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ABSTRACT

In the last century, two trends have increased the scope
of musical analysis: music theorists have provided mathe-
matical insight into specific musical scenarios, while mu-
sicologist have examined the nature of musical analysis as
a cultural, cognitive, and scholarly endeavor [1] [2] [3]
[4] [5]. This paper intends to bring these two strands of
research together by providing a constructive mathemati-
cal foundation for the process of musical analysis. By es-
tablishing a mathematical description of the generation of
an analysis of a piece of music, useful mathematical tools
for performing operations frequently used in analysis, and
possible precise definitions for loaded terms such as “mu-
sical similarity” and “musical form”, I will extend the an-
alyst and the meta-analyst’s ability to create abstractions
from musical surfaces, the core of every process of analy-
sis.

1. INTRODUCTION

In this age of globalism and prestige given to scientific
thought, it is unsurprising that both the study of musical
universals and mathematical abstractions of music are re-
ceiving much attention. Authors such as Steven Brown
and Joseph Jordania [6], Leonard Meyer [7], Jay Rahn [8],
and most recently Samuel Mehr [9] have taken various ap-
proaches including the methodologies of cognitive science,
semiotics, corpus and field studies, and anthropological
theory in order to make statements about ”musical univer-
sals,” or facts that seem to describe the way many peoples
perform, compose, and listen to music. At the same time,
specific musical practices, from African rhythms to the
Classical diatonic scale, have been scrutinized in order to
understand the mathematical abstractions that can explain
how and why these practices manifest [1] [2]. However,
few scholars have studied the mathematical universals of
music analysis, or formalizations which could apply to the
analysis of any musical phenomenon. Theory of compu-
tation and foundations of computation provide a paradigm
for making statements about music analysis in general with
mathematical rigor.

In this paper, I shall introduce several concepts borrowed
from computer science to generalize aspects of music anal-
ysis. I will first discuss the basic features of a relevant
computation on a piece of music, which I term a “prop-
erty”, and will provide a constructive basis for determining
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the relevance of such a computation. I shall then invoke
type theory to describe the type-theoretic foundations for
deriving such properties from the “basic” components of
sound (pitch, duration, loudness, and timbre). I will dis-
cuss comparisons both between different property types, as
well as between different property values and between dif-
ferent musical pieces as mathematical objects from which
properties are derived. I will then focus on a particular
type of property whose definition is recursive, and will in-
troduce two such properties - tonal function and meter in
common practice music.

2. THE
HORIZONTAL-VERTICAL-ONTOLOGICAL

COMPLEX

The juxtaposition of “horizontal” and “vertical” views of
music and the realization that both need to be considered
simultaneously is well understood in music pedagogy (for
instance, the title to New York University’s introduction
to music course is “Harmony and Counterpoint”). It is
equally well understood that such simultaneous compre-
hension is cognitively not trivial. Since at least the 1760’s,
musicologists have complained about the relative impor-
tance assigned by composers to one dimension to the ne-
glect of the other (see Rousseau on harmony and melody)
[10], and it is widely agreed that Baroque music was “more
contrapuntal” than the “harmony-based” music that fol-
lowed. However, I argue that in every type of music where
more than one thing is occurring in a temporal moment,
there are properties of the music that emerge out of changes
that occur as the piece progresses, and properties that emerge
out of the simultaneity of parts being conceived as a unified
whole.

