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Abstract

Low-capacity scenarios have become increasingly important in the technology of Internet of Things
(IoT) and next generation of mobile networks. Such scenarios require efficient, reliable transmission of
information over channels with extremely small capacity. Within these constraints, the performance of
state-of-the-art coding techniques is far from optimal in terms of either rate or complexity. Moreover, the
current non-asymptotic laws of optimal channel coding provide inaccurate predictions for coding in the
low-capacity regime. In this paper, we provide the first comprehensive study of channel coding in the low-
capacity regime. We will investigate the fundamental non-asymptotic limits for channel coding as well as
challenges that must be overcome for efficient code design in low-capacity scenarios.

1 Introduction

Low-capacity scenarios have become increasingly important in the technology of Internet of Things (IoT)
and next generation of mobile networks. In particular, these scenarios have emerged in two extremes of wire-
less communications: narrowband and wideband communications. The former is widely considered for de-
ploying IoT in cellular networks where massive number of users need to be served [1], and the latter models
communication in the millimeter-Wave (mmWave) band which is one of the key innovations of the next gener-
ation of cellular networks (5G) [2]. From the channel modeling perspective, it turns out that users operating in
these two different applications typically experience a very low signal-to-noise ratio (SNR). Therefore, study-
ing fundamental limits as well as practical code construction is required to address the challenges of wireless
system design for these emerging applications.

The Third Generation Partnership Project (3GPP) has introduced new features into the Long-Term Evolu-
tion (LTE) standard in order to integrate Internet-of-Things (IoT) into the cellular network. These new features,
called Narrow-Band IoT (NB-IoT) and enhanced Machine-Type Communications (eMTC), have been intro-
duced in the release 13 of LTE. Consequently, it is expected that the total number of IoT devices supported
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through cellular networks will reach 1.5 billion by 2021 [1]. To ensure high coverage, the standard has to sup-
port coupling loss as large as 170 dB for these applications, which is approximately 20 dB higher than that
of the legacy LTE. As stated in [1,3], tolerating such coupling loss requires reliable detection for a typical
−13 dB of effective SNR, translated to capacity ≈ 0.03. To enable reliable communication in such low-SNR
regimes, LTE has adopted a legacy turbo code of rate 1/3 as the mother code together with many repeti-
tions. For NB-IoT, the standard allows up to 2048 repetitions to enable the maximum coverage requirements,
thereby supporting effective code rates as low as 1.6× 10−4 [1]. However, from a channel coding perspective,
repeating a high-rate code to enable low-rate communication can be very sub-optimal.

Surprisingly, a similar situation arises in wideband scenarios, and in particular in the mmWave band. In
the simplest model for a wideband channel, transmission takes place over an additive white Gaussian noise
(AWGN) channel with the capacity C = B log(1+ P

N0B ), where P is the signal power, N0 is the noise variance,
and B is the allocated bandwidth. Assuming a limited transmission power P and high bandwidth B → ∞, we
operate in the low-capacity regime–in terms of the underlying channel code rate per symbol. Note that this is
not in contrast with the high data rates, in terms of bits per second, of wideband applications. In other words,
as B grows large, we are able to transmit a growing number of symbols in a fixed time interval. However, these
symbols experience a vanishing SNR when the total power is fixed. More specifically, we have SNR → 0
as B→ ∞.

Most of classical channel coding theory is centered on the designs of point-to-point error-correcting codes,
assuming an underlying channel with a certain capacity C > 0. However, since C is only asymptotically
achievable, recently there has been a large body of work to study the finite-length performance: given a fixed
block error probability pe, what is the maximum achievable rate R in terms of the blocklength n? This question
has been of interest to information theorists since the early years of information theory [4,5], and a precise

characterization is provided in [6] as R = C−
√

V
n Q−1(pe)+O

(
log n

n

)
, where Q(·) is the tail probability of

the standard normal distribution, and V is a characteristic of the channel referred to as channel dispersion. Such
non-asymptotic laws have steered optimal code design for typical channels,. However, very little is known
about optimal code design in the low-capacity regime where the capacity of the channel C could be as small
as O(1/n) and hence the first and second term of the law could be as small as the third terms (i.e., the o(1)
term). The low-capacity regime consists of sending k bits of information, where k could be as small as few
tens, over a channel with very low capacity, e.g., C ≤ 0.01. To communicate reliably in this regime, we
require codes with very large length n albeit the fact that the overall capacity of n channel usages, nC, could
be small. Indeed, optimal code design in the low-capacity regime requires addressing various theoretical and
practical challenges.

From the theoretical standpoint, channel variations in the low-capacity regime may be better approximated
by different probabilistic laws rather than the ones used for typical channels. For instance, consider transmis-
sion over BEC(ε) with blocklength n. When the erasure probability ε is not very close to 1 (e.g., ε = 0.5), the
number of non-erased bits will be governed by the central limit theorem and behaves as nC +

√
nε(1− ε)Z,

where Z is the standard normal random variable. However, in the low-capacity regime, when the capacity
C = 1− ε is very small, although n is large, the number of channel non-erasures will not be large since a
non-erasure occurs with small probability 1 − ε. In other words, the average number of non-erased bits is
n(1− ε) which can be a constant or a number much smaller than n. Hence, the number of non-erasures will
be best approximated by the law of rare events or the so-called Poisson convergence theorem rather than the
central limit theorem.

From the design standpoint, we need to construct efficient codes with extremely low rate. Such constraints
render the state-of-the-art codes and their advantages, in terms of decoding complexity and latency, inappli-
cable. For instance, it is well known that low-rate iterative codes have highly dense Tanner graphs which
significantly deteriorates the performance (as there are many short cycles) as well as the computational com-
plexity. Polar codes [7] can naturally be adapted to the low-rate regime, however, the current implementation
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of these codes suffers from relatively high computational complexity and latency. Note that there is a sub-
tle difference between the low-rate regime and the moderate-rate regime when characterizing the behavior of
complexity and latency of decoders. These parameters are often described as functions of code blocklength
n and, in the moderate-rate regime, result in the same expression if we replace n by the number of informa-
tion bits k which scales linearly with n. However, this does not necessarily hold for the low-rate regime as k
is significantly smaller than n. For instance, the decoding complexity and latency of polar codes are known to
be O(n log n) and O(n), respectively [7]. While this is reasonable when k scales linearly with n, it becomes
inefficient when k is a sub-linear function of n. We essentially need low-latency decoders, in terms of k, in
order to provide high data rates, in terms of bits per second (b/s), in wideband applications. We also need low-
complexity decoders to provide low device unit cost and low power consumption for narrowband applications.
In practice, the proposed solution for NB-IoT code design is simply to apply many repetitions on an underly-
ing code such as a Turbo code or a polar code. Even though this approach leads to efficient implementations,
the rate loss through many repetitions will result in codes with mediocre performance.

This paper provides the first comprehensive study of channel coding in the low-capacity regime. In Sec-
tion 2, we will provide the necessary background. In Section 3, we will formally define the low-capacity
regime and provide fundamental non-asymptotic laws of channel coding for a diverse set of channels with
practical significance: the binary erasure channel, the binary symmetric channel, and the additive white Gaus-
sian channel. Section 4 considers various approaches to practical code design in the low-capacity regime with
numerical comparisons with the non-asymptotic bounds derived in Section 3 as well as the codes used in the
NB-IoT standard.

2 Preliminaries

In this section, we will review the main concepts of channel coding in the non-asymptotic regime along
with a brief review of previous works.1 For an input alphabet X and an output alphabet Y , a channel W can
be defined as a conditional distribution on Y given X . An (M, pe)-code for the channel W is characterized
by a message set M = {1, 2, · · · , M} , an encoding function fenc : M → X and a decoding function
fdec : Y →M such that the average probability of error does not exceed pe, that is2

1
M ∑

m∈M
W
(
Y \ f−1

dec (m)
∣∣ fenc(m)

)
≤ pe.

Accordingly, an (M, pe)-code for the channel W over n independent channel uses can be defined by replacing
W with Wn in the definition. The blocklength of the code is defined as the number of channel uses and is
similarly denoted by n. For the channel W, the maximum code size achievable with a given error probability
pe and blocklength n is denoted by

M∗(n, pe) = max {M | ∃(M, pe)-code for Wn} .

In this paper, we consider three classes of channels that vary in nature:

• BEC(ε): binary erasure channel with erasure probability ε.

• BSC(δ): binary symmetric channel with crossover probability δ.

• AWGN(η): additive white Gaussian noise channel with signal-to-noise ratio (SNR) η.

1For more details, we refer the reader to [8] for an excellent review on this topic.
2In this paper we only consider the average probability of error. Similar results can be obtained for maximum probability of error.
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Let us further clarify our description of coding over the AWGN channel. We consider n uses of the channel in
which the input Xi and the output Yi at each i = 1, . . . , n are related as Yi = Xi + Zi. Here, the noise term
{Zi}n

i=1 is a memoryless, stationary Gaussian process with zero mean and unit variance. Given an (M, pe)-
code for Wn, where W is the AWGN channel, a cost constraint on the codewords must be applied. The most
commonly used cost is

∀m ∈ M : ‖ fenc(m)‖2
2 =

n

∑
i=1

( fenc(m))2
i ≤ n · η,

where η is the SNR. Since, characterization of the code depends on the SNR η, we denote an (M, pe)-code
and M∗(n, pe) by (M, pe, η)-code and M∗(n, pe, η), respectively.

For each of the channels considered above, from the channel coding and strong converse theorem due to [9,
10], we know that

lim
n→∞

1
n

log2 M∗(n, pe) = C.

Thus the first order term in the non-asymptotic expansion of M∗(n, pe) is nC. The second order term in the
non-asymptotic expansion of M∗(n, pe) is given as [6,11]

log2 M∗(n, pe) = nC−
√

nVQ−1(pe) +O(log2 n), (1)

where V is the channel dispersion and Q−1(.) is the inverse of Q-function where Q-function is defined as

Q(α) =
1√
2π

∫ ∞

α
e−

x2
2 dx.

The third order term in the non-asymptotic expansion of M∗(n, pe), however, depends on the particular chan-
nel under discussion (See [12, Theorem 41], [12, Theorem 44], and [12, Theorem 73]). More specifically,
for BEC(ε), we have C = 1− ε, V = ε(1− ε) and the third order term is O(1). For BSC(δ), we have
C = 1− h2(δ), V = δ(1− δ) log2

2(
1−δ

δ ), and the third order term is 1
2 log n +O(1). For AWGN(η), we have

C = 1
2 log2(1+ η), V = η(η+2)

2(η+1)2 ln2 2
, and the third order term is bounded betweenO(1) and 1

2 log n +O(1),
i.e., the third order term is O(log n).

