Supplementary Materials for
Compositional Probabilistic Analysis of
Temporal Properties over Stochastic Detectors

Ivan Ruchkin, Oleg Sokolsky, James Weimer, Tushar Hedao, and Insup Lee.

Abstract—This supplement contains additional material for
the article “Compositional Probabilistic Analysis of Temporal
Properties over Stochastic Detectors” (by the same authors) from
the ESWEEK-TCAD special issue, presented in the International
Conference on Embedded Software 2020. The supplement con-
tains the additional semantics, derivations, and visualizations.

Index Terms—detection algorithms, probabilistic logic, formal
languages, parameter estimation, cyber-physical systems

APPENDIX

This is a supplement for the main paper, Compositional
Probabilistic Analysis of Temporal Properties over Stochastic
Detectors, which can be found in the special issue of IEEE
Transactions on Computer-Aided Design of Integrated Circuits

This document contains the following sections:

• Features of LTL_{3d} (Appendix A)
• Full Definitions for Detector Compositions (Appendix B)
• Sufficiency of Defining Detector Events (Appendix C)
• Consistent Probability Extension in Multi-Detector
 Spaces (Appendix D)
• Independence of Detector Variables and Events (Appendix E)
• Logical Tautologies for Detectors (Appendix F)
• Rules for Probability Reasoning (Appendix G)
• Rules for Independence Reasoning (Appendix H)
• Full Derivation of Error Rate Formulas for Monitors
 (Appendix I)
• Additional Figures for Evaluation (Appendix J)

The implementation of the computational assistant, as well
as the pipeline monitoring dataset, can be found at https://
github.com/bisc/prob-comp-asst.

A. Features of LTL_{3d}

The 3-value linear temporal logic for detectors, LTL_{3d}, has
the following features:

• Two interpretations: 3-value ⊨ ⊨ ⊨ and 2-value ⊨ ⊨. The
 former follows Kleene’s strong logic ⊨ ⊨, and the latter
 follows the classic binary LTL ⊨ ⊨.
• Linear temporal modalities with time bounds.
• Three negation operators: ¬ [] s, ¬ [] w, and ¬ [] se.

Syntactic sugar is defined based on its core syntax:

F ≡ ¬ T
ϕ_1 \land \phi_2 ≡ ¬ (¬ \phi_1 \land ¬ \phi_2)
ϕ_1 \rightarrow S \phi_2 ≡ ¬ \phi_1 \lor \phi_2
ϕ_1 \rightarrow W \phi_2 ≡ ¬ \phi_1 \lor \phi_2
ϕ_1 \rightarrow SC \phi_2 ≡ ¬ \phi_1 \lor \phi_2
\Diamond_{[m,n]} \phi ≡ T U_{[m,n]} \phi
□_{[m,n]} \phi ≡ ¬ \Diamond_{[m,n]} ¬ \phi

B. Full Definitions for Detector Compositions

This section provides full expressions for the marginal
events of composite detectors. All of these expressions form
the list R_{ev} used in Step 1.2 of the analysis. In this section,
superscripts indicate temporal or set indexing; subscripts indi-
cate different detectors. Table I shows the events of common
compositions.

Strong negation ¬s:

\text{gtt}(¬_s D) = \text{gtf}(D)
\text{gtf}(¬_s D) = \text{gtt}(D)
\text{dot}(¬_s D) = \text{dof}(D)
\text{dof}(¬_s D) = \text{dot}(D)
\text{dou}(¬_s D) = \text{dou}(D)

Weak negation ¬w:

\text{gtt}(¬_w D) = \text{gtf}(D)
\text{gtf}(¬_w D) = \text{gtt}(D)
\text{dot}(¬_w D) = \text{dof}(D) \lor \text{dou}(D)
\text{dof}(¬_w D) = \text{dot}(D)
\text{dou}(¬_w D) = F

Strong exclusive negation ¬se:

\text{gtt}(¬_{se} D) = \text{gtf}(D)
\text{gtf}(¬_{se} D) = \text{gtt}(D)
\text{dot}(¬_{se} D) = \text{dof}(D)
\text{dof}(¬_{se} D) = \text{dot}(D) \lor \text{dou}(D)
\text{dou}(¬_{se} D) = F

All the authors are with the Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA, USA. The first author
can be contacted at iruchkin@cis.upenn.edu
Table I: Detector compositions defined through the events of new detector \(D' \).