However, the horizontal and vertical dimensions of mu-
sic only describe half of the picture. Consider a single,
monophonic melody. Its perception is not only as a gestalt,
but also as a complex of different properties that it exhibits
- one hears the song ”Hot Cross Buns”, but also the nar-
row range, the diatonicity, the downwards motion, the rep-
etition, and so forth. Each of these properties is a part
of my experience of the song. Similarly, consider a sin-
gle chord. Musicologists will probe that chord for its root
tone, for its overall consonance, for its interval vector, and
for its interval set class, because all of these are supposed
to provide additional information that’s useful for analysis.
Notice that from one perspective, information doesn’t in-
crease when you compute the interval vector of a chord -
you’re merely describing a property that is always deriv-
able from the information you have, that of the chord’s
pitch classes. Nonetheless, calculating the interval vector
tells the composer something important about the chord,
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as it allows comparison to other chords in order to esti-
mate its potential effect. The potential for calculation is not
the same as the actualization of calculation, and our under-
standing of music is fundamentally shaped by the calcula-
tions we (consciously or unconsciously) produce on hori-
zontal, vertical, and horizontal-and-vertical aspects of the
music. We will refer to every calculable aspect of music as
a “property”. This label includes the four properties (pitch,
duration, dynamics, timbre) which are often cited in edu-
cational literature as the “fundamental elements of music”,
as well as more complicated properties like harmonic func-
tion or a representation of musical contour such as CSEGs.

3. MUSICAL OBJECTS, CONSTRUCTIVISM, AND
EXPRESSIVITY

Constructive mathematics, which became the foundation
for much programming language theory in the 1920’s, is
different than classical mathematics in its insistence that if
one wants to show that an object exists, one has to con-
struct the object in a well-defined logic, rather than prov-
ing that it exists indirectly. In terms of music, we may
extend the metaphor of constructive and classical logics to
distinguish between “classical” and “constructive” defini-
tions of properties. A property could be defined as any
function from a piece of music to some domain, including
one which is non-computable (or non-expressible in any
interpretable language). However, as an analytical tool,
the musical properties which can be described in an ap-
propriately expressive language are much more useful, as
this definition can then be applied to any arbitrary piece
of music to draw similarities between the two. In con-
trast, claiming that “there exists a property f such that
f(mozart sonata in C) = 2 is rather meaningless for
the analyst. Furthermore, in computer science, it is under-
stood that using the least complicated language possible
for expressing a given property is optimal. One of the goals
of this paper is to figure out how to define common musi-
cal properties in constructive ways and using as simple a
language as possible.

4. WHAT MAKES A PROPERTY
USEFUL/RELEVANT?

We have informally claimed that certain properties are rel-
evant to some styles but not others. It is difficult to quantify
relevance absolutely, but we shall do so relative to a classi-
fication task T and a classification model type M with fixed
computing resources. Such a classification task could be
determining who wrote a piece, at which point in a com-
poser’s career it was written, what style a piece was written
in, or whether a piece is enjoyed by a given person. Such a
fixed classification model could be a neural network with a
fixed number of weights, a decision tree with a fixed num-
ber of nodes, or a search algorithm with a fixed max depth
and breath. Then relative to this task T and model strength,
we can say a property P is significant if a model in class M
can do better on T if it knows the values of P for all the
music it is classifying as opposed to being given random
valuations instead. Furthermore, relevance is inductive: If
a property P1 is relevant, any property P2 that needs to be
known in order to compute P1 is also relevant.

5. COMMON TYPE CONSTRUCTORS WHICH
PRODUCE MANY PROPERTIES

In computer science and category theory, there are sev-
eral standard type constructors. These are constructs which
take types as arguments, and return a more complex type
which depends on the input types. Many properties fre-
quently referenced in music analysis can be thought of as
the result of passing a primitive type (time, duration, pitch,
dynamics) to a type constructor.

5.1 n-Product Type

A product type, as defined by type theory, is a type that re-
sults from a combination of two or more other types [11].
For instance, the assignment of specific intervals to spe-
cific instruments, as can be heard in Elliot Carter’s string
quartet [12], can be thought of as a property which consists
of a pair of an interval and an instrument. Another product
type might be the association of a certain scale degree with
a certain type of ornamentation, as happens in Hindustani
music [13]. If we limit ourselves to triads harmonically,
we can represent chords as products of a pitch-set class
and one of the interval-sets {[037], [047]}. What we typ-
ically hear as an instantiated note can be thought of as an
n-product of a pitch, a duration, a timbre, and a dynamic
(the four primitive properties).

