

fe
rd

ev
ice

',
'ch

or
us

de
vi

ce
',

'se
nd

de
vi

ce
')

('s
ig

na
lfo

llo
we

rd
ev

ice
',

'h
yd

ra
de

vi
ce

',
'si

gn
al

fo
llo

we
rd

ev
ice

')

('h
yd

ra
de

vi
ce

',
'si

gn
al

fo
llo

we
rd

ev
ice

',
'lf

od
ev

ice
')

0

100

200

300

400

500

600

700

Histogram of most common length-3 subprograms

Figure 2. A histogram of the top 15 trigrams in renoise subprograms.

allows randomizing a choice of discrete steps, while the
“LFO” effect actually can produce a continuous random
signal and multiply/add it to any parameter’s value. The
Youtube composer “Zensphere” has a number of videos
detailing how he uses these forms of non-determinism in
instruments to produce “psy-trance” pieces.

Finally and most commonly, there can be non-determinism
in the track effects. The LFO device has a random start-
ing point, unless specifically reset. While this might not
seem like enough to create very different renditions each
time, if the LFO maps to a sub-device-chain (known as a
“doofer” which modulates which phrase of an instrument
is played), or is used in a device-chain with heavy feed-
back mechanisms, it can lead to complex differences be-
tween instances of the “same” piece. We can to some de-
gree quantify and compare levels of nondeterminism as in
3 4. Can we develop methods to quantify and visualize the
spectrum of economy of materials?

1. Define Aural Dimension Count of a single signal as
the number of variables related to the processing of
the signal which have at least two values over the
course of the piece, the Aural Dimension Count of
the entire piece as the sum over all samples, and
Economy of Materials as ADC(x)

|S(x)+c∗I(x)2| , where ADC(x)
is the total Aural Dimension Count in file x, S(x) is
the number of samples in file x, I(x) is the number
of unique instruments in x, and c is some coefficient
balancing the two measures of economy of material.
Both elements in the denominator are necessary be-
cause while more samples necessarily implies using
more materials, in many cases there are hundreds of
samples which are sampled from a single real-world
instrument to provide maximum realism in evoking
that instrument.

2. Aural Dimension Count can be calculated by look-
ing at effect automation and instrument design

3. Algorithm to find Aural Dimension Count:

1) Loop through every modulation
set chain.

If an item in the chain is either
a) assigned to a Macro or
b) preceded by an LFO or stepper,
increment the dimension
count of the sample by 1.

2) Loop through each track device.
Check for meta-devices.
For each input-output pair
in the meta-device,
increment the dimension
count of the sample by 1.

3) Look at the automation
of each track device
in every track where the
instrument appears.
If it varies at any point
in the piece,
increment the dimension
count of the sample by 1.

6. ANALOGOUS PROBLEMS IN OTHER FIELDS

There are generative and analytic problems in other do-
mains which would benefit from a focus on the interaction
of the product and the source code. For instance, video-
game analysis has been performed by trying to build a
model of how pixels continuously transform in response to
user input. Similarly, some deep learning researchers have
even proposed building videogames on the basis of deep
models which learn to generate the right pixels in response
to a user’s input. However, generating video-games as a
state-action-state pair of pixels-keystrokes-pixels is funda-
mentally different than generating valid programs in Unity
(a game design engine), and we argue that an approach
based on program analysis is a lot more informative and
tractable. In 3d shape generation, Blender (a 3d design
program) can either be given a huge number of points to
specify a surface, or simply give a program which enu-
merates the parts as platonic-like objects (spheres, splines,
etc.) and their parameters, as well as actions performed on
those parts (extrusion, intersection, etc). We argue that it
is probably more tractable to build a model which learns
the space of highly structured programs in Blender than
to learn the space of all 3d objects in terms of point-sets.
However, it is worth noting that in these areas, one could
claim that there is less of an aesthetic imperative to “under-
stand” the output as there is in an inherently aesthetic field
such as music. Nevertheless, even in terms of practical
tractability, it is probably worthwhile to focus on improv-
ing program analysis in Blender or in Unity.

7. CONCLUSION

In this paper, we introduce the notion of “source-code in-
formed listening”, or the usage of the source code of a
given piece of ‘coded” music to better understand and an-
alyze the audio file that is the aural artifact of that music.
We start with a hermeneutic (close and very deliberately
manual) reading of a specific coded piece, discussing what
added value the source code brings. We then, drawing from
the literature on automated program analysis, define two
more automated forms of analysis, of which the second
enables corpus study and “distant listening” (an analogy
to the practice in digital literature studies of “distant read-
ing.”) We conclude by examining further areas for explo-
ration, including interdisciplinary future work.

8. REFERENCES

References
[1] Krzysztof R Apt. “Ten years of Hoare’s logic: A

survey—Part I”. In: ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 3.4 (1981),
pp. 431–483.

[2] Bellows. 1 Instrument, 32 lines. https://forum.
renoise.com/t/3-0-xrns-1-instrument-
32-lines/41089. 2014.

[3] Matthew F Chung. Mixing: Composition Theory and
Chaos in an Autonomous Music-Making System. Uni-
versity of California, San Diego, 2021.

[4] Zijing Gao et al. “A novel music emotion recogni-
tion model for scratch-generated music”. In: 2020
International Wireless Communications and Mobile
Computing (IWCMC). IEEE. 2020, pp. 1794–1799.