<table>
<thead>
<tr>
<th>Event</th>
<th>(D_a \land D_b)</th>
<th>(D_a \lor D_b)</th>
<th>(\neg_a D)</th>
<th>(\neg_w D)</th>
<th>(\neg_{sc} D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gtt((D'))</td>
<td>gtt((D_a) \land gtt(D_b))</td>
<td>gtt((D_a) \lor gtt(D_b))</td>
<td>gtt((D))</td>
<td>gtt((D))</td>
<td>gtt((D))</td>
</tr>
<tr>
<td>gtf((D'))</td>
<td>gtf((D_a) \lor gtf(D_b))</td>
<td>gtf((D_a) \land gtf(D_b))</td>
<td>gtf((D))</td>
<td>gtf((D))</td>
<td>gtf((D))</td>
</tr>
<tr>
<td>dot((D'))</td>
<td>dot((D_a) \land dot(D_b))</td>
<td>dot((D_a) \lor dot(D_b))</td>
<td>dot((D))</td>
<td>dot((D))</td>
<td>dot((D))</td>
</tr>
<tr>
<td>dof((D'))</td>
<td>dof((D_a) \lor dof(D_b))</td>
<td>dof((D_a) \land dof(D_b))</td>
<td>dof((D))</td>
<td>dof((D))</td>
<td>dof((D))</td>
</tr>
<tr>
<td>dou((D'))</td>
<td>dou((D_a') \lor dou(D_b'))</td>
<td>dou((D_a') \land dou(D_b'))</td>
<td>dou((D))</td>
<td>dou((D))</td>
<td>dou((D))</td>
</tr>
</tbody>
</table>

Always \(\Box_{[1,n]} \):

\[
\text{gtt}(\Box_{[1,n]} D) = \text{gtt}(D^1) \land \ldots \land \text{gtt}(D^n)
\]

\[
\text{gtf}(\Box_{[1,n]} D) = \text{gtf}(D^1) \land \ldots \land \text{gtf}(D^n)
\]

\[
\text{dot}(\Box_{[1,n]} D) = \text{dot}(D^1) \land \ldots \land \text{dot}(D^n)
\]

\[
\text{dof}(\Box_{[1,n]} D) = \text{dof}(D^1) \land \ldots \land \text{dof}(D^n)
\]

\[
\text{dou}(\Box_{[1,n]} D) = \bigvee_{S:P(1..n) \subseteq S} \left(\bigwedge_{j:P(1..n) \not\subseteq S} \text{dou}(D^j) \right)
\]

where \(P() \) stands for a powerset.

Eventually \(\Diamond_{[1,n]} \):

\[
\text{gtt}(\Diamond_{[1,n]} D) = \text{gtt}(D^1) \lor \ldots \lor \text{gtt}(D^n)
\]

\[
\text{gtf}(\Diamond_{[1,n]} D) = \text{gtf}(D^1) \lor \ldots \lor \text{gtf}(D^n)
\]

\[
\text{dot}(\Diamond_{[1,n]} D) = \text{dot}(D^1) \lor \ldots \lor \text{dot}(D^n)
\]

\[
\text{dof}(\Diamond_{[1,n]} D) = \text{dof}(D^1) \lor \ldots \lor \text{dof}(D^n)
\]

\[
\text{dou}(\Diamond_{[1,n]} D) = \bigvee_{S:P(1..n) \subseteq S} \left(\bigwedge_{j:P(1..n) \not\subseteq S} \text{dou}(D^j) \right)
\]

Based on the above definitions, syntactic sugar for unary modal operators is part of \(\mathcal{R}_\log \):

\[
\Box_{[m,n]} D ::= D^m \land \ldots \land D^n
\]

\[
\Diamond_{[m,n]} D ::= D^m \lor \ldots \lor D^n
\]

C. Sufficiency of Defining Detector Events

Here we prove that a detector is unambiguously defined by its marginal events.

A detector is fully identified by its two random variables \(DO \) and \(GT \). Therefore, to show that two detectors are identical, it is necessary and sufficient that their random variables always take the same values. The following proposition demonstrates that all of the above definitions via events (gtt, gtf, dot, dof, and dou) unambiguously determine a detector, and hence no additional information is required.