5.2 n-Vector Type

An n-Vector Type consists of a fixed number of values
of the same type. Examples include all dyads, triads, or
tetrads; a traditional score (which is a fixed number of
parts), and a representation of a 12-tone scale as a set of
12 0/1 bits.

5.3 List Type

A list consists of a variable number of values of the same
type. Examples include a motif, which can be any num-
ber of notes long; a chord, which can be any number of
notes long; or a chord progression, which can contain any
number of chords.

5.4 Transformation Type

Transformation types are homeomorphic functions from
one value to another of the same type. Examples include
the function which maps one rhythmic pattern to the same
rhythmic pattern in augmentation. Any possible list of du-
rations could be passed into this function, but it is simple
to calculate its output regardless of the function. Functions
generally have to be more than computable (have a finite
representation) to be noticeable, however. It is not even
enough for the functions to be computationally simple (as
defined by the shortest way of describing the function us-
ing English or pseudocode). In addition, they must be per-
ceptually simple according to the principles of cognitive
musicology, which may seem somewhat arbitrary from a
computational perspective. This is exemplified by the ex-
treme difficulty in recognizing retrograde inversions - the
retrograde function in Haskell (a typical programming lan-
guage) is roughly the same length as the inversion function,
yet one is perceptually more salient than the other.[14].



Figure 1. Venn Diagram of Musically Relevant Function Hierarchy

There are two ways to view transformation types, and
the one used affects relevance and tractability in analy-
sis. One way to view transformation types is as a (poten-
tially) infinite class of functions over the same domain and
codomain, in which case each transformation can be rep-
resented by a unique natural number, and the “value” of
the transformation is that natural number. This works well
over small domains - for instance, neo-Riemannians have
essentially done this with the finite and relatively small set
of transformations between major and minor chords (of
which there are only 24). However, in other instances, such
as with all transformations over arbitrary-sized rhythms (a
list value), there are infinitely many such transformations.
Furthermore, not only are there hypothetically an infinite
number of natural numbers that these transformations map
to, but in practice, the minimum number of transforma-
tions needed to describe a pair of rhythms (r1, r2) from a
set R = r0 . . . rm of length rhythmLen can grow expo-
nentially in rhythmLen. Therefore, it may be useful to
invoke dependent type theory, and say that a “transforma-
tion of type T(t)” on x1 and x2 is the boolean value 0/1 of
whether t(x1, x2) holds.

6. ONTOLOGICAL, HORIZONTAL, AND
VERTICAL COMPRESSIONS AND THE
OPERATORS THAT PRODUCE THEM

Given that music is a temporal art form, many properties
are of a list type, and therefore if there are m possible val-
ues and n elements in the list, the number of possible val-
ues grows exponentially (O(mn)) with the number of ele-
ments. In some computational tasks, having a compressed
representation is therefore necessary in order to meaning-
fully reason about a collection of such properties. Here
I will present an example of compression which is both
elegant and used in practice, indicating its cognitive rele-
vance.

Consider the case of melodic contour. A common way to
describe contour is to abstract the individual pitches into a
line into relative sizes, so the sequence 69, 70, 69, 68, 71
would be described as 1, 2, 1, 0, 3 , suggesting that the first
and third pitch are the second lowest, the second pitch is
the second highest, the fourth is the lowest, and the fifth is
the highest. This is indeed a compression, as it maps any
transposition of the line or proportional increase of each
interval in the line to the same contoural value. It is also
perceptually relevant, as the human tendency to abstract

Figure 2. Two differing rhythms

absolute to relative sizes is well documented.
We can reduce further. The contoural property above still

has a list type (i.e., there can be infinite contours of dif-
ferent sizes). If we want to reduce this list type to a finite
type, we can apply Morris’s CSEG reduction, which only
eliminates all notes except the first, highest other than the
first or last, lowest other than the first or last, and last note.
This again could be formulated as a perceptual hypothesis
that such notes are the most salient in actually perceiving
contours. Any list type can be reduced to an n-Vector type
by producing a saliency metric and eliminating all but the
most salient.