In this paper, we investigate code design over channels with very low capacity. Even though the formula (1)
can still be used in the low-capacity regime, it provides a very loose approximation as (i) the channel variations
in the low-capacity regime are governed by different probabilistic laws than the ones used to derive (1), and
(ii) some of the terms hidden in O(log n) will have significantly higher value and are comparable to the first
and second term. In the next section, we will provide non-asymptotic laws for the low-capacity regime.

3 Fundamental Limits

The Low-Capacity Regime. Consider the transmission over a channel W with capacity C. Let k denotes
the number of information bits to be sent and n denotes the blocklength of the code. We consider a scenario
in which the capacity C is very small, i.e., C → 0. To reliably communicate k bits, we clearly must have
n ≥ k/C and thus the blocklength n is fairly large. More formally, the low-capacity regime is specified by
considering k information bits to be sent over a channel whose capacity C is small and fixed, with blocklength
n scaling as O(k/C) which leads to k << n.

In our non-asymptotic derivations we treat the value of C as very small or close to 0 (e.g., C might be less
than the probability of error), we treat n as large (i.e., terms such as 1/

√
n are considered as o(1)), but the

value of κ := nC may not be large (e.g., it is in the order of k which can be a few tens). The question that
we consider is how does the smallest κ, for which reliable transmission with error pe is possible, scale with
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k? Note that κ depends on n through κ = nC and finding the smallest (optimal) κ is equivalent to finding the
smallest length n.

A practical situation for low-capacity regime is illustrated next. Consider a wideband AWGN channel with
the channel capacity given as C = B log(1 + P

N0B ) with a fixed total power P and large bandwidth B. A
wideband user wishes to communicate k bits over this channel in a fixed time frame of duration T seconds.
In this scenario, by Nyquist-Shannon sampling theorem, 2BT symbols can be transmitted in the given time
frame. Suppose that a simple binary phase shift keying (BPSK) modulation is deployed. Hence, the length
of transmitted codeword is n = 2BT which is finite but large. As a result, each bit is transmitted through
a channel with capacity 1

2 log(1 + SNR) = O( 1
n ) and the user wishes to transmit k = O(1) bits over this

channel (note that SNR = P
N0B = O( 1

n )). This implies that the wideband user is operating in an extreme case
of the low-capacity regime.

In current low-capacity applications, such as the narrowband and wideband applications discussed in Sec-
tion 1, the number of information bits k varies between few tens, in narrowband, to few thousands, in wideband,
and the channel capacity C is typically below 0.05. This makes n to vary between few thousands to several
tens of thousands. For instance, if k = 50 and C = 0.02, then the blocklength n is at least 2500. In the limit,
the low-capacity regime is expressed as follows: We intend to communicate k information bits over a channel
with capacity C → 0, and by using a code with length n → ∞. However, the value κ = nC stays finite as it
will be close to the number of information bits k.

Why the laws should be different in the low-capacity regime? Let us now explain why the current non-
asymptotic laws of channel coding provided in (1) are not applicable in the low-capacity regime. Consider
transmission over BEC(ε) with blocklength n. When the erasure probability ε is not so large (e.g., ε =
0.5), the number of channel non-erasures will be governed by the central limit theorem and behaves as nC +√

nε(1− ε)Z, where Z is the standard normal random variable. However, in the low-capacity regime, where
the capacity C = 1− ε is very small, the number of channel non-erasures will not be large, as the probabil-
ity of non-erasure is very small. In other words, the expected number of non-erasures is κ = n(1− ε) which
is much smaller than n. In this case, the number of non-erasures is best approximated by the Poisson conver-
gence theorem (i.e., the law of rare events) rather than the central limit theorem. Such behavioral differences
in the channel variations will lead to totally different non-asymptotic laws, as we will see later in this section.
Another reason for (1) being loose is that some of the terms that are considered as O(1) will become signif-
icant in the low-capacity regime. For instance, we have 1/(

√
nC) =

√
n/(nC) =

√
n/κ which can not be

considered as o(1) since κ is usually much smaller than n. As we will see, such terms can be captured by us-
ing sharper tail inequalities. We will now present and discuss the non-asymptotic laws for channel coding in
the low-capacity regime. Proofs of the theorems together with related lemmas are provided in the Appendix.

3.1 The Binary Erasure Channel

As discussed earlier, the behavior of channel variations for the BEC in the low-capacity regime can be best
approximated through the Poisson convergence theorem for rare events. This will lead to different (i.e., more
accurate) non-asymptotic laws. The following theorem provides lower and upper bounds for the best achiev-
able rate in terms of n, pe, ε, and κ := n(1− ε). We use Pλ(x) to denote the Poisson cumulative distribution
function, i.e.,

Pλ(x) = Pr {X < x} , where X ∼ Poisson(λ). (2)

Theorem 1 (Non-Asymptotic Coding Bounds for Low-Capacity BEC). Consider transmission over BEC(ε)
in low-capacity regime and let κ = n(1− ε). Then,

M1 ≤ M∗(n, pe) ≤ M2,
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where M1 is the solution of

P1(M1) + α
√

P1(M1)− pe = 0, (3)

and M2 is the solution of

P2(M2)− α
√

P2(M2)− α
√
Pκ(log2 M2)− pe = 0, (4)

and

P1(M1) = Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1)) ,

P2(M2) = Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2) ,

α =

√
2

ε3/2

(
1 + 2

√
3
εκ

) (√
e− 1

)
(1− ε).

Proof. See Section 5.1 in Appendix.

The bounds in Theorem 1 are tight and can be computed accurately (see Section 5.2). The bounds are ex-
pressed merely in terms of κ := n(1− ε) rather than n. This agrees with the intuition that the rate should
depend on the amount of “information” passed through n usages of the channel rather than the number of chan-
nel uses n. Typically, the value of κ in low-capacity applications varies between a few tens to few hundreds.
In such a range, no simple, closed-form approximation of the Poisson distribution with mean κ exists. As a re-
sult, the lower and upper bounds in Theorem 1 can not be simplified further. Also, one can turn these bounds
into bounds on the shortest (optimal) lengths n∗ needed for transmitting k information bits with error probabil-
ity pe over a low-capacity BEC. In Section 4.3 we numerically evaluate the lower and upper bounds predicted
by Theorem 1 and compare them with the prediction obtained from Formula (1) [6]. It is observed our predic-
tions are significantly more precise comparing to the prediction obtained from Formula (1) and they become
even more precise as the capacity approaches zero.

3.2 The Binary Symmetric Channel

Unlike BEC, the non-asymptotic behavior of coding over BSC can be well approximated in low-capacity
regime by the central limit theorem (e.g., Berry-Essen theorem). Let us briefly explain why. Consider trans-
mission over BSC(δ) where the value of δ is close to 1

2 . The capacity of this channel is 1− h2(δ), where
h2(x) := −x log2(x)− (1− x) log2(1− x), and we denote κ = n(1− h2(δ)). Note that when δ → 1

2 one
can write δ ≈ 1

2 −
√

κ
n by using the Taylor expansion of the function h2(x) around x = 1

2 . Transmission over
BSC(δ) can be equivalently modeled as follow: (i) With probability 2δ we let the output of the channel be cho-
sen according to Bernoulli( 1

2 ), i.e., the output is completely random and independent of the input, and (ii) with
probability 1− 2δ we let the output be exactly equal to the input. In other words, the output is completely
noisy with probability 2δ (call it the noisy event) and completely noiseless with probability 1− 2δ (call it the
noiseless event). As δ → 1

2 , then the noiseless even is a rare event. Now, assuming n transmissions over the
channel, the expected number of noiseless events is n(1− 2δ) ≈

√
nκ. Similar to BEC, the number of rare

noiseless events follows a Poisson distribution with mean n(1− 2δ) due to the Poisson convergence theorem.
However, as the value of n(1− 2δ) ≈

√
nκ is large, the resulting Poisson distribution can also be well ap-

proximated by the Gaussian distribution due to the central limit theorem (note that Poisson(m) can be written
as the sum of m independent Poisson(1) random variables).

As mentioned earlier, central limit laws are the basis for deriving the laws of the form (1) which are applied
to the settings where the capacity is not small. However, for the low-capacity regime, considerable extra effort
is required in terms of sharper arguments and tail bounds to work out the constants correctly.
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Theorem 2 (Non-Asymptotic Coding Bounds for Low-Capacity BSC). Consider transmission over BSC(δ) in
low-capacity regime and let κ = n(1− h2(δ)). Then,

log2 M∗(n, pe) = κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ − log2 pe +O (log log κ) . (5)

Proof. See Section 5.3 in Appendix.

We remark that the O(log log κ) term contains some other terms such as O(
√
− log pe/ log κ). For prac-

tical scenarios, the term O(log log κ) will be dominant.3 We also note that, similar to the BEC case, all terms
in (5) are expressed in terms of κ rather than n. This agrees with the intuition that the rate should depend on
the amount of “information” passed through n usages of the channel rather than the number of channel uses n.

Corollary 1. Consider transmission of k information bits over a low-capacity BSC(δ). Then, the optimal
blocklength n∗ for such a transmission is

n∗ =
1

1− h2(δ)

(
k + 2

√
2δ(1− δ)

ln 2
Q−1(pe) ·

√
k +

4δ(1− δ)

ln 2
Q−1(pe)

2 + log2 pe +O(log k)

)
.

Proof. See Section 5.3 in Appendix.

3.3 The Additive White Gaussian Channel

Similar to BSC, the channel variations in low-capacity AWGN channels are best approximated by the cen-
tral limit theorem. The following theorem is obtained by using the ideas in [12, Theorem 73] with slight
modifications.

Theorem 3 (Non-Asymptotic Coding Bounds for Low-Capacity AWGN). Consider transmission over AWGN(η)
in low-capacity regime and let κ = n

2 log2(1 + η). Then,

log2 M∗(n, pe, η) = κ −
√

η + 2

(η + 1)
√

ln 2
·
√

κ Q−1(pe) + E , (6)

where

O(1) ≤ E ≤ 1
2

log2 κ − log2 pe +O
(

1√
− log pe

)
.

Proof. See Section 5.4 in Appendix.

Same considerations about O(.) notation as discussed earlier, should be taken into account here. Also note
that as for BEC and BSC, the optimal blocklength for AWGN channel can be expressed in terms of other
parameters in the low-capacity regime which is stated in the following corollary.

Corollary 2. Consider transmission of k information bits over a low-capacity AWGN(η). Then, the optimal
blocklength n∗ for such a transmission is

n∗ =
2

log2(1 + η)

(
k +

√
η + 2

(η + 1)
√

ln 2
Q−1(pe) ·

√
k +O

(
log2

1
pe

))
.

