Distributed Coverage Verification in Sensor Networks Without Location Information

Alireza Tahbaz-Salehi and Ali Jadbabaie, Senior Member, IEEE

Abstract—In this paper, we present a series of distributed algorithms for coverage verification in sensor networks with no location information. We demonstrate how, in the absence of localization devices, simplicial complexes and tools from computational homology can be used in providing valuable information on the properties of the cover. Our approach is based on computation of certain generators of the first homology of the Rips complex corresponding to the sensor network. We first present a decentralized scheme based on Laplacian flows to compute a generator of the first homology, which represents coverage holes. Then we formulate the problem of localizing coverage holes as an optimization problem to compute the sparsest generator of the first homology classes of the Rips complex. Furthermore, we show that one can detect redundancies in the sensor network by finding the sparsest generator of the second homology of the cover relative to its boundary. We also demonstrate how subgradient methods can be used in solving these optimization problems in a distributed manner. Finally, we provide simulations that illustrate the performance of our algorithms.

Index Terms—Sensor networks, coverage, distributed algorithms, homology.

I. INTRODUCTION

Recent advances in computing, communication, sensing and actuation technologies, have brought networks composed of hundreds or even thousands of inexpensive mobile sensing platforms closer to reality. This has induced a significant amount of interest in development of analytical tools for predicting the behavior, as well as controlling the complexities of such large-scale sensor networks. Designing algorithms for deployment, localization, duty-cycling, communication and coverage verification in sensor networks form the core of this active area of research.

Of the most fundamental problems in this domain is the coverage problem. In general, this reflects how well an area of interest is monitored or tracked by sensors. In most applications, we are interested in a reliable coverage of the environment in such a way that there are no gaps left in the coverage. Algorithms for this purpose have been extensively studied [1]. One of the most prominent approaches for addressing the coverage problem has been the computational geometry approach, in which one uses the coordinates of the nodes and standard geometric tools (such as Delaunay triangulations or Voronoi diagrams) to determine coverage [2]–[5]. One very well-known example of utilizing this geometric approach is in solving the Art Gallery Problem, in which one determines the number of observers necessary to cover an art gallery (or an area of interest) such that every point in the gallery is monitored by at least one observer [6], [7].

Such geometrical approaches often suffer from the drawback that they can be too expensive to compute in real-time. Moreover, in most applications, they require exact knowledge of the locations of the sensors. Although, this information can be made available in real-time by a localization algorithm or by the means of localization devices (such as GPS), it can only be used most effectively in an off-line, pre-deployment analysis for large networks or when there are strong assumptions on geometrical structure of the network and the environment. This drawback becomes more evident if the network topology changes due to node mobility or sensor failure. In such cases, a continuous monitoring of the network coverage becomes prohibitive if the algorithm is too expensive to run or is sensitive to location uncertainty. Finally, localization equipments add to the cost of the network, which can be a limiting factor as the size of the network grows. Consequently, a minimal geometry approach for addressing these issues becomes essential.

More recently, topological spaces and their topological invariants have been used in addressing the coverage problem in the absence of geometric data, such as location or orientation [8]–[14]. One notable characteristic of these studies is the use of topological abstractions which preserve many global geometrical properties of the network while abstracting away the small scale redundant details. For instance, Ghrist and Muhammad [8] construct the Rips complex corresponding to the communication graph of the network and use the fact that the first homology of this simplicial complex contains sufficient information about coverage. This is followed by [9] and [11], in which a relative homological criterion for coverage is presented. These results are further extended in [10] to networks without boundary, the pursuit-evasion problem and barrier coverage in 3-D. The first steps for implementation of the above mentioned ideas as distributed algorithms are taken by Muhammad and Egerstedt [12], who show that combinatorial Laplacians are the right tools for distributed computation of the elements of the homology groups, and hence, can be used for decentralized coverage verification. They present a consensus-like scheme based on a dynamical system whose stability properties determine the existence of coverage holes, although it fails to locate them. This idea is further extended to time-varying networks for verification of sweep coverage in [14].

The contribution of this paper is twofold. First, based on
the ideas in [10] and [12], we present a distributed algorithm which is capable of “localizing” coverage holes in a network of sensors without any metric information. More precisely, we use tools from algebraic topology to represent the coverage properties of the sensor network by its Rips complex. We show that given a generator in the first homology of the Rips complex, the problem of finding the “tightest” cycle encircling the hole represented by that homology class can be formulated as an integer programming problem. Moreover, we present conditions under which the linear programming relaxation of this integer programming problem is exact and therefore, its solution provides the location of the coverage holes in the simplicial complex without use of any coordinate information. This optimization-based approach is a direct generalization of network flow algorithms on graphs to simplicial complexes. Finally, we show that if subgradient methods [15]–[17] are used for solving this relaxation, the updates are distributed in nature and therefore, the computation of the tightest cycle around the holes can be implemented in a distributed fashion. Our approach is quite interdisciplinary in nature and combines results from multi-agent systems, agreement and consensus problems [18], [19], with recent advances in coverage maintenance in sensor networks using computational algebraic topology methods and optimization techniques. Moreover, this novel approach is different from the algorithms presented in [20], [21], where it is explicitly assumed that the simplicial complex is embedded on an orientable surface. It is also more general than the results in [22]: our hole detection algorithm is not limited to Rips complexes, is distributed in nature, and does not use node coordinates.

A second contribution of the paper concerns detecting redundancies in the sensor network. Using tools from algebraic topology, we introduce a novel approach for computing a minimal set of sensors required to cover the entire domain. We formulate the problem of computing the sparsest generator of the second homology of the Rips complex with respect to its boundary as an integer-programming problem and solve its LP relaxation in a distributed way, using subgradient methods. To the best of our knowledge, such an algorithm has not been proposed in any other study.

The paper is organized as follows. We present the basic setup and assumptions of our model in Section II. Section III is meant to provide a brief review on the concepts of simplicial complexes, their homological properties and combinatorial Laplacian operators. Section IV summarizes the results already known regarding distributed coverage verification in networks with no metric information. Our main results are presented in Section V, in which we show that how, in a distributed fashion, one can “localize” coverage holes in a location-free sensor network by solving a linear programming problem using subgradient methods. We extend this idea to a higher dimension in Section VI in order to find a sparse cover of the region. Simulations of the two algorithms are presented in Section VII. Finally, Section VIII contains our conclusions.