Proposition 1. If arbitrary detectors \(D^1 \) and \(D^2 \) in the same space \(\Omega \) have respectively co-occuring\\(\text{events} \) gtt, gtf, dot, dof, and dou, then their r.v.'s \(DO^1 \) and \(DO^2 \), as well as \(GT^1 \) and \(GT^2 \), always take the same values.

Proof. Events gtt and gtf fully determine the values of \(GT^1 \) and \(GT^2 \). Since the events always co-occur, it follows that \(GT^1 = GT^2 \).

\(^1\) Meaning that gtt\((D^1)\) occurs iff gtt\((D^2)\) occurs — and the same for the other four pairs of events.
Similarly, events dot, dof, and dof fully determine the values of \mathbf{GT}^1 and \mathbf{GT}^2. Therefore, from their co-occurrence it follows that always $\text{DO}^1 = \text{DO}^2$. \hfill \Box

D. Consistent Probability Extension in Multi-Detector Spaces

The multi-detector probability space $(\Omega, \mathcal{F}; \Pr)$ has a discrete probability measure \Pr that is extended from measures $\Pr^1 \ldots \Pr^n$ of the individual detector spaces. This extension of \Pr is largely determined a priori because it depends on how the r.v.s behave jointly; \Pr is only constrained by the Kolmogorov axioms and consistency with the individual $\Pr^1 \ldots \Pr^n$ measures on the events of individual detectors.

The consistency with between \Pr and $\Pr^1 \ldots \Pr^n$ requires that the latter measures of any marginal event $e_i \in \mathcal{F}^i$ (of the i-th detector, for any $i \in \{1 \ldots n\}$) equal the \Pr measure of this event’s projection onto \mathcal{F}^i:

$$\Pr^i(e_i) = \Pr((\Omega^1 \ldots e_i \ldots \Omega^n))$$

This requirement is satisfied by fixing Ω in each specific case and addressing events in \mathcal{F} by their unique names (e.g., $\text{dot}(D^1)$), as we do in our notation.

E. Independence of Detector Variables and Events

The independence statement $\mathbf{GT}^i \perp \mathbf{GT}^{i+1}$ is equivalent to the following four assertions:

\begin{align*}
\Pr(\text{gtt}(D^i) \land \text{gtt}(D^{i+1})) &= \Pr(\text{gtt}(D^i))\Pr(\text{gtt}(D^{i+1})) \\
\Pr(\text{gtf}(D^i) \land \text{gtt}(D^{i+1})) &= \Pr(\text{gtf}(D^i))\Pr(\text{gtt}(D^{i+1})) \\
\Pr(\text{gtf}(D^i) \land \text{gtf}(D^{i+1})) &= \Pr(\text{gtf}(D^i))\Pr(\text{gtf}(D^{i+1})) \\
\Pr(\text{gtf}(D^i) \land \text{gtf}(D^{i+1})) &= \Pr(\text{gtf}(D^i))\Pr(\text{gtf}(D^{i+1}))
\end{align*}

F. Logical Tautologies for Detectors

All of the tautologies in this subsection are straightforwardly derived from the semantics of the operators by calculating and comparing the events on both sides.

These tautologies belong to two rule lists: \mathcal{R}_\log and \mathcal{R}_\ev. Both lists are used in Step 1 of the analysis part. The rules replace the left part with the right part of the equations

Multiple Negations: Double negations can be removed with \neg_s, but not with \neg_w or \neg_{se}:

\begin{align*}
\neg_s \neg_s D &= D & (\mathcal{R}_\log) \\
\neg_w \neg_w D &\neq D \\
\neg_{se} \neg_{se} D &\neq D
\end{align*}

However, limited tautologies apply to double negations of \neg_w and \neg_{se}:

\begin{align*}
\text{dot}(\neg_w \neg_w D) &= \text{dot}(D) & (\mathcal{R}_\ev) \\
\text{gtt}(\neg_w \neg_w D) &= \text{gtt}(D) & (\mathcal{R}_\ev) \\
\text{gtf}(\neg_w \neg_w D) &= \text{gtf}(D) & (\mathcal{R}_\ev) \\
\text{dof}(\neg_{se} \neg_{se} D) &= \text{dof}(D) & (\mathcal{R}_\ev) \\
\text{gtt}(\neg_{se} \neg_{se} D) &= \text{gtt}(D) & (\mathcal{R}_\ev) \\
\text{gtf}(\neg_{se} \neg_{se} D) &= \text{gtf}(D) & (\mathcal{R}_\ev)
\end{align*}