Proof. See Section 5.4 in Appendix.
3We always include only the dominant term inside O(·).
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4 Practical Code Designs and Simulation Results

As we need to design codes with extremely low rate, some of the stat-of-the-art codes may not be directly
applicable. A notable instance is the class of iterative codes, e.g., Turbo or LDPC codes. It is well known
that decreasing the design rate of iterative codes results in denser decoding graphs which further leads to
highly complex iterative decoders with poor performance. E.g., an (l, r)-regular LDPC code with design rate
R = 0.01 requires r, l ≥ 99. Hence, the Tanner graph will have minimum degree of at least 99 and even for
codelengths of order tens of thousands the Tanner graph will have many short cycles. In order to circumvent
this issue, the current practical designs, e.g., the NB-IoT code design, use repetition coding. I.e., a low rate
repetition code is concatenated with a powerful moderate-rate code. For example, an iterative code of rate R
and length n/r can be repeated r times to construct a code of length n with rate R/r. In Section 4.1, we will
discuss the pros and cons of using repetition schemes along with trade-offs between the number of repetitions
and performance of the code. As we will see, although repetition leads to efficient implementations, the rate
loss through many repetitions will result in codes with mediocre performance.

Unlike iterative codes, polar codes and most algebraic codes (e.g., BCH or Reed-Muller codes) can be used
without any modification for low-rate applications. In Section 4.2, we will study the behaviour of polar coding
on low-capacity channels. As we will see, polar coding is advantageous in terms of distance, performance
and implicit repetition, however, its encoding and decoding algorithms have to be carefully adjusted to reduce
complexity and latency for practical applications.

Throughout this section, we will consider code design for the class of binary memoryless symmetric (BMS)
channels. A BMS channel W has binary input and, letting W(y | x) denotes the transition matrix, there exists
a permutation π on the output alphabet such that W(y | 0) = W(π(y) | 1). Notable exemplars of this class
are BEC, BSC, and BAWGN channels.

4.1 How Much Repetition is Needed?

As mentioned above, repetition is a simple way to design practical low-rate codes that exploit the power of
state-of-the-art designs. Let r be a divisor of n, where n denotes the length of the code. Repetition coding
consists in designing first a smaller outer code of length n/r and repeat each of its code bits r times (i.e., the
inner code is repetition). The length of the final code is n/r · r = n. This is equivalent to transmitting the outer
code over the r-repetition channel, Wr, which takes a bit as input, and outputs an r-tuple which is the result of
passing r copies of the input bit independently through the original channel W. E.g., if W is BEC(ε) then its
corresponding r-repetition channel is Wr = BEC(εr).

The main advantage of repetition coding is the reduction in computational complexity (especially if r is
large). This is because the encoding/decoding complexity is effectively reduced to that of the outer code, i.e.,
once the outer code is constructed, at the the encoding side, we just need to repeat each of its code bits r times,
and at the decoding side the log-likelihood of an r-tuple consisting of r independent transmissions of a bit
is equal to sum of the log-likelihoods of the individual channel outcomes. The computational latency of the
encoding and decoding algorithms is reduced to that of the outer code in a similar way.

The outer code has to be designed for reliable communication over the channel Wr. If r is sufficiently large,
then the capacity of Wr will not be low any more. In this case, the outer code can be picked from off-the-shelf
practical codes designed for channels with moderate capacity values (e.g., iterative or polar codes). While this
looks promising, one should note that the main drawback of repetition coding is the loss in capacity. In general,
we have C(Wr) ≤ rC(W) and the ratio vanishes by growing r. As a result, if r is very large then repetition
coding might suffer from an unacceptable rate loss. Thus, the main question that we need to answer is: how
large r can be made such that the rate loss is still negligible?

We note that the overall capacity corresponding to n channel transmissions is nC(W). With repetition cod-
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ing, the capacity will be reduced to n/r · C(Wr) since we transmit n/r times over the channel Wr. For any
β ∈ [0, 1], we ask what is the largest repetition size rβ such that

n
rβ

C(Wrβ) ≥ βnC(W). (7)

Let us first assume that transmission takes place over BEC(ε). We thus have Wr = BEC(εr). If ε is not
close to 1, then even r = 2 would result in a considerble rate loss, e.g., if ε = 0.5, then C(W2) = 0.75 whereas
2C(W) = 1. However, when ε is close to 1, then at least for small values of r the rate loss can be negligible,
e.g., for r = 2, we have C(W2) = 1− ε2 ≈ 2(1− ε) = 2C(W). The following theorem provides lower and
upper bounds for the largest repetition size, rβ, that satisfies (7).

Theorem 4 (Maximum Repetition Length for BEC). If W = BEC(ε), then for the largest repetition size, rβ,
that satisfies (7), we have

n(1− ε)`

2
(

1− β
`

) ·(β

`

)2

≤ n
rβ
≤ n(1− ε)`

2
(

1− β
`

) , (8)

where ` = − ln ε
1−ε . Equivalently, assuming κ = n(1− ε), (8) becomes

κ

2 (1− β)
· β2(1 +O(1− ε)) ≤ n

rβ
≤ κ

2 (1− β)
(1 +O(1− ε)).

Proof. See Section 5.5 in Appendix.

Remark 1. Going back to the results of Theorem 1, in order to obtain similar non-asymptotic guarantees with
repetition-coding, a necessary condition is that the total rate loss due to repetition is O(1), i.e.,

n
rβ

C(Wrβ) = nC(W) +O(1).

If W = BEC(ε) and κ = n(1− ε), then the necessary condition implies plugging β = 1−O(1/(κ) into (7).
Moreover, from Theorem 4 we can conclude that, when ε is close to 1, the maximum allowed repetition size is
O
(
n/κ2). Equivalently, the size of the outer code can be chosen as O(κ2).

A noteworthy conclusion from the above remark is that, as having negligible rate loss implies the repetition
size to be at most O(n/κ2), then the outer code has to be designed for a BEC with erasure probability at least
εO(n/κ2) = 1−O(1/κ). This means that the outer code should still have a low rate even if κ is as small as
few tens. Thus, the idea of using e.g., iterative codes as the outer code and repetition codes as the inner code
will lead to an efficient low-rate design only if we are willing to tolerate non-negligible rate loss. We refer
to Section 4.3 for a numerical case study on repetition coding. In contrast, the polar coding construction has
implicitly a repetition block of optimal size O(n/κ2) as we will see in the next section.

It turns out that the binary erasure channel has the smallest rate loss due to repetition among all the BMS
channels. This property has been used in the following theorem to provide an upper bound on rβ for any BMS
channel.

Theorem 5 (Upper Bound on Repetition Length for any BMS). Among all BMS channels with the same ca-
pacity, BEC has the largest repetition length rβ that satisfies (7). Hence, for any BMS channel with capacity C
and κ = nC, we have

n
rβ
≥ κ

2(1− β)
β2(1 +O(1− C)).

Proof. See Section 5.5 in Appendix.

Remark 2. Similar to Remark 1, we can conclude that for any BMS channel with low capacity, in order to
have the total rate loss of order O(1), the repetition size should be at most O(n/κ2).
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4.2 Polar Coding at Low Capacity

We show in this section that polar construction provides several coding advantages, in terms of both perfor-
mance and complexity, in the low-capacity regime. We will describe such advantages together with supporting
analytical and numerical evidence. We also show later in this section that, in order to make polar codes a suit-
able candidate for practice, we need to carefully adapt their encoding and decoding operations. We begin by
providing a brief description of polar codes to set up notation and the basics.
Basics of Polar Coding [7]. The basis of channel polarization consists in mapping two identical copies of the
channel W : X → Y into the pair of channels W0 : X → Y2 and W1 : X → X ×Y2, defined as

W0(y1, y2 | x1) = ∑
x2∈X

1
2

W(y1 | x1 ⊕ x2)W(y2 | x2), (9)

W1(y1, y2, x1 | x2) =
1
2

W(y1 | x1 ⊕ x2)W(y2 | x2). (10)

Then, W0 is a worse channel in the sense that it is degraded with respect to W, hence less reliable than W; and
W1 is a better channel in the sense that it is upgraded with respect to W, hence more reliable than W. In the
polar coding literature, the operation in (9) is also known as the check or minus operation and the operation in
(10) is also known as the variable or plus operation.

By iterating this operation n times, we map n = 2m identical copies of the transmission channel W into the
synthetic channels {W(i)

m }i∈{0,...,n1}. More specifically, given i ∈ {0, . . . , n − 1}, let (b1, b2, . . . , bm) be its
binary expansion over m bits, where b1 is the most significant bit and bm is the least significant bit, i.e.,

i =
m

∑
k=1

bk2m−1−k.

Then, we define the synthetic channels {W(i)
n }i∈{0,...,n−1} as

W(i)
n = (((Wb1)b2)···)bm .

Example 1 (Synthetic Channel). Take m = 4 and i = 10. Then, the synthetic channel W(10)
16 = (((W1)0)1)0

is obtained by applying first (10), then (9), then (10), and finally (9).

The polar construction is polarizing in the sense that the synthetic channels tend to become either completely
noiseless or completely noisy. Thus, in the encoding procedure, the k information bits are assigned to the
positions (indices) corresponding to the best k synthetic channels. Here, the quality of a channel is measured
by some reliability metric such as the Bhattacharyya parameter of the channel. The remaining positions are
“frozen” to predefined values that are known at the decoder. As a result, the generator matrix of polar codes is
based on choosing the k rows of the matrix

Gn =

[
1 0
1 1

]⊗m

,

which correspond to the best k synthetic channels. It is worth noting that for an index i with binary expansion
(b1, b2, · · · , bn) the Hamming wight of the i-th row of Gn is 2∑m

j=1 bi , i.e., the Hamming weight of the i-th row,
which corresponds to the i-th synthetic channel, is exponentially related with number of plus operations in the
construction of the i-th synthetic channel.
High Minimum Distance at Low-Capacity. If the channel W has low capacity, then clearly any good (i.e.,
noiseless) synthetic channel requires a lot of plus operations. As a result, for all the k best synthetic channels

10



n 1024 2048 4096 8192 16364
dmin(dmin/n) 128 (1/8) 256 (1/8) 512 (1/8) 1024 (1/8) 2048 (1/8)

Table 1: Minimum distance of a polar code constructed for k = 40 over various channels with capacity 0.02.

the Hamming weight of the corresponding row in Gn is very high. Hence, the resulting polar code will have
a high minimum distance. Table 1 provides the minimum distance of the polar code for various channels and
lengths. The channels are BAWGN, BEC, BSC all with capacity 0.02. We have constructed polar codes for
these channels with k = 40. For the range of n shown in the table, we have observed that the set of synthetic
indices for all the three channels were identical. This would suggest the universality of polar codes in the
low-rate regime (this should only hold when k << n).4 As the table shows, the minimum distance keeps
increasing linearly with n.
Polar Coding Does Optimal and Implicit Repetition at Low-Capacity. We have shown in Section 4.1 that
the maximum allowed repetition size to have negligible capacity loss isO(n/κ2). We will show in this section
that at low-capacity, the polar construction is enforced to haveO(n/κ2) repetitions. In other words, the result-
ing polar code is equivalent to a smaller polar code of size O(κ2) followed by repetitions. Consequently, the
encoder and decoder of the polar code could be implemented with much lower complexity taking into account
the implicit repetitions. That is, the encoding can be reduced to n +O(κ2 log κ) and the decoding complex-
ity using the list successive cancellation (SC) decoder with list size L is reduced to n +O(Lκ2 log κ). Recall
that the original implementation of polar codes requires n log n encoding complexity and O(Ln log n) de-
coding complexity. Moreover, as the repetition steps can all be done in parallel, the computational latency of
the encoding and decoding operations can be reduced to O(κ2 log κ) and O(Lκ2 log κ), respectively. To fur-
ther reduce the complexity, the simplified SC decoder [16] or relaxed polar codes [17] can be invoked. Such
complexity reductions are important for making polar codes a suitable candidate for practice.