II. PROBLEM FORMULATION

Consider a collection of \(n \) stationary sensors, denoted by \(V \), deployed over a region of interest \(D \subset \mathbb{R}^2 \). The sensors are equipped with local communication and sensing capabilities: each sensor is only capable of communicating with a limited number of other sensors in its proximity, and has a limited sensing range. Furthermore, we assume a complete absence of localization capabilities and metric information, in the sense that sensors in this network can determine neither distance nor direction. Under these assumption, we are interested in distributed algorithms for coverage verification. In particular, we are interested in verifying the existence of coverage holes, compute their locations, and detect redundancies in the network.

We adopt the following two frameworks as the coverage models, for which we present our coverage verification algorithms:

A. Simplicial Coverage

In this framework, we assume that each sensor is capable of communicating with other sensors within a radially symmetric domain of radius \(r_b \), called the broadcast disk. As for the coverage, we assume a “capture” modality in which any subset of nodes which are in pairwise communication cover their entire convex hull. In other words, the region covered by the sensors is given by

\[
\mathcal{A}(V) = \bigcup \{ \text{conv}(Q) | Q \subseteq V, \max_{v_i,v_j \in Q} \| v_i - v_j \|_2 \leq r_b \}
\]

where \(V \) is the set of sensor locations and \(v_i \) represents the the location of the \(i \)-th sensor. This model, inspired by [23], guarantees that the coverage and communication capabilities of the sensors are limited and based on proximity.

B. Symmetric Coverage

Similar to the previous framework, we assume that each sensor is capable of communicating with other sensors within a distance \(r_b \). However, unlike the simplicial coverage model, we assume that each sensor is capable of covering a radially symmetric area of radius \(r_c \), known as the coverage radius. The region covered by the sensors is given by \(\mathcal{U}(V) = \bigcup_{v \in V} U_v \), where \(U_v = \{ x \in \mathbb{R}^2 : \| x - v \| \leq r_c \} \) is the coverage disk corresponding to the sensor located at point \(v \), known as its coverage disk. Clearly, region of interest \(D \) is completely covered if it is a subset of \(\mathcal{U}(V) \). For technical reasons that will become clear in the following sections, we assume that \(r_b \leq r_c \sqrt{3} \). The study of this framework is motivated by networks consisting of sensors with omnidirectional communication and sensing capabilities.

In the rest of the paper, we develop the required tools and present algorithms that can verify different coverage properties for the above mentioned frameworks. Before doing so, we need to impose some additional restrictions on the geometry of the domain \(D \). We assume that \(D \) is connected and compact and its boundary \(\partial D \) is connected and piecewise linear. Moreover, to avoid boundary effects, it is necessary to assume that there are sensors, known as fence nodes, located on \(\partial D \) such that each fence node is capable of communicating with its two closest neighbors on \(\partial D \), on either side.
III. Simplicial Complexes, Homology, and Combinatorial Laplacians

This section is dedicated to the definition of simplicial complexes and their homological properties as they are the main mathematical tools used in this paper. A thorough treatment of the subject can be found in [24] and [25].

Given a set of points V, a k-simplex (or a simplex of dimension k) is an unordered set $\{v_0, v_1, \ldots, v_k\} \subseteq V$ where $v_i \neq v_j$ for all $i \neq j$. A face of the k-simplex $\{v_0, v_1, \ldots, v_k\}$ is a $(k-1)$-simplex of the form $\{v_i, v_{i+1}, \ldots, v_k\}$ for some $0 \leq i \leq k$. Clearly, any k-simplex has exactly $k+1$ faces.

Definition 1: A simplicial complex X is a finite collection of simplices which is closed with respect to inclusion of faces, i.e., if $\sigma \in X$, then all faces of σ are also in X.

Roughly speaking, a simplicial complex is a generalization of a graph, in the sense that in addition to binary relations between the elements of V, it captures higher order relations between them as well. Note that due to the requirement of closure with respect to the inclusion of the faces, a simplicial complex is different from a hypergraph, in which any subset of V can be considered as a hyper edge.

The dimension of a simplicial complex is the maximum dimension of any of its simplices. A subcomplex of X is a simplicial complex $Y \subseteq X$. A particular subcomplex of X is its k-skeleton consisting of all simplices of dimension k or less, denoted by $X^{(k)} = \{ \sigma \in X : \dim \sigma \leq k \}$. Therefore, the 1-skeleton of any non-empty simplicial complex is a graph. Given a graph G, its flag complex $F(G)$ is the largest simplicial complex whose 1-skeleton is G; every $(k+1)$-clique in G defines a k-simplex in $F(G)$.

Given a simplicial complex X, two k-simplices σ_i and σ_j are upper adjacent (denoted by $\sigma_i \sim \sigma_j$) if both are faces of a $(k+1)$-simplex in X. Two k-simplices are said to be lower adjacent (denoted by $\sigma_i \sim \sigma_j$) if both have a common face. Having defined the concept of adjacency, one can define the upper and lower adjacency matrices, $A^{(k)}$ and $A^{(k)}_l$ respectively, in order to book keep the adjacency relations between the k-simplices. The upper adjacency matrix of order zero of a simplicial complex, $A^{(0)}$, coincides with the well-known notion of the adjacency matrix of the graph capturing its 1-skeleton.

A. Boundary Homomorphism

Let X denote a simplicial complex. Similar to graphs, an orientation can be defined for X by defining an ordering on all of its k-simplices. We denote the k-simplex $\{v_0, \ldots, v_k\}$ with an ordering by $[v_0, \ldots, v_k]$. For each $k \geq 0$, define $C_k(X)$ to be the vector space whose basis is the set of oriented k-simplices of X, where a change in the orientation corresponds to a change in the sign of the coefficient $[-v_0, v_1, \ldots, v_{k-1}, v_k] = -[v_0, v_1, \ldots, v_{k-1}, v_k]$. We let $C_0(X) = 0$, if k is larger than the dimension of X.

Therefore, by definition, elements of $C_k(X)$, called k-chains, can be written as finite formal sums $\sum_j \alpha_j \sigma_j^{(k)}$ where the coefficients $\alpha_j \in \mathbb{R}$ and $\sigma_j^{(k)}$ are the oriented k-simplices of X.\footnote{To be more precise, this is the definition of k-chains with coefficients in \mathbb{R}. In most algebraic topology texts such as [24], k-chains are defined over integers rather than reals. In such a case, $C_k(X)$ is defined as a free abelian group with the set of oriented k-simplices as its basis. However, as in [26], we find it more convenient to define the chains over \mathbb{R}.}

Fig. 1. A simplicial complex, consisting of 11 vertices (0-simplices), 14 edges (1-simplices), 5 2-simplices and one 3-simplex.