Any triple negation reduces to a single negation:

\begin{align*}
\neg_w \neg_w \neg_w D &= \neg_w D & (\mathcal{R}_\log) \\
\neg_{se} \neg_{se} \neg_{se} D &= \neg_{se} D & (\mathcal{R}_\log)
\end{align*}

Different negations are not commutative, but \neg_w and \neg_{se} “switch” when \neg_s passes over them and the negation outside \neg_w and \neg_{se} can be replaced with any other negation:

\begin{align*}
\neg_s \neg_w D &= \neg_w \neg_s D \\
\neg_s \neg_{se} D &= \neg_{se} \neg_s D \\
\neg_w \neg_w D = \neg_{se} \neg_s D = \neg_{se} \neg_w D = \neg_w \neg_{se} D & (\mathcal{R}_\log) \\
\neg_w \neg_{se} D = \neg_{se} \neg_w D &= \neg_{se} \neg_{se} D & (\mathcal{R}_\log)
\end{align*}

De Morgan’s and Distribution Laws: De Morgan’s laws apply to \neg_s:

\begin{align*}
\neg_s (D_a \lor D_b) &= \neg_s D_a \land \neg_s D_b & (\mathcal{R}_\log) \\
\neg_s (D_a \land D_b) &= \neg_s D_a \lor \neg_s D_b & (\mathcal{R}_\log)
\end{align*}

For \neg_w and \neg_{se}, De Morgan’s laws work for disjunction and conjunction respectively, but not the other way around:

\begin{align*}
\neg_w (D_a \lor D_b) &= \neg_w D_a \land \neg_w D_b & (\mathcal{R}_\log) \\
\neg_{se} (D_a \land D_b) &= \neg_{se} D_a \lor \neg_{se} D_b & (\mathcal{R}_\log)
\end{align*}

But limited tautologies are available for the other two cases:

\begin{align*}
\text{dof}(\neg_w (D_a \land D_b)) &= \text{dof}(\neg_w D_a \lor \neg_w D_b) \\
&= \text{dof}(D_a) \land \text{dof}(D_b) & (\mathcal{R}_\ev) \\
\text{dof}(\neg_{se} (D_a \land D_b)) &= \text{dof}(\neg_{se} D_a \lor \neg_{se} D_b) \\
&= \text{dof}(D_a) \land \text{dof}(D_b) & (\mathcal{R}_\ev)
\end{align*}

Operators \lor and \land are distributive. Only distribution of conjunctions is used in simplification:

\begin{align*}
(D_a \lor D_b) \land D_c &= (D_a \land D_c) \lor (D_b \land D_c) & (\mathcal{R}_\log) \\
(D_a \land D_b) \lor D_c &= (D_a \lor D_c) \land (D_b \lor D_c) & (\mathcal{R}_\log)
\end{align*}

Temporal Modalities: With temporal compositions, \neg_s behaves like a binary negation with LTL modalities, whereas \neg_w and \neg_{se} only do for one of the modalities:

\begin{align*}
\neg_s \lozenge_{[m,n]} D &= \lozenge_{[m,n]} \neg_s D & (\mathcal{R}_\log) \\
\neg_s \lozenge_{[m,n]} D &= \lozenge_{[m,n]} \neg_s D & (\mathcal{R}_\log) \\
\neg_w \lozenge_{[m,n]} D &= \lozenge_{[m,n]} \neg_w D & (\mathcal{R}_\log) \\
\neg_{se} \lozenge_{[m,n]} D &= \lozenge_{[m,n]} \neg_{se} D & (\mathcal{R}_\log) \\
\neg_w \lozenge_{[m,n]} D &\neq \lozenge_{[m,n]} \neg_w D & (\mathcal{R}_\log) \\
\neg_{se} \lozenge_{[m,n]} D &\neq \lozenge_{[m,n]} \neg_{se} D
\end{align*}