Now, consider Tigran Hamasyan’s frequent usage of con-
trasting sections which can be said to have the same “rhyth-
mic contour” but different meter (such as a groove of 3
beats, 3 beats, 4 beats, 2 beats in the first section, and a
groove of 4 beats, 4 beats, 5 beats, 2 beats in the second
section) [15]. Here the same ontological reduction can be
applied on duration values instead of on pitch values. We
could logically infer therefore what a “rhythmic CSEG of
Hamasyan’s grooves would look like”, although it’s use-
fulness may be in question.

7. DISTANCE(S)

As Belkin points out in his composition textbook, most
music, regardless of genre, depends on the notion of rep-
etition and contrast [16]. The very notion of repetition
and contrast rely on some way of measuring the extent
to which two musical objects are similar or different. For
instance, Belkin uses a 1-5 metric to measure differences
between motifs, where a score of 1 indicates two motifs
which are perceived as extremely similar (such as transpo-
sition a whole tone up), while a score of 5 indicates two
motifs which are perceived as extremely different (such as
a motif and its retrograde transpose in a different tempo).
There is no mathematical argument that suggests that retro-
grade would be perceived of as less similar than inversion,
and yet it clearly is [?]. However, formalisms can still help
in defining distances. For instance, any two lists of objects
can be compared by minimal edit distance, where the edits
allowed constitute the transformations possible on the ob-
ject. As an example, consider the two rhythms in figure 2.
If we assume that a retrograde operation has a distance of 2
units, a single division operation (splitting a note into two
equal parts) has a distance of 1 unit, and an operation com-
bining the duration of two notes has a distance of 1 unit,
it can be shown that they have a minimum edit distance of
3. On the other hand, the rhythms in figure 3 have an edit
distance of 1, and hence are more similar according to the
assumed metric.

Thus, like relevance of property, distance is not absolute,
but relative to a transformation metric T.



Figure 3. Two differing rhythms

8. THE SPECTRUM OF MUSICAL FORM

Form is one of the most abstract musical parameters, and
one which seems quite removed from the basic elements of
pitch, duration, timbre, and dynamics. We will here con-
strain our analysis to forms consisting of multiple sections.
This includes common Western forms such as Sonata form
as well as Theme and Variations form, while common Hin-
dustani form includes the Khyal and the Dhrupad. These
forms vary in what they entail regarding the specific prop-
erties associated within the sections of the form, the re-
lationships between the sections, and the distance metric
between sections. On one end of the spectrum, Matteo
Magarotto convincingly argues that, in addition to the the-
matic connections between the material in the exposition
and development of the sonata, specific Galant schemata
and rhetorical devices are associated with each section of
the sonata, such that the primary theme section (P) is more
likely to be associated with a Cudworth sequence than the
following transition section (TR) [17]. On the other end of
the spectrum, theme and variations are defined only by the
relative similarity between the successive presentations of
the theme. Khyal involves a specific relationship between
the first and second section - the second section is in the
same raga and follows much the same melodic path as the
first section, but is faster. We can conclude that form can
consist of a product of the following:

• General distance constraints which should hold be-
tween sections

• Properties which should be associated with each sec-
tion

• Transformations of properties which should be ap-
plied between sections

9. COMPARING DIFFERENT STYLES

Given that properties of music that are considered relevant
are not culturally universal, one can distinguish between
styles according to the differences in what constitutes a rel-
evant property, or choose to consider only those properties
which are comparable in both styles.

9.1 Syntacto-Semantic Universes

One can define the “syntacto-semantic universe” of a style
as those properties which are meaningful to that style. For
instance, the property of “raga” is as irrelevant to Classical
music as “subdominant” is to serialist music (see section 8
on property relevance). One can enumerate for any style
the set of relevant properties, and see how it relates (using
set-theoretic operations such as symmetric difference and
intersection) to that of another style.