Theorem 6. Consider using a polar code of length n = 2m for transmission over a BMS channel W. Let
m0 = log2(4κ2) where κ = nC(W). Then any synthetic channel W(i)

n whose Bhattacharyya value is less than
1
2 has at least m0 plus operations in the beginning. As a result, the polar code constructed for W is equivalent
to the concatenation of a polar code of length (at most) 2m0 followed by 2m−m0 repetitions.

Remark 3. Note that from Theorem 6, polar codes automatically perform repetition coding withO(n/κ2) rep-
etitions, where κ = nC. This matches the necessary (optimal) number of repetitions given in Remark 1 and 2.

4.3 Simulation Results

For the BEC, we have compared in Figure 1, the lower and upper bounds obtained from Theorem 1 with the
predictions of Formula (1). We have also plotted the performance of polar codes. The setting considered in
Figure 1 is as follows: We intend to send k = 40 information bits over the BEC(ε). The desired error prob-
ability is pe = 10−2. For erasure values between 0.96 and 1, Figure 1 plots bounds on the smallest (optimal)
blocklength n needed for this scenario as well as the smallest length required by polar codes. Note that in or-
der to compute e.g., a lower bound on the shortest length from Theorem 1, we should fix M∗(n, pe) to k = 40
and search for the smallest n that satisfies equation 4 with κ = n(1− ε) and pe = 0.01.

As we see in Figure 1, the lower and upper bounds predicted from Theorem 1 are very close to each other.
The performance of random linear codes is very close to the upper bound. This is natural because the upper
bound has been obtained by a random coding achievability argument. As expected, the prediction obtained
from Formula (1) is not precise in the low-capacity regime and it becomes worse as the capacity approaches

4Note that polar codes are not universal in general [13], but universal polar-like constructions exist [14,15].
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Figure 1: Comparison for low-capacity BEC. The number of information bits is k = 40 and the target error
probability is pe = 10−2. For the right plot, with the same legend entries as the left plot, all the blocklengths
n in the left plot are normalized by the value of the lower bound, obtained from Theorem 1.

zero. Also, the performance of polar code is shown in Figure 1. The polar code is concatenated with cyclic
redundancy check (CRC) code of length 6, and is decoded with the list-SC algorithm [18] with list size L = 16.

Figure 2 considers the scenario of sending k = 40 bits of information over a low-capacity BSC with target
error probability pe = 10−2. We have compared in Figure 2, the predictions from Theorem 2 and Formula (1).
As we expected, the prediction from Formula (1) is quite imprecise in the low-capacity regime. Note that the
prediction of Theorem 2 is exact up to O(log log κ) terms. The performance of polar codes is also plotted
in Figure 2. An interesting problem is to analyzie the finite-length scaling of polar codes in the low-capacity
regime [19–23].
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Figure 2: Comparison for low-capacity BSC. The number of information bits is k = 40 and the target error
probability is pe = 10−2. For the right plot, with the same legend entries as the left plot, all the blocklengths
n in the left plot are normalized by the value of the prediction obtained from Theorem 2.

Figure 3 compares the performance of polar codes with repeated LTE Turbo codes over the binary-input
additive white Gaussian channel. Here, we intend to send k = 40 information bits. The polar-CRC code has
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length 8192, and the Turbo-repetition scheme has the (120, 40) mother code of rate 1/3 as the outer code
which is repeated 68 times (the total length is 68× 120 = 8160). In the considered (8192, 40) polar code, a
repetition factor of 4 is implicitly enforced by the construction, as predicted by Theorem 6. Hence, the polar
coding scheme is actually a (2048, 40) polar code with 4 repetitions. We note from Section 1 that repetition
of the LTE code for data channel, in this case the Turbo code of rate 1/3, is the proposed code design in the
NB-IoT standard. For these two choices of code designs, the block error probability is plotted with respect to
Eb/N0 in Figure 3. As we see from the figure, the waterfall region of Turbo-repitition is almost 4 dB away
from that of the polar code. This is mainly due to the many repetitions that must be invoked in the repeated
Turbo code to provide the low rate design. Consequently, this results in capacity loss and significantly degraded
performance for Turbo-repetition scheme comparing to a code carefully designed, both in terms of construction
as well as the number of repetitions, for the total length 8192, such as the considered polar code.
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Figure 3: Comparison for low-capacity BAWGN. The number of information bits is k = 40. The polar-CRC
has length 8192, is constructed using 6 CRC bits, and is decoded using the SC-list decoder with L = 16. The
Turbo-repitition has an underlying (120, 40) Turbo code which is repeated 68 times (total length = 8160) and
is decoded with 6 iterations. The Shannon limit for this setting is −4.75 dB.

5 Appendix: Proofs

5.1 Proofs for BEC

In this section we will prove the converse and achievability bounds of Theorem 1. In the proofs we will be
using Theorems 7–10 which are stated at the end of this section. For results in coding theory, we generally
refer to [12] as it has well collected and presented the corresponding proofs. See also [8], [24], [25], [26],
and [27].

Proof of Theorem 1. Achievability Bound. Consider n transmissions over the BEC(ε) which are indexed by
i = 1, · · · , n. For the i-th transmission, we let Xi be a Bernoulli random variable which is 0 if the output of
the ith channel is an erasure and is 1 otherwise, i.e., Pr{Xi = 1} = 1− ε. Suppose Sn = ∑n

i=1 Xi and denote
κ = n(1− ε). We will use the result of Theorem 10 and show that if a number M1 satisfies (3), then it will
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dissatisfy the inequality in (28). As a result, we obtain M1 ≤ M∗(n, pe). Now, by considering (28), we define

I1 = ∑
r < log2 M1

(
n
r

)
εn−r(1− ε)r,

I2 = ∑
log2 M1≤ r≤ n

(
n
r

)
εn−r(1− ε)r M1

2r .

We have I1 = Pr {Sn < log2 M1}. Suppose X ∼ Poisson(κ), then we can write

I1 ≤ Pr {X < log2 M1}+
∣∣∣∣Pr {Sn < log2 M1} − Pr {X < log2 M1}

∣∣∣∣,
I2 = ∑

log2 M1≤ r≤ n
Pr {Sn = r} M1

2r

≤ ∑
log2 M1≤ r≤ n

Pr {X = r} M1

2r + ∑
log2 M1≤ r≤ n

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣M1

2r

≤ ∑
log2 M1≤ r <∞

Pr {X = r} M1

2r + ∑
log2 M1≤ r <∞

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣M1

2r .

Putting these together, we obtain

I1 + I2 ≤ E

[
1 (X < log2 M1) + 1 (X ≥ log2 M1)

M1

2X

]
+ J1 + J2, (11)

where

J1 =

∣∣∣∣Pr {Sn < log2 M1} − Pr {X < log2 M1}
∣∣∣∣,

J2 = ∑
log2 M1≤ r <∞

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣M1

2r .

Using Theorem 7, we have

J1 =

∣∣∣∣Pr {Sn < log2 M1} − Pr {X < log2 M1}
∣∣∣∣ ≤ α1

√
Pr {X < log2 M1}, (12)∣∣∣∣Pr {X = r} − Pr {Sn = r}

∣∣∣∣ ≤ α2

√
Pr {X ≤ r}, (13)

where

α1 =

√
2

ε3/2

(√
e− 1

)
(1− ε),

α2 =

√
6

ε2
√

κ

(√
e− 1

)
(1− ε).
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We now upper-bound J2 using (13), as follows:

J2 = 2 ∑
log2 M1≤ r <∞

M1

2r+1

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣

≤ 2α2 ∑
log2 M1≤ r <∞

M1

2r+1

√
Pr {X ≤ r}

≤ 2α2

√
∑

log2 M1≤ r <∞

M1

2r+1 Pr {X ≤ r}. (14)

For obtaining the last part, note that
√

x is a concave function and

∑
log2 M1≤ r <∞

M1

2r+1 = 1.

Thus, (14) follows from Jensen inequality for
√

x, that is, E
[√

Z
]
≤
√

E [Z]. Also consider

∑
log2 M1≤ r <∞

M1

2r+1 Pr {X ≤ r} = ∑
log2 M1≤ r <∞

M1

2r+1

r

∑
i=0

e−κ κi

i!

=
∞

∑
i=0

e−κ κi

i!

(
1 (i < log2 M1) +

1 (i ≥ log2 M1)

2i−log2 M1

)
= ∑

i<log2 M1

e−κ κi

i!
+ M1 ∑

i≥log2 M1

e−κ κi

i!
1
2i

= Pκ(log2 M1) + M1e−κ/2 ∑
i≥log2 M1

e−κ/2 (κ/2)i

i!

= Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1)) . (15)

From (14) and (15), we arrive at

J2 ≤ 2α2

√
Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1)). (16)

Also, considering the notation in (2), we can write

E

[
1 (X < log2 M1) + 1 (X ≥ log2 M1)

M1

2X

]
= E

[
1 (X < log2 M1)

]
+ E

[
M1

2X

]
−E

[
(X < log2 M1)

M1

2X

]
= Pκ(log2 M1) + ∑

r
e−κ κr

r!
· M1

2r − ∑
r < log2 M1

e−κ κr

r!
· M1

2r

= Pκ(log2 M1) + M1e−κ/2 ∑
r

e−κ/2 (κ/2)r

r!
−M1e−κ/2 ∑

r < log2 M1

e−κ/2 (κ/2)r

r!

= Pκ(log2 M1) + M1e−κ/2 −M1e−κ/2Pκ/2(log2 M1). (17)
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Now, (11), (12), (16), and (17) together result in

I1 + I2 ≤ Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1))

+ α1

√
Pκ(log2 M1) + 2α2

√
Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1))

≤ P1(M1) + α
√

P1(M1)

= pe, (18)

where

P1(M1) = Pκ(log2 M1) + M1e−κ/2 (1−Pκ/2(log2 M1)) ,

α = α1 + 2α2 =

√
2

ε3/2

(
1 + 2

√
3
εκ

) (√
e− 1

)
(1− ε).