Note that C_k is a finite-dimensional vector space with the number of k-simplices as its dimension. We now define the boundary map.

Definition 2: For an oriented simplicial complex X, the k-th simplicial boundary map is a homomorphism $\partial_k : C_k(X) \to C_{k-1}(X)$, which acts on the basis elements of its domain via

$$\partial_k [v_0, \ldots, v_k] = \sum_{j=0}^k (-1)^j [v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_k]. \quad (1)$$

Intuitively, the above operator maps a k-chain to its faces. For example, the boundary of a directed path in a graph (which is an oriented 1-chain) is simply the difference between its two endpoints.

Since for any finite simplicial complex $C_k(X)$ is a finite dimensional vector space for all k, ∂_k has a matrix representation. We denote the matrix representation of the k-th boundary map relative to the bases of C_k and C_{k-1} by $B_k \in \mathbb{R}^{n_k \times n_{k-1}}$, where n_k is the number of k-simplices of X. In particular, the matrix representation of the first boundary map ∂_1 is nothing but the edge-vertex incidence matrix of a graph which maps edges (1-simplices) to vertices (0-simplices).

Finally, using (1), it is an easy exercise to show that

Lemma 1: The map $\partial_k \circ \partial_{k+1} : C_{k+1}(X) \to C_{k-1}(X)$ is uniformly zero for all $k \geq 1$.

In other words, the boundary of any k-chain has no boundary.

B. Simplicial Homology

Let X denote a simplicial complex. Consider the following two subspaces of $C_k(X)$:

$$\begin{align*}
\text{k-cycles} : \ker \partial_k &= \{ x \in C_k(X) : \partial_k x = 0 \} \\
\text{k-boundaries} : \text{img} \partial_{k+1} &= \{ x \in C_k(X) : \exists y \text{ s.t. } x = \partial_{k+1} y \}
\end{align*}$$

An element in $\ker \partial_k$ is a subcomplex without a boundary and therefore represents a k-dimensional cycle, while the elements in $\text{img} \partial_{k+1}$ are boundaries of higher dimensional chains and are known as k-boundaries. The k-cycles are the basic objects that count the presence of “k-dimensional holes” in the simplicial complex [10]. But, certainly, many of
the \(k \)-cycles in \(X \) are measuring the same hole; still other cycles do not really detect a hole at all — they bound a subcomplex of dimension \(k + 1 \) in \(X \). In fact, we say two \(k \)-cycles \(\xi \) and \(\eta \) are homologous if their difference is a boundary: \(\xi - \eta \in \text{img} \partial_{k+1} \). Therefore, as far as measuring holes is concerned, homologous cycles are equivalent [10]. Consequently, it makes sense to define the quotient vector space

\[
H_k(X) = \ker \partial_k / \text{img} \partial_{k+1},
\]

known as the \(k \)-th homology of \(X \), as the proper vector space for distinguishing homologous cycles. Note that according to Lemma 1, we have \(\partial_k \circ \partial_{k+1} = 0 \), implying that \(\text{img} \partial_{k+1} \) is a subspace of \(\ker \partial_k \), and therefore, making \(H_k(X) \) a well-defined vector space.\(^2\)

Roughly speaking, when constructing the homology, we are removing cycles that are boundaries of a higher order subcomplex from the set of all \(k \)-cycles, so that the remaining ones carry information about the \(k \)-dimensional holes of the complex. A more precise way of interpreting (2) is that any element of \(H_k(X) \) is an equivalence class of homologous \(k \)-cycles. Moreover, it inherits the structure of a vector space in the natural way: \([\xi] + [\eta] = [\xi + \eta] \) and \(c[\xi] = [c\xi] \) for \(c \in \mathbb{R} \), where \([\xi] \) represents the equivalence class of all \(k \)-cycles homologous to \(\xi \). Therefore, each non-trivial homology class\(^3\) in a certain dimension identifies a corresponding “hole” in that dimension. In fact, the dimension of the \(k \)-th homology of \(X \) (known as its \(k \)-th Betti number) identifies the number of \(k \)-dimensional holes in \(X \). For example, the dimension of \(H_0(X) \) is the number of connected components of \(X \), while the dimension of \(H_1(X) \) is equal to the number of holes in its 2-skeleton.

C. Relative Homology

In some applications, one may need to compute the holes modulo some region of space, such as the boundary. The concept of relative homology is defined for this purpose.

Given a simplicial complex \(X \) and a subcomplex \(A \subset X \), let \(C_k(X, A) \) be the quotient vector space \(C_k(X) / C_k(A) \). This definition means that chains in \(A \) are trivial in \(C_k(X, A) \).

Since the boundary map \(\partial_k : C_k(X) \to C_{k-1}(X) \) takes \(C_k(A) \) to \(C_{k-1}(A) \), it induces a quotient boundary map \(\partial_k : C_k(X, A) \to C_{k-1}(X, A) \). One can verify that the subspaces defined by the kernel and image of the quotient map are well-defined and satisfy \(\text{img} \partial_{k+1} \subseteq \ker \partial_k \subseteq C_k(X, A) \).

Therefore, similar to before, one can define the \(k \)-th relative homology as the quotient vector space [24]

\[
H_k(X, A) = \ker \partial_k / \text{img} \partial_{k+1}. \tag{3}
\]

Elements of \(H_k(X, A) \) are equivalence classes of homologous relative \(k \)-cycles. A relative \(k \)-cycle is a \(k \)-chains \(\xi \in C_k(X) \) such that \(\partial_k \xi \in C_{k-1}(A) \). Relative \(k \)-cycle \(\xi \) is trivial in \(H_k(X, A) \) if and only if it is a relative boundary: \(\xi = \partial_k \eta \) for some \(\eta \in C_{k-1}(X) \) and \(\gamma \in C_k(A) \).