9.2 Semantic Fields

In the special case where two styles both contain the same
type of property, it is possible to compare the field of values
that are considered valid for each style. For instance, con-
sider the property of “chord transformation”. Jazz can be
distinguished from common practice for the validity of the
tritone substitution as a type of chord transformation, while
the mapping of an equal-tempered to just-tempered triad is
found very rarely in contemporary music but quite often
in the music of Jacob Collier [18]. Of course, common
practice and jazz (including Jacob Collier’s work) share
several types of chord transformation, such as the addition
of a seventh (although adding a seventh is conditional on
chord function in common practice).

9.3 Homologous Properties

Properties are homologous when they describe values of
the same type as defined in type theory, but are derived
from the musical surface in a different way. For instance,
consider a scale. Under one definition, a scale is defined
as a single pitch class (the root) together with a set of pitch
classes (the notes in the scale). However, the criteria used
to define a piece of music as “being in” a given scale vary
largely depending on the genre. For instance, in Renais-
sance music a scale was determined by what notes were
used (excluding moments of musica ficta) and the final ca-
dence, in Classical music the scale was expected to define
the syntax of harmonic movement, and in certain types of
jazz the scale and root define whether the soloist is playing
a ”dominant chord” or another category of chord relative to
the rhythm section [19]. These three examples constitute
not only different uses of the (List{PC}, PC) type, but
would presumably have different optimal extraction func-
tions in order to calculate what the values should be from
a given surface - applying jazz theory to parsing Renais-
sance music would lead to a less relevant representation of
the Renaissance music’s “scale” than if it was parsed using
the assumption that scales determine what notes to use.

10. COMPARING PROPERTIES FOR
SUBSET/SUPERSET RELATIONSHIPS

Instantiations of properties can be related to each other in
three general ways.

1. Temporal dominance - a property instantiation x is
a temporal subset of the property instantiation y if
y is ontologically a non-strict superset of x, and y
describes a moment in the music that includes the
moment described by x. Thus, an antecedent is tem-
porally dominated by the period which contains it.

2. Vertical dominance - a property instantiation x is a
vertical subset of the property instantiation y if y is
ontologically a non-strict superset of x, and y de-
scribes a set of simultaneously occurring events that
includes the events described by x. Thus, the first vi-
olin’s part is vertically dominated by the string sec-
tion parts as a set.

3. Ontological dominance - a property instantiation x
is an ontological subset of the property instantiation



y if x can be computed from y. Thus, the contour
is strictly ontologically dominated by the list of in-
tervals, because it is possible to compute the contour
from the list of intervals (and not the reverse).

11. SEPARABLE/SEMI-SEPARABLE/NON-
SEPARABLE
PROPERTIES

In addition to classifying pairs of properties in terms of
dominance relations, properties can be classified in terms
of their separability. Some properties are completely sep-
arable - for instance, contour (measured as a CSEG) and
rhythm. This separability means that one can design a
CSEG and a rhythm, and superimpose them on the same
snippet of music with no logical impossibilities. There are
other properties which are semi-separable - for instance,
intervals and contour. Neither completely determines the
other, but it is also not possible to assign them indepen-
dently with reference to a single piece of music. Finally,
there are sets of properties where one subset completely
determines another subset, such as the set {rhythmic pat-
tern, rhythmic density}. Note that there are cliques of
properties which are non-separable but for which any sub-
set is semi-separable. For instance, it is very difficult if
not impossible to make significant decisions about which
melodic intervals to use if chord progressions and a total
description of contour are already determined, but it is pos-
sible to make decisions about which intervals to use if only
one of the two is predetermined.

12. FUNCTIONAL AND DIRECT PARAMETERS

Meyer distinguishes between ”syntactic” and ”expressive”
features. According to him, ”syntactic” features include
melody, rhythm, and harmony, and are able to organize
qualitative states, while ”expressive” features either express
only quantities (e.g., tempo or dynamics) or are not rich
enough to be used in most music in a grammatical fash-
ion, such as timbre (although Meyer stresses that in the
case of Hindustani tabla music, timbre is converted into a
syntactic feature, because there it is used grammatically)
[7]. Another way to view these differences is between pa-
rameters with combinatorially many possible values, and
those with a fixed, relatively limited range of values. These
differences are important. However, type theory provides
another distinction between parameters, what I will call
”functional” vs ”direct” parameters.