[5] Josh Gardner et al. “Mt3: Multi-task multitrack mu-
sic transcription”. In: arXiv preprint arXiv:2111.03017
(2021).

[6] Deepanway Ghosal and Maheshkumar H Kolekar.
“Music Genre Recognition Using Deep Neural Net-
works and Transfer Learning.” In: Interspeech. 2018,
pp. 2087–2091.

[7] Perfecto Herrera, Alexandre Yeterian, and Fabien
Gouyon. “Automatic classification of drum sounds:
a comparison of feature selection methods and clas-
sification techniques”. In: Music and Artificial Intel-
ligence: Second International Conference, ICMAI
2002 Edinburgh, Scotland, UK, September 12–14,
2002 Proceedings. Springer. 2002, pp. 69–80.

[8] Pascal Hitzler et al. “Neuro-symbolic approaches in
artificial intelligence”. In: National Science Review
9.6 (2022), nwac035.

[9] Mark Kahrs and Karlheinz Brandenburg. Applica-
tions of digital signal processing to audio and acous-
tics. Springer Science & Business Media, 1998.

[10] Jongpil Lee and Juhan Nam. “Multi-level and multi-
scale feature aggregation using pretrained convolu-
tional neural networks for music auto-tagging”. In:
IEEE signal processing letters 24.8 (2017), pp. 1208–
1212.

[11] Jongpil Lee et al. “Sample-level deep convolutional
neural networks for music auto-tagging using raw
waveforms”. In: arXiv preprint arXiv:1703.01789
(2017).

[12] Yuanqing Li et al. “Underdetermined blind source
separation based on sparse representation”. In: IEEE
Transactions on signal processing 54.2 (2006), pp. 423–
437.

[13] Michael I Mandel and Daniel PW Ellis. “Song-level
features and support vector machines for music clas-
sification”. In: (2005).

[14] Koichi Miyazaki et al. “Weakly-supervised sound
event detection with self-attention”. In: ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2020,
pp. 66–70.

[15] Eric David Scheirer. “Music-listening systems”. PhD
thesis. Massachusetts Institute of Technology, 2000.

[16] Bernhard Scholz et al. “On fast large-scale program
analysis in datalog”. In: Proceedings of the 25th In-
ternational Conference on Compiler Construction.
2016, pp. 196–206.

[17] Mohamadreza Sheikh Fathollahi and Farbod Raz-
zazi. “Music similarity measurement and recommen-
dation system using convolutional neural networks”.
In: International Journal of Multimedia Information
Retrieval 10 (2021), pp. 43–53.

[18] Arun Solanki and Sachin Pandey. “Music instrument
recognition using deep convolutional neural networks”.
In: International Journal of Information Technology
14.3 (2022), pp. 1659–1668.

[19] Bo Sun et al. “Audio-video based multimodal emo-
tion recognition using SVMs and deep learning”.
In: Pattern Recognition: 7th Chinese Conference,
CCPR 2016, Chengdu, China, November 5-7, 2016,
Proceedings, Part II 7. Springer. 2016, pp. 621–631.

[20] Yu Wu, Hua Mao, and Zhang Yi. “Audio classifica-
tion using attention-augmented convolutional neural
network”. In: Knowledge-Based Systems 161 (2018),
pp. 90–100.

[21] Rui Yang et al. “Parallel Recurrent Convolutional
Neural Networks Based Music Genre Classification
Method for Mobile Devices”. In: IEEE Access PP
(Jan. 2020), pp. 1–1. DOI: 10.1109/ACCESS.
2020.2968170.

[22] Halley Young. “Algorithm as Determinant of Form
in Music.” In: ICCC. 2019, pp. 350–351.

[23] Halley Young. Euclidean Symphony. https://
soundcloud.com/user-332259139/euclidean-
symphony. 2023.

A. HOARE LOGIC PROGRAM FOR ANALYZING
“EUCLIDEAN SYMPHONY”

Remember, there is a hoare triple
{True} {input = Scale(input)} {input in C Major}
for all input, and no other functions
affect tonality, so the following is valid:

{input = silence}
{input = complex_sequencer(input)}

{True}
{True}

{input = Scale(input)} ->
{input in C Major}

{pitches(input) in C major}
{input = NoteLength(input)} ->

{pitches(input) in C major}
{pitchesInScale(input, C major)}

{input = Instrument(input)} ->
{spectraInScale(C major)}

{spectraInScale(C major)}
{input = Normalizer(input)} ->

{spectraInScale(C major)}
{spectraInScale(C major)}

{input = Compressor(input)} ->
{spectraInScale(C major)}

B. FIGURES QUANTIFYING
NON-DETERMINISMM IN A RENOISE

PROGRAM

0 2 4 6 8 10
Log Number of Non-deterministic Commands (where real)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Histogram of Log Number of Non-deterministic Commands

Figure 3. Histogram of number of non-deterministic effect commands
across corpus

0 100 200 300 400 500
Number of Non-deterministic Effects

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Histogram of Number of Non-deterministic Effects

Figure 4. Histogram of number of non-deterministic effect chain across
corpus

C. AURAL ECONOMY METRICS

6 4 2 0 2 4
Log Measure of Aural Economy

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Histogram of Aural Economy Metrics

