$2x_1 + 5x_2 = 60$ \[x_1 + x_2 = 18 \]

$3x_1 + x_2 = 44$

$(13, 5)$ optimal solution

$(x_1, x_2) = (13, 5)$ is optimal with $z = 31$
9.1-9. First note that \((2,3)\) always satisfies the 3 constraints. (i.e. \((2,3)\) is always feasible.)

In fact, since \(kx_1 + x_2 = 2k + 3\) at \((2,3)\) for any \(k\), the third constraint is always binding. We only need to check if \((2,3)\) is optimal.

Since the line \(kx_1 + x_2 = 2k + 3\) always passes through the point \((2,3)\), changing \(k\) simply rotates the line. Rewriting: \(x_2 = -kx_1 + (2k + 3)\), we see that the slope of the line is \(-k\), and therefore, the slope ranges from \(0\) to \(-\infty\).

As we can see, \((2,3)\) is optimal as long as the slope of the 3rd constraint line is less than \(-\frac{1}{2}\) (the slope of the objective line). If \(k < \frac{1}{2}\), then we can increase the objective by traveling along the 3rd constraint to point \((2 + \frac{2}{k}, 0)\) which has an objective value of \(2 + \frac{2}{k} > 8\) if \(k < \frac{1}{2}\). Therefore, \((2,3)\) is optimal for \(k \geq \frac{1}{2}\).
Let \(t_{ijk} \) = # of units of paper type \(k \) shipped from paper mill \(i \) to customer \(j \).

\(y_{ijk} \) = # of units of paper type \(k \) produced on machine type \(k \) at mill \(i \).

We want to:

\[
\text{minimize } \sum_{i} \sum_{j} \sum_{k} t_{ijk} t_{ijk} + \sum_{i} \sum_{k} \sum_{l} p_{ik} y_{ikl}
\]

Subject to:

\[
\sum_{i} t_{ijk} \geq d_{jk} \quad \forall j, k \quad \text{(demand met)}
\]

\[
\sum_{j} y_{ijk} = \sum_{i} t_{ijk} \quad \forall i, k \quad \text{(amt produced of paper type \(k \), at mill \(i \) = amt shipped)}
\]

\[
\sum_{i} \sum_{k} y_{ik} r_{ikm} \leq r_{im} \quad \forall i, m \quad \text{(raw material available)}
\]

\[
\sum_{k} c_{ik} y_{ik} \leq C_{il} \quad \forall i, l \quad \text{(machine capacity)}
\]

\[
t_{ijk} \geq 0 \quad \forall i, j, k
\]

\[
y_{ijk} \geq 0 \quad \forall i, k, l
\]

Table: Coefficient of

<table>
<thead>
<tr>
<th>Bas No</th>
<th>Eq</th>
<th>(Z)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_5</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_6</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bas No</th>
<th>Eq</th>
<th>(Z)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_5</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_6</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bas No</th>
<th>Eq</th>
<th>(Z)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Z</td>
<td>0</td>
<td>1</td>
<td>0.33333</td>
<td>0</td>
<td>0.83333</td>
<td>0.33333</td>
<td>0</td>
<td>0.33333</td>
</tr>
<tr>
<td></td>
<td>X_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>X_5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.33333</td>
<td>1</td>
<td>0</td>
<td>0.33333</td>
<td>0.33333</td>
</tr>
<tr>
<td></td>
<td>X_6</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0.33333</td>
<td>0</td>
<td>0</td>
<td>-0.167</td>
<td>0.33333</td>
</tr>
</tbody>
</table>

Optimal Soln: \(x_1^* = 6 \frac{2}{3}, x_2^* = 0, x_3^* = 3 \frac{5}{6} \) and \(Z^* = 66 \frac{2}{3} \).
4.5.3. a) The constraints of any LP problem can be expressed in matrix notation as:
\[Ax = b, \quad x \geq 0 \]
If \(x^1, x^2, \ldots, x^N \) are feasible solutions and
\[x = \sum_{k=1}^{N} w_k x^k \quad \text{with} \quad \sum_{k=1}^{N} w_k = 1, \quad w_k \geq 0 \quad (k=1, \ldots, N) \]
then
\[Ax = A\left(\sum_{k=1}^{N} w_k x^k\right) = \sum_{k=1}^{N} w_k Ax^k = \sum_{k=1}^{N} w_k b = b \]
So \(x \) is also a feasible solution.

b) Since basic feasible solutions are feasible solutions, the argument in part (a) shows any weighted average of them is also feasible.

4.5.4. a) If \(z^* \) is the value of the objective function for an optimal solution, and \(x^1, x^2, \ldots, x^N \) is the set of optimal basic feasible solutions, then for \(x = \sum_{k=1}^{N} t_k x^k \) with \(\sum_{k=1}^{N} t_k = 1, \quad t_k \geq 0 \) for \(k=1, 2, \ldots, N \), problem 4.13 shows \(x \) is feasible.

The objective function is of the form \(c^T x \). So the feasible solution \(x \) we have
\[c^T x = c^T \left(\sum_{k=1}^{N} t_k x^k \right) = \sum_{k=1}^{N} t_k c^T x^k = \sum_{k=1}^{N} w_k r^k = z^* \]
so \(x \) is also an optimal solution.

b) Let \(x \) be a feasible solution which is not a weighted average of the set of optimal basic feasible solutions, \(x^1, x^2, \ldots, x^N \). \(x \) must be a weighted average of basic feasible solutions, not all of which are optimal. If \(x^1, x^2, \ldots, x^L \) are the basic feasible solutions which are not optimal, we can express \(x \) as:
\[x = \sum_{k=1}^{L} \alpha_k x_k + \sum_{k=L+1}^{N} \alpha_k x^k \quad \text{with} \]
\[\sum_{k=1}^{L} \alpha_k + \sum_{k=L+1}^{N} \alpha_k = 1, \quad \alpha_k \geq 0 \quad (k=1, 2, \ldots, N) \]
\[\alpha_k > 0 \quad \text{for} \quad c^T x_k \quad \text{and} \quad \text{some} \quad \alpha_k < 0. \]

We can conclude:
\[c^T x = c^T \left(\sum_{k=1}^{L} \alpha_k x_k + \sum_{k=L+1}^{N} \alpha_k x^k \right) = \sum_{k=1}^{L} \alpha_k c^T x_k + \sum_{k=L+1}^{N} \alpha_k c^T x^k \]
\[< z^* \left(\sum_{k=1}^{L} \alpha_k + \sum_{k=L+1}^{N} \alpha_k \right) = z^* \]
so \(x \) is not an optimal solution.