D. Combinatorial Laplacians

The graph Laplacian [27] has various applications in image segmentation, graph embedding, dimensionality reduction for large data sets, machine learning, and more recently in consensus and agreement problems in distributed control of multi-agent systems [18], [19]. For a graph \(G \), the Laplacian matrix is defined as \(L = BB^T \) where \(B \) is the vertex-by-edge-dimensional incidence matrix of \(G \). As it is evident from the definition, \(L \) is a positive semi-definite matrix. Also it is well-known that the Laplacian matrix can be written in terms of the adjacency and degree matrices of \(G \) as well: \(L = D - A \), which implies that the \(i \)-th row of the Laplacian matrix only depends on the local interactions between vertex \(i \) and its neighbors. The goal of this subsection is to present the generalization of this matrix to simplicial complexes and investigate its properties. The importance of these generalized Laplacian matrices (known as combinatorial Laplacians) lies in the observation that when working with real coefficients, the null space of such matrices span subspaces isomorphic to the homologies.

The definitions and results of this subsection can be found in [28] and [26].

\[\text{Definition 3:} \] Let \(X \) be a finite oriented simplicial complex. The \(k \)-th combinatorial Laplacian of \(X \) is the homomorphism \(L_k : C_k(X) \to C_k(X) \) given by

\[
L_k = \partial_k^* \circ \partial_k + \partial_{k+1} \circ \partial_k^* \tag{4}
\]

where \(\partial_k^* \) is the adjoint of the operator \(\partial_k \) with respect to the inner product that makes the basis orthonormal.

The Laplacian operator, as defined above, is the sum of two positive semi-definite operators and therefore, any \(k \)-chain \(x \in \ker L_k \) satisfies

\[
x \in \ker \partial_k, \quad x \perp \text{img} \partial_{k+1}
\]

In other words, the kernel of the \(k \)-th combinatorial Laplacian consists of \(k \)-cycles which are orthogonal to the subspace
where the edges are ordered as ∂_{k+1}, and therefore, are not k-boundaries. This implies that the non-zero elements in the kernel of \mathcal{L}_k are representatives of the non-trivial equivalence classes of cycles in the k-th homology. This property was first observed by Eckmann [28] and is formalized in the following theorem [26].

Theorem 1: If vector spaces $C_k(X)$ are defined over \mathbb{R}, then for all k there is an isomorphism

$$H_k(X) \cong \ker \mathcal{L}_k$$

where $H_k(X)$ is the k-th homology of X and \mathcal{L}_k is its k-th combinatorial Laplacian. Moreover, there is an orthogonal direct sum decomposition of the vector space $C_k(X)$ in the form of

$$C_k(X) = \text{img } \partial_{k+1} \oplus \ker \mathcal{L}_k \oplus \text{img } \partial_k^*,$$

in which the first two summands comprise the set of k-cycles $\ker \partial_k$, and the first summand is the set of k-boundaries.

The immediate implication of the above theorem is that the dimension of null space of the k-th combinatorial Laplacian operator is equal to the k-th Betti number of the simplicial complex. The next example is meant to clarify the statement of Theorem 1. But first, note that one can use the matrix representations of the boundary operators to represent the combinatorial Laplacian operators with finite dimensional matrices. We define the k-th combinatorial Laplacian matrix as

$$L_k = B_k^T B_k + B_{k+1}^T B_{k+1} \in \mathbb{R}^{n_k \times n_k}$$

where B_k is the matrix representation of ∂_k and n_k is the number of k-simplices of X. Note that the expression for L_0 reduces to the well-known graph Laplacian matrix. Similarly, the combinatorial Laplacian matrices can be represented in terms of the adjacency and degree matrices [12], [29] of the simplicial complex. More precisely, for $k > 0$,

$$L_k = D_u^{(k)} - A_u^{(k)} + (k+1) I_{n_k} + A_l^{(k)}$$

where $A_u^{(k)}$ and $A_l^{(k)}$ are the upper and lower adjacency matrices, respectively and $D_u^{(k)}$ represents the upper degree matrix. (7) implies that the i-th row of L_k only depends on the local interactions between i-th k-simplex and its upper and lower adjacent k-simplices. This is the higher-dimensional counterpart of the locality property of the graph Laplacian.

Example 1: Consider the oriented simplicial complex depicted in Fig. 3, which consists of 6 vertices, 8 edges and 2 triangles. It is an easy exercise to show that the first combinatorial Laplacian matrix is given by

$$L_1 = \begin{bmatrix}
2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & -1 & -1 & 0 \\
0 & -1 & 3 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 3 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 2 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

where the edges are ordered as $[v_1v_2], [v_2v_3], [v_3v_4], [v_4v_5], [v_5v_6], [v_6v_1], [v_1v_3v_5]$ and $[v_3v_6]$. Null space of L_1 is a one dimensional subspace spanned by vector $[8 \ 1 \ 1 \ 3 \ 8 \ 2 \ 5]^T$. In Fig. 3, these values are depicted as flows on the edges of the simplicial complex. Notice that the dimension of $\ker L_1$ is equal to the number of 1-dimensional holes in the simplicial complex, as suggested by Theorem 1. Moreover, for any $x \in \ker L_1$ the value of the algebraic sum of the flows entering each vertex is equal to zero. This is a consequence of the fact that any element in $\ker L_1$ is also in $\ker B_1$. Finally, note that the algebraic sum of the flows over any filled-in region is equal to zero as well. This is due to the fact that if x is in $\ker L_1$, then $B_2^T x = 0$ and therefore, x is orthogonal to $\text{img } B_2$.

IV. DISTRIBUTED COVERAGE VERIFICATION IN THE ABSENCE OF LOCATION INFORMATION

One of the most prominent approaches for addressing the coverage problem has been the computational geometry approach, in which one uses the coordinates of the nodes and standard geometric tools (such as Delaunay triangulations or Voronoi diagrams) to determine coverage. These approaches often suffer from the drawback that they are too expensive to compute in real-time. Moreover, in most applications, they require exact knowledge of the locations of the sensing nodes. In general, due to their dependence on metric information, computational geometry approaches for coverage verification are not applicable, if the sensors are not equipped with localization devices.

In this section, we present a distributed coverage verification algorithm that can be used in the absence of any metric information. Unlike computational geometry approaches for coverage, this algorithm is based on computational algebraic topology which does not depend on location and orientation information. In essence, we compute the kernel of the first combinatorial Laplacian of a simplicial complex corresponding to the cover and use the fact that the first homology of the cover is trivial, if and only if the coverage is hole-free. The contents of this section are mainly based on the works of de Silva and Ghrist [10] and Muhammad and Egerstedt [12].