Note that (18) holds by the definition of M1 in (3). Hence, we showed

n

∑
r=0

(
n
r

)
εr(1− ε)n−r2−[r−log2(M1−1)]+ ≤ I1 + I2 ≤ pe,

which means M1 dissatisfies the inequality in (28). Hence, M1 ≤ M∗(n, pe).

Proof of Theorem 1. Converse Bound. Consider n transmissions over the BEC(ε) which are indexed by i =
1, · · · , n. For the i-th transmission, we let Xi be a Bernoulli random variable which is 0 if the output of the
ith channel is an erasure and is 1 otherwise, i.e., Pr{Xi = 1} = 1− ε. Suppose Sn = ∑n

i=1 Xi and denote
κ = n(1− ε). We will use the result of Theorem 9 and show that if a number M2 satisfies (4), then it will
dissatisfy the inequality in (27). As a result, we obtain M∗(n, pe) ≤ M2. Now, by considering (27), we define

I1 = ∑
r < log2 M2

(
n
r

)
εn−r(1− ε)r,

I2 = ∑
r < log2 M2

(
n
r

)
εn−r(1− ε)r 2r

M2
.

We have I1 = Pr {Sn < log2 M2}. Suppose X ∼ Poisson(κ), then we can write

I1 ≥ Pr {X < log2 M2} −
∣∣∣∣Pr {Sn < log2 M2} − Pr {X < log2 M2}

∣∣∣∣,
I2 = ∑

r < log2 M2

Pr {Sn = r} 2r

M2

≤ ∑
r < log2 M2

Pr {X = r} 2r

M2
+ ∑

r < log2 M2

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣ 2r

M2
.

Putting these together, we obtain

I1 − I2 ≥ E

[
1 (X < log2 M2)

(
1− 2X

M2

) ]
− J1 − J2, (19)
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where

J1 =

∣∣∣∣Pr {Sn < log2 M2} − Pr {X < log2 M2}
∣∣∣∣,

J2 = ∑
r < log M2

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣ 2r

M2
.

Using Theorem 7, we have

J1 =

∣∣∣∣Pr {Sn < log2 M2} − Pr {X < log2 M2}
∣∣∣∣ ≤ α1

√
Pr {X < log2 M2} (20)∣∣∣∣Pr {X = r} − Pr {Sn = r}

∣∣∣∣ ≤ α2

√
Pr {X ≤ r}, (21)

where

α1 =

√
2

ε3/2

(√
e− 1

)
(1− ε),

α2 =

√
6

ε2
√

κ

(√
e− 1

)
(1− ε).

We now upper-bound J2 using (21), as follows:

J2 = ∑
r < log M2

2r

M2

∣∣∣∣Pr {X = r} − Pr {Sn = r}
∣∣∣∣

≤ α2 ∑
r < log M2

2r

M2

√
Pr {X ≤ r}

≤ α2

√
∑

r < log M2

2r

M2
Pr {X ≤ r}. (22)

For obtaining the last part, note that
√

x is a concave function and

∑
r < log M2

2r

M1
≤ 1.

Thus, (22) follows from Jensen inequality for
√

x, that is, E
[√

Z
]
≤
√

E [Z]. Also consider

∑
r < log M2

2r

M2
Pr {X ≤ r} = ∑

r < log M2

2r

M2
(1− Pr {X > r})

= 1− 1
M2
− ∑

r < log M2

2r

M2

∞

∑
i=r+1

e−κ κi

i!

= 1− 1
M2
−

∞

∑
i=0

e−κ κi

i!

(
1 (i ≥ log2 M2) + 1 (i < log2 M2)

2i − 1
M2

)

= 1− 1
M2
−
(

1−Pκ(log2 M2) +
eκ

M2
∑

i < log M2

e−2κ (2κ)i

i!
−
Pκ(log2 M2)

M2

)

= Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2)−

1−Pκ(log2 M2)

M2

≤ Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2) . (23)
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From (22) and (23), we arrive at

J2 ≤ α2

√
Pκ(log2 M2)−

eκ

M2
P2κ (log2 M2). (24)

Also, considering the notation in (2), we can write

E

[
1 (X < log2 M2)

(
1− 2X

M2

) ]
= E

[
1 (X < log2 M2)

]
−E

[
(X < log2 M2)

2X

M2

]
= Pκ(log2 M2)− ∑

r < log2 M2

e−κ κr

r!
· 2r

M2

= Pκ(log2 M2)−
eκ

M2
∑

r < log2 M2

e−2κ (2κ)r

r!

= Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2) . (25)

Now, (19), (20), (24), and (25) together result in

I1 − I2 ≥ Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2)− α1

√
Pκ(log2 M2)− α2

√
Pκ(log2 M2)−

eκ

M2
P2κ (log2 M2)

≥ P2(M2)− α
√

P2(M2)− α
√
Pκ(log2 M2)

= pe, (26)

where

P2(M2) = Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2) ,

α = α1 + 2α2 =

√
2

ε3/2

(
1 + 2

√
3
εκ

) (√
e− 1

)
(1− ε).

Note that (26) holds by the definition of M2 in (4). Hence, we showed

∑
r < log2 M2

(
n
r

)
εn−r(1− ε)r

(
1− 2r

M2

)
= I1 − I2 ≥ pe,

which means M2 dissatisfies the inequality in (27). Hence, M∗(n, pe) ≤ M2.

Theorem 7 (Strong Poisson Convergence). For 1 ≤ i ≤ n let Xi be independent random variables with
P(Xi = 1) = 1− P(Xi = 0) = pi. Define Sn = ∑n

i=1 Xi . Also define λk = ∑n
i=1 pk

i and let λ = λ1 and
θ = λ2/λ1. Then, ∣∣∣∣Pr{Sn ≤ m} − Pr{X ≤ m}

∣∣∣∣ ≤
√

2 (
√

e− 1) θ

(1− θ)3/2

√
ψ(m),

and ∣∣∣∣Pr{Sn = m} − Pr{X = m}
∣∣∣∣ ≤
√

6 (
√

e− 1) θ

(1− θ)2
√

λ

√
ψ(m),

where X ∼ Poisson(λ) and the quantity ψ(m) is

ψ(m) = min
{

Pr{X ≤ m}, Pr{X > m}
}

.
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Proof. See [28, Theorem 3.4, Lemma 3.7].

Theorem 8 (Poisson Convergence). For 1 ≤ i ≤ n let Xi be independent random variables with P(Xi =
1) = 1− P(Xi = 0) = pi. Define Sn = ∑n

i=1 Xi and λk = ∑n
i=1 pk

i . Let µn be the distribution of Sn and νn
be the Poisson distribution with mean λ1. Then the following holds.

sup
A

∣∣∣∣µn(A)− νn(A)

∣∣∣∣ ≤ λ2

λ1

Proof. See [29, page 89].

Theorem 9 (Converse Bound for BEC). For any (M, pe)-code over the BECn(ε), we have

pe ≥ ∑
r <log2 M

(
n
r

)
εn−r(1− ε)r

(
1− 2r

M

)
. (27)

Proof. See [12, Theorem 43].

Theorem 10 (RCU Achievability Bound for BEC). There exists an (M, pe)-code over BECn(ε) such that

pe ≤
n

∑
r=0

(
n
r

)
εr(1− ε)n−r2−[r−log2(M−1)]+ . (28)

Proof. See [12, Corollary 42].

5.2 How to Compute the Bounds in Theorem 1

The problem essentially boils down to accurate computation of the probabilities Pr(X = s) when X is a
Poisson random variable with average κ. We have Pr(X = s) = e−κκs/s!. The value of s! can be approxi-
mated using the refined Ramanujan’s formula [30]:

s! =
√

π
( s

e

)s
(

8s3 + 4s2 + s +
θ(s)
30

) 1
6

,

where

θ1(s) := 1− 11
8s

+
79

112s2 ≤ θ(s) ≤ θ2(s) := 1− 11
8s

+
79

112s2 +
20

33s3 .

By plugging-in the lower bound for s! from the above formula (for s ≤ 10 we can use the exact value of s!) we
obtain

Pr(X = s) =
es−κ+s ln(κ/s)

√
π
(

8s3 + 4s2 + s + θ1(s)
30

) 1
6

.

Note that this formula is exact up to a multiplicative factor of 1+ s−6 which for s ≥ 10 gives us a (1+ 10−6)-
approximation. Moreover, if we are obsessed with obtaining “bounds”, we can use the lower and upper bound
approximations for s! to bound the Poisson probability from above and below and hence obtain bounds for
M1, M2 in Theorem 1.

Once the Poisson probabilities are approximated (or bounded) suitably, we can compute values of M1 and
M2 up to any precision by truncating the expectation and using the bisection method to solve the equations.
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5.3 Proofs for BSC

In this section we will prove the converse and achievability bounds of Theorem 2. In the proofs we will
be using Theorems 11–14 as well as Lemmas 1–4 which are stated at the end of this section. For results in
coding theory, we generally refer to [12] as it has well collected and presented the corresponding proofs. See
also [8], [24], [25], [26], and [27].

Proof of Theorem 2. Achievability Bound. Define T and S as follows:

T = nδ +
√

nδ(1− δ)Q−1
(

pe −
pe√

κ
− c1√

n

)
, (29)

S = ∑
r≤ T

(
n
r

)
δr(1− δ)n−rSr

n, (30)

where c1 = 3(2δ2−2δ+1)√
δ(1−δ)

is a constant. Suppose we choose some M to satisfy

M ≤ pe√
κ S

. (31)

Now define

I1 = ∑
r≤ T

(
n
r

)
δr(1− δ)n−r MSr

n,

I2 = ∑
T< r≤ n

(
n
r

)
δr(1− δ)n−r.

From (30) and (31), we have

I1 = MS ≤ pe√
κ

. (32)

For 1 ≤ i ≤ n, deine Vi to be Bernoulli random variables with Pr{Vi = 1} = 1− Pr{Vi = 0} = δ. Then
define

µ = E [Vi] = δ, σ2 = Var[Vi] = δ(1− δ), ρ = E
[
|Vi − µ|3

]
= δ(1− δ)

(
2δ2 − 2δ + 1

)
.

Now, using Theorem 11, we can write

I2 = Pr

{
n

∑
i=1

Vi > T

}
≤ Q

(
T − nµ

σ

)
+

3ρ

σ3
√

n
= Q

(
T − nδ√
nδ(1− δ)

)
+

c1√
n

(29)
= pe −

pe√
κ

. (33)

Therefore, (32) and (33) together give

I1 + I2 ≤ pe −
pe√

κ
+

pe√
κ
= pe.