Functional parameters describe a given piece of music,
but their values can not be determined only by the piece of
music they describe. A piece of music being the secondary
theme of a sonata is not a property only of that theme, but
of the surrounding material. A dominant chord can be a
local phenomenon, but it is only dominant by virtue of its
position in a larger tonal complex. On the other hand, pa-
rameters such as pitch set class are not dependent on values
other than the exact thing they describe.

12.1 The importance of recursivity

One property of many functional parameters is recursiv-
ity. The description of a chord as a dominant depends on
the description of another chord as the tonic, a meter is

in many genres more likely if the same meter existed in
the prior measure, a consequent is only a consequent if
it is followed by something which exists within the same
description-universe as an “antecedent”. Thus, in order to
determine a functional parameter’s value, we must presup-
pose the existence of its type, and that other elements in
the piece have values belonging to this type. Such depen-
dence on recursivity can be compared to Chomsky’s recur-
sive formulation of human grammar and all the subsequent
linguistic work which depends on human competence in
recursion. It also implies that functional properties are ex-
tremely dependent on style for their existence - at least one
element of the piece has to be somewhat obviously me-
tered/tonal to give any clue what the other’s value on that
axis would be.

12.2 Meter

Even assuming that meter’s type theoretic definition as the
product of a number of beats per measure (int) and a dura-
tion which carries the beat (int) is correct, the correct meter
of a piece is notoriously difficult to establish. Furthermore,
composers often have trouble deciding in which meter to
notate a piece of music of their own creation, suggesting
that there is more than one principle by which meter is
imposed. Temperley, Hauptmann, and Lerdahl and Jack-
endoff provide a few optimal properties of meter [20] [21]
[22].

• Strong beats in the music (defined by onset, dynam-
ics, tonality, timbre, register, etc.) tend to fall on the
first beat of each measure.

• Durations in the music tend to be multiples of the
duration which carries the beat.

• There tends to be fewer rather than more different
meters imposed at the same time.

• There tends to be more rather than fewer meters at a
time.

• The meter tends not to change within a part over
time.

Note that, as mentioned before, unmetered music can cer-
tainly exist in a way that non-melodic music cannot, and so
finding music that can’t be described according to such op-
timality principles does not invalidate the concept of meter.
Note also that the weight on each of these tendencies is dif-
ferent for different styles of music - Stravinsky would write
much music where meter varied each bar, as well as music
with multiple meters. Finally, note that, in addition to gen-
res where this definition of meter excludes all music, there
are certain genres where this formulation is not enough -
for instance, Jacob Collier speaks of needing an additional
(third) integer for representing how to divide the beat [23].
Like all parameters, in some genres a particular definition
of meter is meaningful to analysis, while in others it is not
or less meaningful.

12.3 Tonal Function

According to Miller, harmonic function includes four prop-
erties: kinship, identity, quality, and behavior. For in-



stance, subdominant function is defined by “kinship” (shar-
ing at least 2 degrees with the subdominant triad), “iden-
tity” (being built on the subdominant degree), “quality”
(being a major added-sixth chord), and “behavior” (mov-
ing from tonic to dominant) [24]. The prototypical sub-
dominant chord has all of these properties; however, other
chords are subdominant to the extent that they have these
properties, and to the extent that they don’t embody the
properties of dominants and tonics. One could imagine es-
tablishing, for a given genre, a weighting of each of these
properties, and a certain weight at which a chord is termed
“substantially tonic”.