A. Simplicial Coverage Framework

We first investigate the simplicial coverage framework: Let $V = \{v_1, \ldots, v_n\}$ denote the locations of n sensors deployed over a region $D \subset \mathbb{R}^2$, satisfying the assumptions presented in Section II. These sensors are equipped with local coverage and communication capabilities, which enables them to exchange
data with other sensors in their proximity: two sensors are capable of communicating with each other if the distance between them is less than or equal to \(r_b \). As for coverage, we assume that any subset of nodes in pairwise communication cover their entire convex hull. This implies that the region covered by the sensors is given by

\[
\mathcal{A}(V) = \bigcup \{ \text{conv}(Q) \mid Q \subseteq V, \max_{v_i, v_j \in Q} \|v_i - v_j\|_2 \leq r_b \}.
\]

We are interested in verifying whether all points within \(D \) are monitored by the sensors, i.e., whether \(D \subseteq \mathcal{A}(V) \). Our assumptions of Section II regarding the fence nodes guarantee that \(\partial D \subseteq \mathcal{A}(V) \).

Since no location information is available to the sensors, we need to capture their communication and coverage properties combinatorially. For this purpose, we define what is known as the Vietoris-Rips complex corresponding to a given set of points [30].

Definition 4: Given a set of points \(V = \{v_1, \ldots, v_n\} \) in a finite dimensional Euclidean space and a fixed radius \(\epsilon \), the Vietoris-Rips complex of \(V \), \(\mathcal{R}_\epsilon(V) \), is the abstract simplicial complex whose \(k \)-simplices correspond to unordered \((k+1)\)-tuples of points in \(V \) which are pairwise within Euclidean distance \(\epsilon \) of each other. Equivalently, the Rips complex is the flag complex of the proximity graph of \(V \), whose edges are pairs of points \(v_i, v_j \in V \) with \(\|v_i - v_j\| \leq \epsilon \).

Given this definition, one expects the Rips complex corresponding to the set of sensors to contain some information about the set \(\mathcal{A}(V) \). In fact, the covered region \(\mathcal{A}(V) \) is nothing but the image of the canonical projection map \(p : \mathcal{R}_\epsilon(V) \to \mathbb{R}^2 \) that maps each simplex in the Rips complex affinely onto the convex hull of its vertices in \(\mathbb{R}^2 \), known as the Rips shadow. The following theorem, proved by Chambers et. al [23], indicates that the Rips complex is rich enough to contain the required topological and geometric properties of its shadow.

Theorem 2: Let \(V \) denote a finite set of points in the plane, with the corresponding Rips complex \(\mathcal{R}_\epsilon(V) \). Then the induced homomorphism \(p_* : \pi_1(\mathcal{R}_\epsilon(V)) \to \pi_1(\mathcal{A}(V)) \) between the fundamental groups of the Rips complex and its shadow is an isomorphism.

Equivalently, Theorem 2 states that a cycle \(\gamma \) in the Rips complex is contractible if and only if its projection \(p(\gamma) \) is contractible in the Rips shadow [22]. The important implication of this theorem is that the first homology groups of the Rips complex and its shadow are also isomorphic. Therefore, the triviality of the first homology of the Rips complex provides a necessary and sufficient condition for a hole-free coverage of \(D \).

Another desirable property of the Rips complex is that it can be formed locally. This is due to the fact that Rips complex is the flag complex of the proximity graph and as a result, solely depends on connectivity information. This property makes Rips complex a desirable combinatorial abstraction of the sensor network, which can be used for distributed coverage verification in the absence of location information. On the other hand, as stated in the previous section, combinatorial Laplacians carry valuable information about the topological properties of a simplicial complex. In particular, \(\ker L_1(\mathcal{R}_{r_b}) = \{0\} \) guarantees that \(H_1(\mathcal{R}_{r_b}) \) is trivial and as a result, all the 1-cycles over the Rips complex are null-homologous. Therefore, according to Theorem 2, \(\ker L_1(\mathcal{R}_{r_b}) = \{0\} \) serves as a necessary and sufficient condition for the Rips shadow to be hole-free. One way to compute a generic element in the kernel of the Laplacian matrix is through the dynamical system \(\dot{x}(t) = -L_1 x(t) \), which asymptotically converges to such an element. This implies the following theorem which was first stated and proved in [12].

Theorem 3: The linear dynamical system

\[
\dot{x}(t) = -L_1 x(t), \quad x(0) = x_0 \in \mathbb{R}^{n_1}
\]

is globally asymptotically stable if and only if \(H_1(\mathcal{R}) = 0 \), where \(x(t) \) is a vector of dimension \(n_1 \) (the number of 1-simplices of the simplicial complex) and \(L_1 \) is the first combinatorial Laplacian matrix of the Rips complex \(\mathcal{R}_{r_b} \).

Note that for any initial condition \(x(0) \), the trajectory \(x(t); t \geq 0 \) always converges to a point in \(\ker L_1 \). Thus, the asymptotic stability of the system is an indicator of an underlying trivial homology. In different terms, since \(x^* = \lim_{t \to \infty} x(t) \) is an element in the null space of \(L_1 \), it is a representative of a homology class of the Rips complex. Clearly, if \(x^* = 0 \) for all initial conditions, then the first homology of the simplicial complex consists of only a trivial class and therefore, the simplicial complex is hole-free.

The importance of using the first combinatorial Laplacian of the simplicial complex is not limited to the above theorem. Its very specific structure guarantees that the update equation (8) is effectively a local update rule. In fact, this update rule works in the spirit of a certain class of distributed algorithms known as gossip algorithms [31], whereby the local state value of an edge is updated using estimates from edges that are lower adjacent to it. The reader may also note the connection between the distributed update (8) and the distributed, continuous-time consensus algorithms, in which the graph Laplacian is used in order to reach a consensus (a point in the kernel) over a connected graph [19].