Now, we can write

n

∑
r=0

(
n
r

)
δr(1− δ)n−r min

{
1, (M− 1)Sr

n

}
≤

n

∑
r=0

(
n
r

)
δr(1− δ)n−r min

{
1, MSr

n

}
≤ I1 + I2 ≤ pe.
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Thus, M dissatisfies the inequality in (48) and as a result, M∗(n, pe) ≥ M. Note that M was arbitrarily chosen
to satisfy (31), This means for any M satisfying (31), we have M∗(n, pe) ≥ M. Hence,

M∗(n, pe) ≥ sup
{

M : M ≤ pe√
κ S

}
=

pe√
κ S

. (34)

Now, in order to find a lower bound for M∗(n, pe), it suffices to find an upper bound for S. This is our main
goal for the rest of the proof. Note that due to Lemma 3, there exists a constant θ such that(

n
r

)
δr(1− δ)n−r ≤ θ√

n
. (35)

Also note that Sr
n is increasing with respect to r. Define

β =
1
4

√
ln 2

2
·

log2 κ√
κ

.

With this choice of β, we continue as follows:

S = ∑
r≤ T−β

√
n

(
n
r

)
δr(1− δ)n−rSr

n + ∑
T−β

√
n< r≤ T

(
n
r

)
δr(1− δ)n−rSr

n

≤ ST−β
√

n
n ∑

r≤ T−β
√

n

(
n
r

)
δr(1− δ)n−r + ST

n ∑
T−β

√
n< r≤ T

(
n
r

)
δr(1− δ)n−r

(35)
≤ ST−β

√
n

n + ST
n βθ. (36)

In order to find an upper bound for S, it then suffices to find an upper bound for the right hand side in (36). For
1 ≤ i ≤ n, let Yi ∼ Bernoulli( 1

2 ) and Xi =
1
2 − Yi. Note that E[Xi] = 0, Var[Xi] =

1
4 and |Xi| ≤ 1

2 . Then
Theorem 12 implies

Sr
n = Pr

{
n

∑
i=1

Yi ≤ r

}
= Pr

{
n

∑
i=1

Xi ≥
n
2
− r

}
≤
(

1
2
√

2π
·
√

n
n
2 − r

+
γ√
n

)
e−nH( 1

4 , 1
2 , 1

2−
r
n ).

A simple calculation shows that H( 1
4 , 1

2 , 1
2 −

r
n ) =

(
1− h2

( r
n

))
ln 2. Thus,

Sr
n ≤

(
1

2
√

2π
· 1
√

n
2 −

r√
n

+
γ√
n

)
2−n(1−h2( r

n )). (37)

Due to Lemma 1, part (i) and Lemma 2, part (ii), the first term in the right hand side of (37), when r = T, can
be written as(√

n
2
− T√

n

)−1

=

(√
n
(

1
2
− δ

)
−
√

δ(1− δ)Q−1
(

pe −
pe√

κ
− c1√

n

))−1

=

(√
ln 2

2
κ +O

(
κ
√

κ

n

)
−
√

δ(1− δ)Q−1
(

pe −
pe√

κ
− c1√

n

))−1

=

(√
ln 2

2
κ

)−1

+O
(√

κ

n

)
+O

(√
− log pe

κ

)

=

(√
ln 2

2
κ

)−1

+O
(√
− log pe

κ

)
. (38)
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Similarly when r = T − β
√

n, we have(√
n

2
− T − β

√
n√

n

)−1

=

(√
n

2
− T√

n
+ β

)−1

=

(√
ln 2

2
κ

)−1

+O
(√
− log pe

κ

)
. (39)

Now, the goal is to estimate the term n
(
1− h2(

r
n )
)

in the right hand side of (37) for r = T and r = T− β
√

n.
Using the third order estimation of h2(.) gives

h2

(
T
n

)
= h2(δ) +

(
log2

1− δ

δ

)√
δ(1− δ)

n
Q−1

(
pe −

pe√
κ
− c1√

n

)
− 1

n ln 2
Q−1 (pe)

2 +O
(

1
n
√

κ

)
.

Therefore, by the definition of κ and Lemma 1, part (ii), we obtain

n
(

1− h2

(
T
n

))
= κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1
(

pe −
pe√

κ
− c1√

n

)
+

1
ln 2

Q−1 (pe)
2 +O

(
1√
κ

)
.

Note that
d

dx
Q−1(x) = −

√
2π e

Q−1(x)2
2 .

Thus, by applying Taylor expansion of Q−1(.), and using Lemma 2 parts (i) and (ii), we then conclude that

n
(

1− h2

(
T
n

))
= κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) + E1, (40)

where

E1 =
1

ln 2
Q−1 (pe)

2 +O
(

1√
− log pe

)
+O

(
1√
κ

)
=

1
ln 2

Q−1 (pe)
2 +O

(
1√
− log pe

)
. (41)

Exploiting the same analogy leads to the following result for r = T − β
√

n :

n
(

1− h2

(
T − β

√
n

n

))
= κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) + 2

√
2

ln 2
· β
√

κ + E1

= κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ + E1. (42)

Now, (37), (38), and (40) together imply

ST
n ≤

1

2
√

πκ ln 2
2
−
(

κ−2
√

2δ(1−δ)
ln 2 ·

√
κ Q−1(pe)+E1

)
+O

(√
− log pe

κ 2κ

)
. (43)

Similarly, (37)), (39), and (42) together imply

ST−β
√

n
n ≤ 1

2
√

πκ ln 2
2
−
(

κ−2
√

2δ(1−δ)
ln 2 ·

√
κ Q−1(pe)+

1
2 log2 κ+E1

)
+O

(√
− log pe

κ 2κ

)
. (44)

As a result, from (43), (44), and (36), we have

S ≤ ST−β
√

n
n + ST

n βθ

≤ 1

2
√

π ln 2
· 1

κ
(1 + θ log2 κ) 2

−
(

κ−2
√

2δ(1−δ)
ln 2 ·

√
κ Q−1(pe)+E1

)
+O

(√
− log pe

κ 2κ

)
.
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Now, taking the logarithm of both sides gives

− log2 S ≥ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) + E1 + log2 κ − log2
1 + θ log2 κ

2
√

π ln 2
+O

(√
− log pe

log κ

)
.

Therefore, by replacing E1 from (41), we find

− log2 S ≥ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) + log2 κ +
1

ln 2
Q−1 (pe)

2

+O (log log κ) +O
(

1√
− log pe

)
+O

(√
− log pe

log κ

)
.

Comparing the orders, then results in

− log2 S ≥ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) + log2 κ +
1

ln 2
Q−1 (pe)

2 +O (log log κ) . (45)

Finally, from (34) and (45), we conclude that

log2 M∗(n, pe) ≥ log2 pe −
1
2

log2 κ − log2 S

≥ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ + log2 pe +
1

ln 2
Q−1 (pe)

2 +O (log log κ) .

Note that by Lemma 2, part (ii), we have

1
ln 2

Q−1 (pe)
2 = −2 log2 pe +O(1).

Hence,

log2 M∗(n, pe) ≥ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ − log2 pe +O (log log κ) .

Proof of Theorem 2. Converse Bound. Let X ∼ Bernoulli( 1
2 ) and Y be the input and output of the BSC(δ),

respectively. Also suppose PX, PY and PXY are distributions of X, Y, and the joint distribution of (X, Y)
respectively. Define P = PXY and Q = PXPY, and then define Pn and Qn in terms of P and Q as they are
in Lemma 4. Also consider β1−pe(Pn, Qn) as in (53). Under these choices of P and Q, it can be verified that
βn

1−pe
defined in (49), is a piecewise linear approximation of β1−pe(Pn, Qn) based on discrete values of error

probabilities. Therefore, from (49), we can write

log2 M∗(n, pe) ≤ − log2 β1−pe(Pn, Qn).

Now, using Lemma 4 for any γ > 0, we have

log2 M∗(n, pe) ≤ nD−
√

nVQ−1
(

pe + γ +
B√
n

)
− log2 γ. (46)
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Under the specific values of P and Q given above, the quantities D,V,T, and B in Lemma 4 can be computed
as follows:

D = 1− h2(δ),

V = δ(1− δ)

(
log2

1− δ

δ

)2

,

T = δ(1− δ)

(
log2

1− δ

δ

)3 (
2δ2 − 2δ + 1

)
,

B =
2δ2 − 2δ + 1√

δ(1− δ)
.

Replacing these quantities and using Lemma 1, we can rewrite (46) as the following:

log2 M∗(n, pe) ≤ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1
(

pe + γ +
B√
n

)
− log2 γ +O

(
κ
√
−κ log2 pe

n

)
.

Note that
d

dx
Q−1(x) = −

√
2π e

Q−1(x)2
2 .

Therefore, by choosing γ = pe√
κ

and applying the Taylor expansion of Q−1(.), and using Lemma 2, parts (i)
and (ii), we can conclude that

log2 M∗(n, pe) ≤ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe)− log2
pe√

κ
+O

(
κ
√
−κ log2 pe

n

)
+O

(
1√
− log pe

)
.

Hence, by comparing the orders, we have

log2 M∗(n, pe) ≤ κ − 2

√
2δ(1− δ)

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ − log2 pe +O
(

1√
− log pe

)
.

Proof of Corollary 1. In order to obtaining the optimal blocklength n∗ for transmission of k information bits
over a low-capacity BSC(δ), it suffices to replcae M∗(n∗, pe) = k. Then n∗ can be computed by solving (5).
Replace M∗(n∗, pe) = k and κ = n∗C in (5), where C = 1− h2(δ), to obtain

k = n∗C− 2

√
2δ(1− δ)

ln 2
·
√

n∗C Q−1 (pe)− log2 pe +O(log κ).

Define x =
√

n∗C, a =
√

2δ(1−δ)
ln 2 Q−1 (pe) and b = k + log2 pe +O(log κ). Thus, we have

x2 − 2ax− b = 0.

Note that the answer will be x = a +
√

a2 + b. Therefore,
√

n∗C = a +
√

a2 + b.
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More simplifications are as follows:

n∗ =
1
C

(
a +

√
a2 + b

)2

=
1
C

(
2a2 + b + 2a

(√
k +O

(
− log pe

k

)
+O

(
log κ

k

)))
=

1
C

(
k + 2a

√
k + 2a2 + log2 pe +O(log κ)

)
. (47)

Note that in low-capacity regime, under optimal blocklength, log κ ≈ log k. Therefore, by substituting the
values of C and a in (47), we obtain

n∗ =
1

1− h2(δ)

(
k + 2

√
2δ(1− δ)

ln 2
Q−1(pe) ·

√
k +

4δ(1− δ)

ln 2
Q−1(pe)

2 + log2 pe +O(log k)

)
.

Theorem 11 (Berry-Esseen). For 1 ≤ i ≤ n, let Xi be i.i.d random variables with µ = E[Xi], σ2 = Var[Xi]

and ρ = E
[
|Xi − µ|3

]
< ∞. Then,

∣∣∣∣∣Pr
{ n

∑
i=1

Xi − µ

σ
√

n
> x

}
−Q(x)

∣∣∣∣∣ ≤ 3ρ

σ3
√

n
.