\end{document}
Error Rates: Negations \(\neg_a\) and \(\neg_{ae}\) are better-behaved when it comes to calculating error rates: unlike \(\neg_s\), they do not introduce the dependency on the probability of detector non-confidence:

\[
\begin{align*}
 \text{fpr}(\neg_s D) &= \text{fur}(D) - \text{Pr}(\text{dou}(D) \mid \text{gtt}(D)) \quad (R_{\text{log}}) \\
 \text{fhr}(\neg_s D) &= \text{fur}(D) + \text{Pr}(\text{dou}(D) \mid \text{gtf}(D)) \quad (R_{\text{log}}) \\
 \text{fpr}(\neg_{ae} D) &= \text{fpr}(\neg_s D) \quad (R_{\text{log}}) \\
 \text{fhr}(\neg_{ae} D) &= \text{fur}(\neg_s D) \quad (R_{\text{log}})
\end{align*}
\]

For fully independent detectors \(D_a\) and \(D_b\) (i.e., any pair of events from two detectors is conditionally and unconditionally independent), these rate formulas apply:

\[
\begin{align*}
 \text{fpr}(D_a \vee D_b) &= 1 - (1 - \text{fpr}(D_a))(1 - \text{fpr}(D_b)) \\
 \text{fhr}(D_a \land D_b) &= 1 - (1 - \text{fur}(D_a))(1 - \text{fur}(D_b))
\end{align*}
\]

G. Rules for Probability Reasoning

Below is a full list of rules, denoted \(R_{\text{prob}}\), that can be used for manipulating probability formulas. First are the parameter-free rules over any expressions \(A, B,\) and \(C\). Symbols \(\text{dnf}\) and \(\text{cnf}\) are the functions that return the disjunctive and conjunctive normal forms of input event expressions, respectively:

\[
\begin{align*}
 \text{Pr}(T) &\to 1 \\
 \text{Pr}(F) &\to 0 \\
 \text{Pr}(A \mid T) &\to \text{Pr}(A) \\
 \text{Pr}(\neg A) &\to 1 - \text{Pr}(A) \\
 \text{Pr}(A \land \neg A) &\to 1 - \text{Pr}(\neg A) \\
 \text{Pr}(\neg A \mid B) &\to 1 - \text{Pr}(A \mid B) \\
 \text{Pr}(A \mid B) &\to 1 - \text{Pr}(\neg A \mid B) \\
 \text{Pr}(A \land B) &\to \text{Pr}(A \land B) / \text{Pr}(B) \\
 \text{Pr}(A \lor B) &\to \text{Pr}(A) + \text{Pr}(B) / \text{Pr}(A \land B) \\
 \text{Pr}(A \lor B \mid C) &\to \text{Pr}(A \mid C) + \text{Pr}(B \mid C) - \text{Pr}(A \land B \mid C) \\
 \text{Pr}(A \land B \mid C) &\to \text{Pr}(A \mid B \land C) / \text{Pr}(B \mid C) \\
 \text{Pr}(A \land B) &\to \text{Pr}(B \mid A) \text{Pr}(A) / \text{Pr}(B) \\
 \text{Pr}(A \mid B) &\to \text{Pr}(\text{dnf}(A)) \\
 \text{Pr}(A) &\to \text{Pr}(\text{cnf}(A)) \\
 \text{Pr}(A \mid B) &\to \text{Pr}(\text{cnf}(A) \mid B) \\
 [A \land C \mid B] &\to \text{Pr}(A \mid B \land C) \to \text{Pr}(A \mid B) \\
 [A \land B \mid C] &\to \text{Pr}(A \land B \mid C) \to \text{Pr}(A \mid C) \to \text{Pr}(B \mid C)
\end{align*}
\]

Finally, \(R_{\text{prob}}\) has the capacity to equivalently replace marginal events:

\[
\begin{align*}
 \text{dot}(D) &\to \text{dof}(D) \land \text{dou}(D) \\
 \text{dof}(D) &\to \text{dot}(D) \land \text{dou}(D) \\
 \text{dou}(D) &\to \text{dot}(D) \land \text{dof}(D) \\
 \text{gtt}(D) &\to \text{gtf}(D) \\
 \text{gtf}(D) &\to \text{gtt}(D)
\end{align*}
\]