In summary, in order to verify coverage in a network of fixed sensors, it is sufficient to setup distributed linear dynamical system (8) for a random initial condition and observe the asymptotic state value as \(t \to \infty \). If this distributed dynamical system converges to zero, then the first Betti number of the Rips complex is zero, and therefore, the Rips shadow (which is the actual region covered by the sensors) is hole-free. Conversely, if the asymptotic value of (8) is non-zero, then the first homology of the Rips complex is non-trivial and therefore, Theorem 2 implies the existence of a non-contractible 1-cycle in the Rips shadow and hence, the presence of holes in the cover. Note that our assumption regarding the existence of a set of fence nodes located on the boundary of \(D \) are crucial in avoiding boundary effects. The fence nodes guarantee that if a coverage hole exists, it is located in the interior of the domain \(D \).\(^4\)

\(^4\)This assumption on strong degree of control along the boundary is not strictly required and can be relaxed [10].
B. Symmetric Coverage Framework

We now consider the symmetric coverage framework, in which each sensor is capable of covering a disk of radius r_a and communicate with other sensors within distance $r_b \leq r_c \sqrt{3}$. In this case, the region covered by the sensors is the union of disks of radius r_c centered at the location of the sensors: $\mathcal{U}(V) = \bigcup_{v_i \in V} \{x \in \mathbb{R}^2 : \|x - v_i\| \leq r_c\}$. Similar to the previous framework, we define a combinatorial geometric information of the Čech complex and in general the union of disks of radius r_c. Hence, if the Rips complex with broadcast disks of radius r_b is hole-free, then so is the sensor coverage. This result would serve as a sufficient homological criterion for coverage verification. Note that the case of $r_b = \sqrt{3}r_c$ corresponds to the tightest such sufficient condition for planar networks.

In summary, in order to verify successful coverage in a distributed fashion, the sensors need to compute the first homology of the Rips complex $\mathcal{R}(V)$ using the local neighborhood information available to them. The triviality of the first homology of this simplicial complex provides a sufficient condition for hole-free coverage of D. Therefore, one can set up a linear dynamical system (8) corresponding to the Rips complex with parameter r_a and observe its asymptotic behavior. Similar to the simplicial coverage framework, the asymptotic stability of this dynamical system is a sufficient condition for a hole-free coverage, although it is not necessary anymore.

As a last remark note that (8) is an edge-dimensional dynamical system, where each element of the vector $x(t)$ corresponds to a 1-simplex. However, in both frameworks, edges and all other higher order simplices are simply combinatorial objects and the only real physical entities with computational capabilities are the sensors themselves. Therefore, in order to implement (8) in a sensor network one needs a protocol to assign the computation required by an edge to its adjacent nodes. One such algorithm is suggested by Muhammad and Jadbabaie [13], who obtain a local representation of the Rips complex and implement the dynamical system in Theorem 3 at the node level. They also show that this local implementation at the node level can be achieved by using at the most 2-hops of communications between neighboring vertices.

V. HOLE LOCALIZATION: DISTRIBUTED COMPUTATION OF A SPARSE GENERATOR

In the previous section, we presented a coverage verification algorithm for a sensor network in which the nodes have no location or distance information. As noted before, this distributed algorithm is based on the close topological relationship between the actual cover and the Rips complex as its combinatorial representation. Unfortunately, this verification algorithm is not powerful enough to provide any further information on the cover. All it is capable of is verifying whether the coverage is successful (hole-free) or not. In most practical scenarios, however, one’s interest is not simply limited to coverage verification. In fact, we are as much interested in the location, number and the size of coverage holes (if they exist). Therefore, the algorithm of Section IV needs to be followed by algorithms that can reveal further information about the cover.

In this section, we present a distributed algorithm which is capable of “localizing” coverage holes in a sensor network.
with no location or metric information. By hole localization, we mean detecting cycles over the proximity graph of the network that encircle the coverage holes. The tightest of such cycles provides information on the location and the size of the hole in the Rips shadow.\footnote{Note that in the simplicial framework, the Rips shadow coincides with the actual cover, whereas in the symmetric framework it is only a subset of the region covered by the sensors.} Similar to the previous algorithm, the results of this section are also based on the algebraic topological invariants, namely the homology, of the cover and the Rips complex of the network. In essence, in order to find coverage holes, our algorithm computes sparse generators of a non-trivial class of homologous 1-cycles in the first homology of the simplicial complex, which corresponds to the shortest possible cycle around the holes. Our method is more general than the algorithms presented in [20], [21], where it is explicitly assumed that the simplicial complex is embedded in an orientable surface. It is also different from the results in [22] in the sense that it is not limited to Rips complexes, is distributed in nature, and does not use node coordinates.

Before presenting the algorithm, we state a few remarks regarding the relationship between the sparsest generator of the homology classes and the location of the holes. It is important to keep in mind that we are using simplicial complexes which are combinatorial objects. Therefore, for hole localization in the absence of metric information, the best we can hope for is computing the shortest cycle encircling a hole, which is also a combinatorial object. For instance, consider two different sensor configurations and the region covered by them as depicted in Fig. 4. Although the region covered is different, they are combinatorially equivalent as far as the Rips complex is concerned. Therefore, in both cases, any hole localization algorithm leads to the same result.

Another case that is worth mentioning is the case that the simplicial complex contains multiple holes. It is quite possible that in the case that two holes are “close” relative to their “sizes”,\footnote{By terms such as close or big, we simply mean combinatorially close (in terms of hop count) and combinatorially big (in terms of the length of the shortest cycle).} the sparsest generator of the homology class encircles both of them simultaneously, rather than each hole individually. Fig. 5 is meant to clarify this case. In either case, the sparsest 1-cycle provides valuable information on the location and size of the holes.

With the above in mind, we present an algorithm which is capable of finding a short non-trivial cycle in a homology class. Intuitively, given a representative cycle of a non-trivial homology class, our algorithm computes a sparse generator of that homology class in a distributed fashion, simply by removing components corresponding to cycles that are boundaries of 2-chains in the complex, and hence “tightening” the representative cycle around the holes.

In order to find the shortest cycle in a homology class, the algorithm needs an initial non-trivial 1-cycle in that class. Clearly, any non-zero point in $\ker L_1$ can potentially serve as such an initial 1-cycle. The immediate advantage of using $x \in \ker L_1$ is that one can easily compute such a point in a distributed manner as the limit of linear dynamical system (8). The following example clarifies the idea behind our algorithm.