Proof. See [31, Theorem 3.4.9].

Theorem 12 (A Sharp Tail Inequality). For 1 ≤ i ≤ n, let Xi be independent centered random variables such

that |Xi| ≤ b. Define σ2 = Var
[

∑n
i=1 Xi

]
. Then, for 0 ≤ t ≤ σ

γb , we have

Pr
{ n

∑
i=1

Xi ≥ t
}
≤
(

1√
2π

σ

t
+ γ

b
σ

)
e−nH( σ2

n ,b, t
n ),

where

H(ν, b, x) =
(

1 +
bx
ν

)
ν

b2 + ν
ln
(

1 +
bx
ν2

)
+

(
1− x

b

)
b2

b2 + ν
ln
(

1− x
b

)
.

Proof. See [32, Theorem 1.1].

Theorem 13 (RCU Achievability Bound for BSC). There exists an (M, pe)-code over BSCn(δ) such that

pe ≤
n

∑
r=0

(
n
r

)
δr(1− δ)n−r min

{
1, (M− 1)Sr

n

}
, (48)

where

Sr
n =

r

∑
s=0

(
n
s

)
2−n.

Proof. See [12, Corollary 39].
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Theorem 14 (Converse Bound for BSC). For any (M, pe)-code over the BECn(δ), we have

M ≤ 1
βn

1−pe

. (49)

where βn
α for a real α ∈ [0, 1] is defined below based on values of β` where ` is an integer:

βn
α = (1− λ)βL + λβL+1,

β` =
`

∑
r=0

(
n
r

)
2−n,

such that λ ∈ [0, 1) and nteger L satisfy the following:

α = (1− λ)αL + λαL+1,

α` =
`−1

∑
r=0

(
n
r

)
δr(1− δ)n−r.

Proof. See [12, Theorem 40].

Lemma 1. Consider transmission over BSC(δ) in low-capacity regime and let κ = n(1− h2(δ)). Then the
following hold:

i)
√

n
( 1

2 − δ
)
=
√

ln 2
2 κ +O

(
κ
√

κ
n

)
.

ii)
√

n log2
1−δ

δ = 2
√

2
ln 2 κ +O

(
κ
√

κ
n

)
.

Proof. i) Taylor expansion of h2(δ) around 1
2 is given by

h2(δ) = 1− 1
2 ln 2

∞

∑
n=1

(1− 2δ)2n

n(2n− 1)
.

Thus, the estimation of h2(δ) up to the third order will be the following:

h2(δ) = 1− 1
2 ln 2

(1− 2δ)2 − 1
2 ln 2

· 1
6
(1− 2δ)4 +O

(
(1− 2δ)6) .

Therefore,

C = 1− h2(δ) =
1

2 ln 2
(1− 2δ)2 +

1
2 ln 2

· 1
6
(1− 2δ)4 +O

(
(1− 2δ)6) .

Now assuming x = (1− 2δ)2 leads to the following equation:

x2

6
+ x− 2C ln 2 = 0.

Solving this equation gives

x = 3

(
−1 +

√
1 +

4
3

C ln 2

)
= 2C ln 2 +O

(
C2) .
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Therefore,
1
2
− δ =

√
x

2
=

√
ln 2

2
C +O

(
C

3
2

)
.

Finally,
√

n
(

1
2
− δ

)
=

√
ln 2

2
nC +O

(
nC

3
2

)
.

Note that κ = nC. As a result,

√
n
(

1
2
− δ

)
=

√
ln 2

2
κ +O

(
κ
√

κ

n

)
. (50)

ii) The first order estimation of the function log2
1−δ

δ around 1
2 is

√
n log2

1− δ

δ
=

4
ln 2

(
1
2
− δ

)
+O

((
1
2
− δ

)2
)

.

Hence, using (50), we arrive at

√
n log2

1− δ

δ
= 2

√
2

ln 2
κ +O

(
κ
√

κ

n

)
.

Lemma 2. Suppose 0 < p < Q(1) ≈ 0.16.5 Then the following hold:

(i)
√

2π p Q−1(p) < e−
Q−1(p)2

2 <
√

2π p
(

Q−1(p) + 1
)

.

(ii) √
8π + 2− 2 ln p− 2

√
2π < Q−1(p) <

√
− ln 2π − 2 ln p.

Proof. i) For x > 0, it is well known that

φ(x)
x + 1

x

=

(
x

1 + x2

)
φ(x) < Q(x) <

φ(x)
x

. (51)

Note that for x > 1, (51) becomes
φ(x)
x + 1

< Q(x) <
φ(x)

x
. (52)

Now, define p = Q(x). Thus, x = Q−1(p) > 1. Therefore,

e−
Q−1(p)2

2
√

2π (Q−1(p) + 1)
< p <

e−
Q−1(p)2

2
√

2π Q−1(p)
.

Simplify to get
√

2π p Q−1(p) < e−
Q−1(p)2

2 <
√

2π p
(

Q−1(p) + 1
)

.
5Note that similar results can be obtained when 0 < p < 1 but taking the assumption 0 < p < Q(1) ≈ 0.16 into account leads

to a very simple format for bounds and will not cause any conflict because we are interested in small bit and block error probabilities.
More specifically, typical values of p would be around 10−3 − 10−6.
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ii) From (52), for x > 1 we have

Q(x) <
e−

x2
2

√
2π

.

Therefore,

x <

√
−2 ln

(√
2πQ(x)

)
.

Put x = Q−1(p) to get

Q−1(p) <

√
2 ln

1√
2π p

=
√
− ln 2π − 2 ln p.

For the other side, note that from (52), for x > 1, we also have

Q(x) >
φ(x)
2x

=
e−

x2
2

2x
√

2π
.

Assume p = Q(x). As a result,
x2

2
+ 2
√

2π x + ln p− 1 > 0.

Hence,
Q−1(p) = x > −2

√
2π +

√
8π + 2− 2 ln p.

Lemma 3. Suppose 0 < δ < 1 such that nδ is an integer. Then, for all 0 ≤ r ≤ n, we have(
n
r

)
δr(1− δ)n−r ≤ θ√

n
.

where
θ =

e
2π
√

δ(1− δ)
.

Proof. For 0 ≤ r ≤ n define

A(r) =
(

n
r

)
δr(1− δ)n−r,

and
r∗ = arg max

0≤r≤n
A(r).

First of all, note that from the Mode of Binomial distribution, we know that r∗ = b(n + 1)δc = nδ. Also from
Stirling formula, for any integer n, we have

√
2πn

(n
e

)n
≤ n! ≤ e

√
n
(n

e

)n
.

Therefore,

A(r∗) =
(

n
nδ

)
δnδ(1− δ)n−nδ =

n! δnδ(1− δ)n−nδ

nδ! (n− nδ)!

≤
e
√

n
( n

e

)n
δnδ(1− δ)n−nδ

√
2πnδ

( nδ
e

)nδ√
2πn(1− δ)

(
n(1−δ)

e

)n(1−δ)

=
e

2π
√

δ(1− δ)
· 1√

n
.

28



Definition 1. Consider the following binary hypothesis test:

H0 : X ∼ P,
H1 : X ∼ Q,

where P and Q are two probability distributions on the same space X . Suppose a continuous decision rule
ζ as a mapping from observation space X to [0, 1] with ζ(x) ≈ 0 correspoding to reject H1 and ζ(x) ≈ 1
correspoding to reject H0. Now, define the smallest type-II error in this binary hypothesis test given that type-I
error is not greater than pe as the following:

β1−pe(P, Q) = inf
ζ :X→[0,1]

{
EQ[1− ζ(X)] : EP[ζ(X)] ≤ pe

}
. (53)

Lemma 4. Consider two discrete probability distributions P and Q on X . Define the product distributions Pn

and Qn as

Pn(x) =
n

∏
i=1

P(xi), Qn(x) =
n

∏
i=1

Q(xi),

where x = (x1, . . . , xn) ∈ X n. Then, for pe ∈ (0, 1) and any γ, we have

log2 β1−pe(Pn, Qn) ≥ −nD +
√

nVQ−1
(

pe + γ +
B√
n

)
+ log2 γ,

where

D = D(P‖Q),

V =
∫
X

(
log2

dP(x)
dQ(x)

− D
)2

dP(x),

T =
∫
X

∣∣∣∣log2
dP(x)
dQ(x)

− D
∣∣∣∣3 dP(x),

B =
T

V
3
2

.

Proof. In the proof of [12, Lemma 14], put α = 1 − pe, ∆ = γ
√

n, Pi = P, Qi = Q and consider the
logarithm in base 2.

5.4 Proofs for AWGN Channel

In this section we will prove the converse and achievability bounds of Theorem 3. In the proofs we will be
using Theorems 15–16 as well as Lemma 5 which are stated at the end of this section. For results in coding
theory, we generally refer to [12] as it has well collected and presented the corresponding proofs. See also [8],
[24], [25], [26], and [27].

Proof of Theorem 3. Converse Bound. Let X and Y be a uniform input and the corresponding output of an
AWGN(η) channel. Under the notation of Theorem 15, define P = PXY and Q = PXPY. Therefore, we have

M∗(n, pe) ≤
1

β1−pe (Pn, Qn)
. (54)
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Also from Lemma 4, we obtain

log2 β1−pe(Pn, Qn) ≥ −nD +
√

nVQ−1
(

pe + γ +
B√
n

)
+ log2 γ, (55)

where γ > 0 and in order to compute the quantities D, V and B, consider the random variable Hn =

log2
dPn(z)
dQn(z) . It can be verified that Hn = ∑n

i=1 hi, where

hi =
1
2

log2 (1 + η) +
η

2(1 + η) ln 2
− 1

2(1 + η) ln 2
(
ηZ2

i − 2
√

η Zi
)

,

assuming that Zi’s are independent standard normal random variables. Thus, a simple calculation shows that
for all i ∈ {1, . . . , n}, we have

D = E[hi] =
1
2

log2 (1 + η) ,

V = Var[hi] =
η(η + 2)

2(η + 1)2 ln2 2
,

T = E
[
|hi − D|3

]
,

B =
T

V
3
2

.

As we will see in the rest of the proof, computing T and B are not necessary as they will appear in terms which
vanish compared to other terms. Now, by replacing the values computed above, (54) together with (55) yield

log2 M∗(n, pe) ≤
n
2

log2 (1 + η)−
√

nη(η + 2)√
2(η + 1) ln 2

Q−1
(

pe + γ +
B√
n

)
− log2 γ.

Now, by setting γ = pe√
κ

and plugging in Lemma 5, and then using Lemma 2, part (ii) together with the
definition of κ, we conclude that

log2 M∗(n, pe) ≤ κ −
√

κ(η + 2)

(η + 1)
√

ln 2
Q−1

(
pe +

pe√
κ
+

B√
n

)
− log2

pe√
κ
+O

(
κ2
√
− log pe

n

)
.