H. Rules for Independence Reasoning

The list \(R_{\text{indep}}\) contains rules for independence reasoning. Most of them are parameter-free independence rules for events \(A, B, C,\) and \(D\) (binary) with probability greater than 0:

\[
\begin{align*}
 A \perp B &\to B \perp A \\
 A \perp B &\to B \perp A \\
 A \perp B &\to \neg A \perp \neg B \\
 A \neg B &\to C \perp A \mid C \\
 A \perp \neg B &\to C \perp A \mid C \\
 (A \perp C \mid B \land D) &\to (A \perp D \mid B \land C) \\
 (A \perp C \mid B \land D) &\to (A \perp D \mid B \land C) \\
 (A \perp B \land C \mid D) &\to (A \perp A \mid C \land D) \\
 (A \perp B \land C \mid D) &\to (A \perp A \mid C \land D) \\
 (A \perp B \land C \mid D) &\to (A \perp A \mid C \land D) \\
 (A \perp B \land C \mid D) &\to (A \perp A \mid C \land D)
\end{align*}
\]

A single parametric independence rule used is for any expression \(X\) with probability greater than 0:

\[
(A \perp B \mid C) \land (A \perp X \mid B \land C) \to (A \perp X \mid C)
\]

I. Full Derivation of Error Rate Formulas for Monitors

FNR for Monitor of Pipeline Recovery: Here we illustrate the Steps 1–3 for the NCC/ECC analysis of the FNR of \(M_{pr}\). Suppose that the ECC’s known probabilities and the NCC’s preferred probabilities are the same and equal \(\{\text{fur}(PI)\}\). The independence assumptions are found in Equations (4) and (6) in the main paper.

The analysis uses the following rules \(R:\)

\[
\begin{align*}
 R_{\text{log}} : \text{Equations } [1,13,15,18,10, and 8] \\
 R_{\text{ev}} : \text{Equations } [6,7,14,15,2, and 3] \\
 R_{\text{prob}} : [16,20,17,23,19,18,22] \\
 R_{\text{indep}} = \emptyset \text{ (none are needed because the assumption matches the events exactly)}
\end{align*}
\]

The monitor is described by the following property:

\[
M_{pr} = \neg_s (\neg_w PL \rightarrow_w Q_{[1,d]}^{-} PL)
\]

The analysis of \(\text{fur}(M_{pr})\) starts with Step 1.1. It uses the rule in Equation (1) to rewrite \(\rightarrow_w\) with \(\neg_w:\)