12.4 Function as monotonically increasing set
sequence, or a fixpoint

The recursivity of meter and tonality lead to a mathemati-
cal description which is both elegant and constructive (i.e.,
leads naturally to an algorithm for determining these prop-
erties). As mentioned before, for tonality to exist (which
we will use as the prototypical functional parameter in the
following section), in at least one case there must be rea-
son to believe that a chord has a certain function that is
not dependent on another chord having a certain function
(or else there would be infinite regress). Once we have
established, for instance, that one chord is the tonic, if the
following chord can be described as a V chord of the previ-
ous chord’s root (even if it’s not a prototypical dominant-
seventh chord), there may be sufficient evidence to view
that chord as a dominant chord. This procedure can be
performed until no more chords can be identified as hav-
ing tonal properties, and at that point one can take the set
of identified chords as the maximal set of functional chords
(an algorithm known as the “fixpoint algorithm”). One
can choose to define a piece’s tonality only by the maxi-
mally inclusive set of functions, or by the sequence of ever-
expanding sets of chords that have sufficient weighting as
a tonic, subdominant, or dominant to be determined to be
functional.

12.5 Modulation

Modulation is a property inherent in many kinds of mu-
sic, including Bach’s key modulation, Elliot Carter’s met-
ric modulation, modulation of Makamat in some Turkish
music, and modulation of Nusach or Steiger in traditional
Ashkenazi music. In all of these systems, there are func-
tional parameters with complex definitions that result in a
qualitative (or quantitative but finite) range of values, and
a fixpoint algorithm can be used to determine whether a
parameter has enough weight to have a given functional
value. Thus, there is nothing inherently preventing the ex-
istence of a parameter which has properties which suggest
two different functional values, or two weights which are
significant enough to suggest different values. Modulation
is a special case of this in which there is a sequence where
the first element has only one functional value A, the sec-
ond element has both functional values A and B, and the
third element has only the functional value B.

12.6 Prolongation and Schenkerism

Tonal function can be described as the set {tonic, subdomi-
nant, dominant}, but it can also be described as the product

of that set and a pitch-class-set (e.g., the tonic of C major,
or of 0). This property is important because it helps es-
tablish tonal function as a potentially foldable property. In
functional programming, a foldable function takes a list of
values, a starting value, and a way of aggregating values,
and compresses the list into a value of the same type as the
starting value according to this aggregation method. This
would be possible without considering roots by compress-
ing every [tonic, subdominant, dominant, tonic] sequence
into the value “tonic”; however, according to the assump-
tion inherent in Classical-era music that it is based on a
background tonic, such a compression would produce a de-
generate distribution (i.e., every piece would produce the
compressed value of tonic), and would thus be meaning-
less. Quick, however, claims that the property that a chord
that exists as the tonic of the dominant key can prolong a
tonic-function area is a) key to any theory of tonic prolon-
gation, b) relates (admittedly rather loosely) to Schenkerism’s
elevation of the basic line, and c) can be used to generate
tonal music [25].

13. CONCLUSION

In conclusion, this paper seeks to formalize the practice of
musical analysis through the lens of foundations of compu-
tation. It introduces the notion of a “relevant property” as
the basic component of analysis, and discusses how these
properties can be thought of as computational objects. In-
dividual properties are compared in terms of dominance,
type-similarity and separation, while values of properties
are compared relative to existing transformation metrics.
Special emphasis is placed on understanding transforma-
tion properties (properties which themselves are parame-
terized by a function in a dependent-type-theoretic fash-
ion) and understanding “functional” properties, my term
for properties whose evaluation requires a certain type of
recursivity.

One of the benefits of such a principled approach is the
promise of automation in analysis, and there is much future
work to be done in using the principles described here to
automate aspects of music formalization and generation. It
is quite possible that new relevant properties could be dis-
covered which are necessary to better understand a style of
music even as well-theorized as Galant music, while auto-
matic discovery of relevant properties could provide much-
needed insight into non-Eurocentric music. New musics
could also be generated by asserting as a constraint the rel-
evance of a particular property that is not usually relevant,
including functional parameters besides tonality and meter.
Finally, the basis of this work in constructive logic allows
for “generation by definition”, as research in computer sci-
ence has generation based on specifications as rich as de-
pendent type theory [26][27]. Therefore, there is room to
believe that, in addition to the mathematical elegance of a
formal approach to analysis, there will be artifacts partially
derived from this line of research.
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