Note that
d

dx
Q−1(x) = −

√
2π e

Q−1(x)2
2 .

Therefore, by applying the Taylor expansion of Q−1(.), and using Lemma 2 parts (i) and (ii), we arrive at

log2 M∗(n, pe) ≤ κ −
√

η + 2

(η + 1)
√

ln 2
·
√

κ Q−1 (pe)− log2
pe√

κ
+O

(
κ2√− log2 pe

n

)
+O

(
1√
− log pe

)
.

Hence, comparing the orders, results in

log2 M∗(n, pe) ≤ κ −
√

η + 2

(η + 1)
√

ln 2
·
√

κ Q−1 (pe) +
1
2

log2 κ − log2 pe +O
(

1√
− log pe

)
.
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Proof of Theorem 3. Achievability Bound. The proof of Theorem 16 is still valid in low-capacity regime.
As a result, using Theorem 16, together with Lemma 5 and Lemma 2, part (ii), yield

log2 M∗(n, pe, η) ≥ κ −
√

η + 2

(η + 1)
√

ln 2
·
√

κ Q−1(pe) +O(1) +O
(

κ
√
−κ log pe

n

)

= κ −
√

η + 2

(η + 1)
√

ln 2
·
√

κ Q−1(pe) +O(1).

Proof of Corollary 2. In order to(ii)ing the optimal blocklength n∗ for transmission of k information bits over
a low capacity AWGN(η), it suffices to replcae M∗(n∗, pe, η) = k. Then n∗ can be computed by solving (6).
Substitute M∗(n∗, pe) = k and κ = n∗C in (6), where C = 1

2 log2 (1 + η), to obtain

k = n∗C−
√

η + 2

(η + 1)
√

ln 2
·
√

n∗C Q−1 (pe) + E .

Define x =
√

n∗C, a =

√
η+2

2(η+1)
√

ln 2
Q−1 (pe) and b = k− E . Thus, we have

x2 − 2ax− b = 0.

Note that the answer will be x = a +
√

a2 + b. Therefore,

√
n∗C = a +

√
a2 + b.

More simplifications are as follows:

n∗ =
1
C

(
a +

√
a2 + b

)2

=
1
C

(
2a2 + b + 2a

(√
k +O

(
− log pe

k

)
+O

(
log κ

k

)))
=

1
C

(
k + 2a

√
k + 2a2 − E +O

(
(− log pe)3/2

k

))
. (56)

Note that in low-capacity regime, under optimal blocklength, log κ ≈ log k. Therefore, by substituting the
values of C and a in (56) and comparing the orders, we obtain

n∗ =
2

log2(1 + η)

(
k +

√
η + 2

(η + 1)
√

ln 2
Q−1(pe) ·

√
k +

η + 2
2(η + 1)2 ln 2

Q−1(pe)
2 +O

(
log2

1
pe

))
.

Now, applying Lemma 2, part (ii), results in

n∗ =
2

log2(1 + η)

(
k +

√
η + 2

(η + 1)
√

ln 2
Q−1(pe) ·

√
k +O

(
log2

1
pe

))
.
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Theorem 15 (General Converse Bound). Consider n independent uses of a channel with input alphabet X
and output alphabet Y . Let PX, PY, and PXY be distributions on X , Y and X × Y respectively and suppose
Pn

X, Pn
Y , and Pn

XY are their product distribution over n independent trials. Then the following holds:

M∗(n, pe) ≤ sup
PX

inf
PY

1
β1−pe

(
Pn

XY, Pn
XPn

Y

) .

where β1−pe is defined as (53).

Proof. See [12, Theorem 29].

Theorem 16 (Achievability Bound for AWGN). There exists an (M, pe, η)-code over AWGNn(η) such that

log2 M∗(n, pe, η) ≥ nC−
√

nV Q−1(pe) +O(1),

where

C =
1
2

log2 (1 + η) ,

V =
η(η + 2)

2(η + 1)2 ln2 2
.

Proof. See the achievability bound in [12, Theorem 73].

Lemma 5. Consider transmission over AWGN(η) in low-capacity regime where by definition κ = n
2 log2(1 +

η). Then we have

nη = 2 κ ln 2 +O
(

κ2

n

)
.

Proof. Consider C = 1
2 log(1 + η). Thus, by using Taylor expansion of log(1 + x) up to the second order,

we arrive at

C =
1

2 ln 2
ln(1 + η) =

1
2 ln 2

(
η − η2

2

)
+O

(
η3) .

which leads to solving

η2 − 2η + 4C ln 2 = 0.

As a result,

η = 1−
√

1− 4C ln 2 = 2 C ln 2 +O
(
C2) .

Now, considering κ = nC, results in

nη = 2 nC ln 2 +O
(
nC2) = 2 κ ln 2 +O

(
κ2

n

)
.
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5.5 Proofs For Repetition Sufficiency

Proof of Theorem 4. Let m be the number of repeated blocks of size r, i.e., m = n
r and consequently, mβ =

n
rβ

. Note that the maximum achievable rate in this setting is 1−εr

r = m
n

(
1− ε

n
m

)
. Thus, mβ is the solution of

the following problem:
minimize m

subject to m
(

1− ε
n
m

)
≥ βn(1− ε).

It can be easily verified that the answer of this problem mβ indeed satisfies

mβ

(
1− ε

n
mβ

)
= βn(1− ε).

Now putting κ = n(1− ε) gives

mβ

(
1− ε

κ
(1−ε)mβ

)
= βκ.

Define x = κ
mβ

to get

1− ε
x

1−ε = βx.

Therefore,
1− βx = ε

x
1−ε = e

ln ε
1−ε x = e−x`,

where ` = − ln ε
1−ε . Now, let z = x`. Thus,

1− β

`
z = e−z.

Finally, define γ = β
` to get

1− γz = e−z. (57)

Then, using Lemma 6, part (ii), we can write

1− γz = e−z ≤ 1− z +
z2

2
,

−γ ≤ −1 +
z
2

,

2(1− γ) ≤ z. (58)

Taking logarithm of both sides of (57), gives

−z = ln(1− γz).

Now, use Lemma 6, part (iii) to obtain

−z = ln(1− γz) ≤ −γz− (γz)2

2
.

Therefore,

z ≤ 2(1− γ)
1

γ2 . (59)

Note that (58) together with (59) yields

2(1− γ) ≤ z ≤ 2(1− γ)
1

γ2 .
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Remember z = x` = κ`
mβ

. Hence,

κ`

2(1− γ)
· γ2 ≤ mβ ≤

κ`

2(1− γ)
.

Now, replacing γ = β
` , κ = n(1− ε), and mβ = n

rβ
result in

n(1− ε)`

2
(

1− β
`

) ·(β

`

)2

≤ n
rβ
≤ n(1− ε)`

2
(

1− β
`

) .

Proof of Theorem 5. We use extremes of information combining. Consider two BMS channels W1, W2 with
capacity C1, C2 respectively. Note that BEC(1−C1) has capacity C1 and BEC(1−C2) has capacity C2. Then
we know from extremes of information combining [33, Chapter 4] that

C(W1 ~W2) ≤ C (BEC(1− C1)~ BEC(1− C2)) , (60)

where W1 ~ W2 is the BMS channel whose out put is formed as the union of the output of W1 and W2, i.e.
we send the input bit once through W1 and once through W2 and the resulting outcomes together will be the
outcome of W1 ~W2.

Now, it is clear that for any BMS channel W we have

Wr = W ~ · · ·~W︸ ︷︷ ︸
r times

.

Thus, assuming C(W) = C, then by using (60) r times we obtain C(Wr) ≤ C(BEC(1− C)r).

Lemma 6. Suppose z ≥ 0. Then,

i) e−z ≥ 1− z.

ii) e−z ≤ 1− z + z2

2 .

iii) If 0 < z < 1, then ln(1− z) ≤ −z− z2

2 .

Proof. i) Define f (z) = e−z − 1 + z. Note that f ′(z) = −e−z + 1 ≥ 0 for z ≥ 0. This means f is
increasing over z ≥ 0. Thus, if z ≥ 0, then f (z) ≥ f (0) = 0.

ii) Define g(z) = e−z − 1 + z− z2

2 . Note that g′(z) = −e−z + 1− z ≤ 0 for z ≥ 0 due to part (i). This
means g is decreasing over z ≥ 0. Thus, if z ≥ 0, then g(z) ≤ g(0) = 0.

iii) ln(1− z) = −∑∞
i=1

zi

i ≤ −z− z2

2 for 0 < z < 1.
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5.6 Proof of Theorem 6

Let i ∈ [n] be an arbitrary index. Recall that in order to construct the i-th sub-channel for a polar code
of length n = 2m on channel W, which is denoted by W(i)

n , we proceed as follows: (i) Consider the binary
expansion i = b1b2 · · · bm. (ii) Start with W0 = W. (iii) For j ∈ {1, . . . , m}, let Wj = Wj−1 ~ Wj−1 if
bj = 1, and otherwise, let Wj = Wj−1 ∗ Wj−1. (iv) The channel Wm is the sub-channel corresponding to the
i-th index. Also recall that for any BMS channel W, we have (see [34, Lemma 3.16], [35])

Z(W ~W) = Z(W)2 and Z(W ∗ W) ≥
√

1− (1− (1− Z(W))2)2,

which by simple manipulations will be simplified to

1− Z(W ~W) ≤ 2(1− Z(W)) and 1− Z(W ∗ W) ≤ 4 ∗ (1− Z(W))2. (61)

Now, for an integer t ≤ m let it be such that in the binary expansion it = b1b2 · · · bm, all the bits bj are equal
to 1 except for bt which is 0 (i.e., it = 2m − 2m−t − 1). Using the bounds in (61), we can write

1− Z(W(it)
n ) ≤ 2m−t+2

(
2t−1(1− Z(W))

)2
.

Thus, if it is a good sub-channel, then we must have Z(W(it)
m ) ≤ 1

2 which by using the above inequality gives
us

2m−t+2
(

2t−1(1− Z(W))
)2
≥ 1

2
=⇒ 2t ≥ 1

2m+1(1− Z(W))2 .

Note also that for any BMS channel, we have C(W) ≥ 1− Z(W), and thus the above inequality implies

2t ≥ 1
2m+1C(W)2 =⇒ 2m−t+1 ≤ 4(2mC(W))2 = 4(n(c(W)))2. (62)

Now, recalling the fact that the binary expansion of index it has only one position with zero value (the t-th
position), we can conclude that for any other good index i, we must have the following: The first t− 1 bits of
the binary expansion of i− 1 should be 1, and t is lower bounded from (62). This means that the polar code
corresponding to W will have at least 2t−1 repetitions in the beginning.
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