\[
\neg_s (\neg_w PL \rightarrow_w Q_{[1,d]}^{-} PL) = \neg_s (\neg_w \neg_w PL \lor Q_{[1,d]}^{-} PL)
\]
Next, Step 1.1 advances \neg_s using Equations (15) and (13):
\[
\neg_s(\neg_w \neg_w Pl \lor Q_{[1,d]} Pl) = \neg_s \neg_w \neg_w Pl \land \Box_{[1,d]} \neg_s Pl
\]
Step 1.1 replaces $\neg_s \neg_w \neg_w Pl$ with $\neg_w \neg_w \neg_w Pl$ using Equation (12) (refer to the first and last expressions), and $\neg_w \neg_w \neg_w Pl$ with $\neg_w Pl$ using Equation (10). Having done this, Step 1.1 has arrived at the following formula:
\[
\text{fnr}(\neg_w Pl \land \Box_{[1,d]} \neg_s Pl)
\]
Finally Equation (4), Step 1.1 rewrites \Box using a sequence of \land operators and outputs the following formula:
\[
\text{fnr} \left(\neg_w Pl \land \neg_s Pl^1 \land \ldots \land \neg_s Pl^d \right)
\]
Now, Step 1.2 replaces the fnr operator according to its definition: \(\text{fnr}(M_{pr}) = \text{Pr}(\neg \text{dot}(M_{pr}) \mid \text{gtf}(M_{pr}))\). The events dot and dou of the composite detector above are replaced with Boolean combinations of events of atomic detectors, based on the rule for operators \land, $\negₜ$, and \neg_s in Equations (2) to (7):
\[
\text{dot}(M_{pr}) = (\text{dof}(Pl^0) \lor \text{dou}(Pl^0)) \land \text{dof}(Pl^1) \land \ldots \\
\text{gtt}(M_{pr}) = \text{gtf}(Pl^0) \land \text{gtf}(Pl^1) \land \ldots \land \text{gtf}(Pl^d)
\]
With all detector operators removed, Step 1.2 returns:
\[
\text{Pr}(\neg((\text{dof}(Pl^0) \lor \text{dou}(Pl^0)) \land \text{dof}(Pl^1) \land \ldots \\
\land \text{dof}(Pl^d)) \mid \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d)) = \\
1 - \text{Pr}(\neg((\text{dof}(Pl^0) \lor \text{dou}(Pl^0)) \land \text{dof}(Pl^1) \land \ldots \\
\land \text{dof}(Pl^d)) \mid \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d))
\]
Step 1.3 removes the negation using Equation (16):
\[
\text{Pr}(\neg((\text{dof}(Pl^0) \lor \text{dou}(Pl^0)) \land \text{dof}(Pl^1) \land \ldots \\
\land \text{dof}(Pl^d)) \mid \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d)) = \\
1 - \text{Pr}(\text{dof}(Pl^0) \lor \text{dou}(Pl^0) \lor \ldots \lor \text{dof}(Pl^d) \\
\land \text{dof}(Pl^1) \land \ldots \land \text{dof}(Pl^d)) \mid \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d))
\]
Now, Step 2.1 invokes the conditional independence rule in Equation (21) and launches Step 3 with the events under the probability in the equation above. Step 3.1 matches the events to the conditional independence of pipeline detections (DO^i) given the ground-truth of pipeline presence (GT^i) as stated in Equation (4) in the main paper.
Step 3.2 returns T to Step 2.1, and the rule in Equation (21) splits the probability into a product of individual detector events conditioned on the dof events of all detectors. Next, Equation (20) removes the conditioning from these probabilities by calling Step 3 and getting T due to Equation (6) in the main paper. This reduces the expression to the single-detector probability Pr:
\[
1 - \left(\text{Pr}(\text{dof}(Pl) \lor \text{dou}(Pl)) \mid \text{gtf}(Pl) \right) \times \\
\left(\text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) \right)^d
\]
Step 2.1 reintroduces the negation using Equation (17) and replaces the dof events with in accordance with Equation (23):
\[
1 - (1 - \text{Pr}(\neg \text{dot}(Pl) \land \neg \text{dou}(Pl) \lor \text{dou}(Pl))) \mid \\
\text{gtf}(Pl) \left(1 - \text{Pr}(\neg \text{dot}(Pl) \land \neg \text{dou}(Pl)) \mid \text{gtf}(Pl) \right)^d
\]
Now Step 2.1 uses the rule to put events into a CNF from Equation (19):
\[
1 - (1 - \text{Pr}(\text{dot}(Pl) \mid \text{gtf}(Pl))) \times \\
(1 - \text{Pr}(\text{dof}(Pl) \lor \text{dou}(Pl) \mid \text{gtf}(Pl))^d
\]
Next, Step 2.1 uses the rule from Equation (18) to break up the disjunction:
\[
1 - (1 - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl))) \times \\
(1 - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) + \\
\text{Pr}(\text{dof}(Pl) \land \text{dou}(Pl) \mid \text{gtf}(Pl))^d
\]
The probabilities $\text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl))$ are equivalent to $\text{fpr}(Pl)$. Therefore, they are preferred and will not be affected by matching transformations.
Next, Step 2.1 executes a replacement of dot with the rule in Equation (22). This transforms $\text{Pr}(\text{dof}(Pl) \land \text{dou}(Pl) \mid \text{gtf}(Pl))$ into $\text{Pr}(\neg \text{dof}(Pl) \land \neg \text{dou}(Pl) \mid \text{gtf}(Pl))$, which is replaced by 0 because of the contradiction: $\neg \text{dou} \land \text{dou}(Pl)$ (which is processed automatically by Mathematica). Step 2.1 finishes its rules with the following formula:
\[
1 - (1 - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl))) \times \\
(1 - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) - \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) + \\
\text{Pr}(\text{dof}(Pl) \land \text{dou}(Pl) \mid \text{gtf}(Pl))^d
\]
The above formula formula can be compactly rewritten into the final formula:
\[
\text{fnr}(M_{pr}) = 1 - (1 - \text{fpr}(Pl)) \times \\
\left(1 - \text{fpr}(Pl) - \\
\text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) \right)^d
\]
FPR for Monitor of Reliable Following: Here we briefly retrace Steps 1–3 of NCC/ECC for the FPR of monitor M_{rf}, which alarms iff the following property is violated:
\[
M_{rf} = \neg_s \Box_{[0,d]} Pl
\]
The derivation of this FPR proceeds as follows. First, we advance the negation according to the tautologies above:
\[
\Box_{[0,d]} \neg_s Pl
\]
Next, we write down the relevant events of the above detector:
\[
\text{dot}(M_{rf}) = \text{dof}(Pl^0) \lor \text{dof}(Pl^1) \lor \ldots \lor \text{dof}(Pl^d) \\
\text{gtf}(M_{rf}) = \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d)
\]
Hence:
\[
\text{fpr}(M_{rf}) = \text{Pr}(\text{dof}(Pl^0) \lor \text{dof}(Pl^1) \lor \ldots \lor \text{dof}(Pl^d) \mid \\
\text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d)) = \\
1 - \text{Pr}(\neg \text{dof}(Pl^0) \land \neg \text{dof}(Pl^1) \land \ldots \land \neg \text{dof}(Pl^d) \\
\land \text{gtf}(Pl^0) \land \ldots \land \text{gtf}(Pl^d))
\]
Now, assuming the conditional independence of pipeline detections (DO^i) given the ground-truth of pipeline presence (GT^i) as stated in Equation (4) in the main paper, the above expression simplifies to a final formula for M_{rf}:
\[
\text{fpr}(M_{rf}) = 1 - \left(1 - \text{fpr}(Pl) + \text{Pr}(\text{dof}(Pl) \mid \text{gtf}(Pl)) \right)^{d+1}
\]
J. Additional Figures for Evaluation