Example 2: Consider the 2-dimensional simplicial complex depicted in Fig. 3. As was shown in Example 1, the kernel of the first combinatorial Laplacian of this complex is one-dimensional. Therefore, distributed linear dynamical system (8) converges to a non-zero vector in the span of $[8, 8, 1, 3, 8, 2, 5]^T$ for almost all initial conditions. Notice that all edges, including edges $[v_3 v_4]$, $[v_4 v_5]$, $[v_4 v_6]$ and $[v_5 v_6]$ that are not adjacent to the hole, have non-zero values asymptotically. In other words, no element of $\ker L_1$ is “tight” around the hole of the simplicial complex. Another key observation is that any $x \in \ker L_1$ can be written as a linear combination of three fundamental cycles in the 1-skeleton of the simplicial complex:

$$x = 8\alpha c_1 + 3\alpha c_2 + \alpha c_3$$

where

$$
\begin{align*}
 c_1 &= [1, 1, 0, 0, 0, 1, 0, 0]_T \\
 c_2 &= [0, 0, 0, 1, 0, 1, -1]_T \\
 c_3 &= [0, 0, 1, 1, 0, 0, -1, 0]_T
\end{align*}
$$

and α is some real number. Among these cycles, only the first one corresponds to the hole, while the other two are simply contractible cycles corresponding to boundaries of 2-simplices. Therefore, in order to find a tight cycle around the hole, one needs to subtract the right amount of null-homologous 1-cycles encircling 2-simplices (in this case, 3α and α, respectively) from x. What remains is simply a 1-cycle with non-zero values only over the edges that are adjacent to the hole.
cycle is also the sparsest generator of the non-trivial element of the first homology of the simplicial complex.

Computing the tightest cycle around the hole in the above example is simple, due to the fact that the simplicial complex only consists of very few simplices. Unfortunately, once the simplicial complex becomes large, it is not an easy task to compute the right amount of null-homologous cycles to subtract from an element in \(\ker L \), and find a sparse representative of the homology class. Moreover, in the absence of a centralized scheme, it is reasonable to assume that the elements of \(x \in \ker L \) are only known locally to the nodes. This is indeed the case if \(x \) is computed in a distributed fashion using dynamical system (8). Therefore, we need an algorithm which is capable of finding sparse non-trivial generators of homology classes of a simplicial complex by using only local information.

A. Computing the Sparsest Generator: IP Formulation

Consider a simplicial complex \(X \) with first combinatorial Laplacian \(L_1 \). By construction, any element in the null space of \(L_1 \) is a 1-cycle that is orthogonal to the subspace spanned by the boundaries of the 2-simplices. In other words, \(x \in \ker L_1 \subset \mathbb{R}^{n_1} \) if and only if \(x \in \ker B_1 \) and \(x \perp \text{img} B_2 \). Therefore, as stated in Section III, any non-zero \(x \) in the kernel of the first combinatorial Laplacian is a representative element of a non-trivial homology class of \(X \). However, as in Example 2, \(x \) is not necessarily the sparsest representative of the homology class it belongs to. In general, given a generator \(x \) of a homology class, the sparsest generator of that class can be computed as the solution to the following integer programming optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \|y\|_0 \\
\text{subject to} & \quad y = x + B_2 z
\end{align*}
\]

where \(\|\cdot\|_0 \) is the \(\ell_0 \)-norm of a vector, equal to the number of non-zero elements of that vector, and \(B_2 \) is the matrix representation of the second boundary operator \(\partial_2 \). Note that if \(x \) is a 1-cycle, then the minimizer \(y^* \) is also a 1-cycle in the kernel of \(B_1 \). Moreover, the constraint \(y - x \in \text{img} B_2 \) guarantees that both \(x \) and \(y^* \) are representatives of the same homology class, simply because adding and subtracting null-homologous cycles does not change the homology class. Therefore, any solution of the above optimization problem is the sparsest generator of the homology class that \(x \) belongs to, and has the desired property that it is the tightest possible cycle (in terms of length) around the holes represented by that homology class.

B. LP Relaxation

Optimization problem (9) has a very simple formulation. However, due to the 0-1 combinatorial element in the problem statement, solving it is not, in general, computationally tractable. In fact, Chen and Freedman [34] show that computing the sparsest generator of an arbitrary homology class is NP-hard.

A popular relaxation for solving such a problem is to minimize the \(\ell_1 \)-norm of the objective function rather than its \(\ell_0 \)-norm [35]:

\[
\begin{align*}
\text{minimize}_{y,z} & \quad \|y\|_1 \\
\text{subject to} & \quad y = x + B_2 z
\end{align*}
\]

This relaxation is a linear programming (LP) problem and can be solved quite efficiently. An argument similar to before shows that the minimizer of the above optimization problem is also a 1-cycle homologous to the initial \(x \), since their difference is simply a null-homologously cycle in the image of \(B_2 \).

In general, the minimizer of (10) is simply an approximation to the minimizer of (9) and has a larger \(\ell_0 \)-norm. Nevertheless, in certain cases the solutions of the two problems coincide. In the next theorem, we present conditions under which the two minimizers have the same zero/non-zero pattern. Under such conditions, we would be able to compute the sparsest generator of the homology class of \(x \) efficiently.

Before formally presenting the theorem, we need to define some notation and present a lemma. Consider an oriented Rips complex \(R \) with first Betti number \(b \), where the holes are labeled 1 through \(b \). By \(h(\alpha_1, \ldots, \alpha_b) \) we denote the class of homologous 1-cycles that encircle the \(i \)-th hole \(\alpha_i \) many times in a given direction. Note that for any \(\alpha \in \mathbb{R}^b \), \(h(\alpha) \) is an affine subset of \(\mathbb{R}^{n_1} \), where \(n_1 \) is the number of 1-simplices in \(R \).

We assume that the shortest representative cycle encircling the \(i \)-th hole is unique, and is denoted by \(c_i^* \); that is,

\[
c_i^* = \underset{c \in h(\ell_i)}{\text{arg min}} \|c\|_0
\]

where \(c_i \) is the \(i \)-th coordinate vector. Since \(c_i^* \) is the sparsest 1-cycle that encircles the \(i \)-th hole once, we have the following lemma:

Lemma 2: \(c_i^* \in \{0, 1, -1\}^{n_1} \); that is, the elements of \(c_i^* \) belong to the set \(\{0, 1, -1\} \).

We now present the main theorem of this section that characterizes sufficient conditions for the exactness of the relaxation problem.