This section contains several auxiliary figures:

- Figure 1 shows a screenshot from our UUV simulator.
- Figure 2 shows the estimates of the FNR of \(M_{pr} \) for different values of deadline \(d \), based on our full dataset.
- Figure 3 shows the estimates of the FPR of \(M_{rf} \) for different values of deadline \(d \), based on our full dataset.
- As Figure 4 indicates for \(M_{pr} \) (\(d = 10 \)), BBC converges to the ground truth as the amount of information in the dataset increases, whereas NCC converges as well, but in a biased manner. The bias is, however, contained for all \(d \) in a 95% Binomial confidence interval (CI) for ECC (a vertical line; based on the maximum x-value), indicating that it is likely to be an artifact of sampling randomness. A similar convergence pattern occurs for the other values of \(d \) with different convergence rates.
- Figure 5 is the same type as the previous figure, but for FPR of \(M_{rf} \). It shows similar yet unbiased convergence of NCC and BBC to ECC for \(d = 10 \) (other values of \(d \) repeat this pattern too).
- Figure 6 shows the same type of a plot as Figure 3 in the main paper, but for the FPR of \(M_{rf} \). Here, the x-axis bin width is 400, and the minimum number of points per bin is 38. We can see that the errors of NCC and BBC decrease rapidly (note the logarithmic scale) for more data, and NCC errors are consistently smaller than those of BBC. Further analysis showed this difference grows with \(d \), and the cross-over point shifts to the right.
- As Figure 7 indicates for \(M_{pr} \), the average error grows faster for BBC than for NCC.
- Figure 8 shows the dependency of the FPR estimates of \(M_{rf} \) (NCC, BBC) on the various levels of stateful noise (\(w \)). These estimates are made on our full dataset and for \(d = 10 \).

REFERENCES

Figure 4: Estimates of FNR of M_{pr} ($d = 10$) by information count. The vertical ECC line is a 95% CI for max x-value.

Figure 5: Estimates of FPR of M_{rf} ($d = 10$) by information count. The vertical ECC line is a 95% CI for max x-value.

Figure 6: Log-RMSE of FPR estimates for M_{rf} ($d = 10$) by information count.

Figure 7: RMSE of NCC and BBC for M_{pr} (high) and M_{rf} (low), relative to the respective deadline d.

Figure 8: NCC and BBC for FPR of M_{rf} ($d = 10$) relative to weight w. Baseline ECC is shown for $w = 0$, for context.