Theorem 5: Given a Rips complex \(R \), suppose that the shortest representative cycle that encircles the \(i \)-th hole, denoted by \(c_i^* \), is unique for all \(i \). Also assume that for any simple loop \(c \in h(\mu) \),

\[
\|c\|_0 \geq \sum_{i=1}^{b} |\mu_i| \|c_i^*\|_0 \quad \forall \mu \in \mathbb{Z}^b.
\]

Then, for all \(\alpha \in \mathbb{R}^b \), we have, \(\arg \min_{c \in h(\alpha)} \|c\|_0 = \arg \min_{c \in h(\alpha)} \|c\|_1 \).

Proof: Assume that the edges in \(R \) are labeled 1 through \(n_1 \). We first prove that the two minimizers have identical zero/non-zero patterns. Given a class \(h(\alpha) \), suppose that the \(\ell_1 \)-minimizer, denoted by \(y^{(1)} \), does not have the same pattern.

Strictly speaking, (10) is not a relaxation of (9), as the two problems have identical feasible sets. However, one can show, [36], that there exists an LP equivalent to (10) which is a relaxation of an IP equivalent to (9).
as the ℓ_0-minimizer, $y^{(0)}$. This means that there exists an edge j_1 in the simplicial complex, over which $y^{(1)}$ has a non-zero value, while the ℓ_0-minimizer does not. That is,

$$y^{(1)}_{j_1} \neq 0 \quad \text{and} \quad y^{(0)}_{j_1} = 0.$$

Since $y^{(1)}$ is a 1-cycle, there exists another edge j_2 lower-adjacent to j_1 with a non-zero value. Reapplying the same argument implies that j_2 belongs to a set E of edges, all with non-zero values on $y^{(1)}$, forming a simple loop over the simplicial complex. Note that without loss of generality we can assume that the edge directions are defined such that the elements of $y^{(1)}$ are non-negative. Therefore,

$$y^{(1)}_i > 0 \quad \forall i \in E.$$

Given set E, we define 1-chain $\tilde{c} \in \mathbb{E}^n_1$ as $\tilde{c}_i = 1_{\{i \in E\}}$, where 1 denotes the indicator function. Note that \tilde{c} is a 1-cycle which belongs to some homology class $h(\mu)$. We set $\gamma > 0$ to be the smallest value that edges in E take in the ℓ_1-minimizer $y^{(1)}$; i.e.,

$$\gamma = \min_{i \in E} y^{(1)}_i.$$

Finally, we define 1-cycle $y' = y^{(1)} - \gamma \tilde{c} + \gamma (\sum_{i=1}^b |\mu_i| c^*_i)$, for which we have,

$$\|y'\|_1 \leq \|y^{(1)} - \gamma \tilde{c}\|_1 + \gamma \sum_{i=1}^b |\mu_i| \|c^*_i\|_1$$

$$= \|y^{(1)}\|_1 - \gamma \|\tilde{c}\|_1 + \gamma \sum_{i=1}^b |\mu_i| \|c^*_i\|_1$$

$$= \|y^{(1)}\|_1 - \gamma \|\tilde{c}\|_0 + \gamma \sum_{i=1}^b |\mu_i| \|c^*_i\|_0$$

$$< \|y^{(1)}\|_1.$$

The first equality is due to the fact that we defined γ to be the smallest value that $y^{(1)}$ takes on E. In the second equality, we used the fact that \tilde{c} and all c^*_i are 1-cycles with values in $\{0, 1, -1\}$, implying that their ℓ_1 and ℓ_0-norms are equal. Finally, the last inequality is a consequence of assumption (11).

In summary, there exists a 1-cycle y' homologous to $y^{(1)}$ with a smaller ℓ_1-norm, which contradicts the fact that $y^{(1)}$ is the ℓ_1-minimizer. Therefore, the two 1-cycles $\arg \min_{c \in h(\alpha)} \|c\|_0$ and $\arg \min_{c \in h(\alpha)} \|c\|_1$ have the same zero/non-zero pattern for all α. Finally, the fact that both 1-cycles belong to the same homology class, $h(\alpha)$, implies that the two must be equal.

The above theorem states that, under the given conditions, the ℓ_1-minimizer is the sparsest generator of its homology class, and therefore, its non-zero entries indicate the edges of the 1-cycle that are tight around the holes. As a consequence, one can efficiently compute the set of edges adjacent to the holes, using methods known for solving LPs.

It is important to notice that Theorem 5 requires the uniqueness of the sparsest generator of each homology class in order to guarantee that the minimizers of the two problems coincide. When (11) holds but the ℓ_0-minimizer is not unique, not only every ℓ_0-minimizer is a solution to (10), but so is any convex combination of them. This is due to the fact that if two vectors have the same ℓ_1-norm, then any vector in their convex hull cannot have a larger ℓ_1-norm. In such cases, solving (10) can result in a 1-cycle in the convex hull of the minimizers of (9).

The intuition behind assumption (11) is also worth exploring. It requires that the he shortest representative cycle of any homology class is simply a linear combination of the shortest cycles encircling the holes separately. This condition is trivially satisfied when the simplicial complex has only one hole, are the holes are far from each other relative to their sizes. Nevertheless, even when the condition is not satisfied, the solution of (10) is a relatively sparse (although not necessarily the sparsest) 1-cycle, and therefore, can be used as a good approximation for hole localization.

C. Decentralized Computation: The Subgradient Method

As mentioned before, unlike the original IP problem (9), one can convert (10) to a linear programming problem and solve it efficiently using methods known for solving LPs. However, applying the subgradient method [37], [38] enables us to compute the ℓ_1-minimizer in a distributed manner. Although the convergence would be slower than usual methods for solving linear programs, the added value of decentralization makes the method worthwhile.

Consider optimization problem (10) which can be rewritten as

\[
\min_{z \in \mathbb{R}^{n_2}} \|x + B_2 z\|_1
\]

where n_2 is the number of the 2-simplices of the simplicial complex. A subgradient for the objective function in the above problem is the sign function. Therefore, the subgradient update can be written as

\[
z^{(k+1)} = z^{(k)} - \alpha_k B^T_2 \text{sgn}(B_2 z^{(k)} + x)
\]

with the initial condition $z^{(0)} = 0$. Note that z is a face-dimensional vector and the iteration updates an evaluation on the 2-simplices of the simplicial complex. The most important characteristic of (13) is that, due to the local structure of B_2, it can be implemented in a distributed manner, if the initial x is known locally. By picking a small enough constant step size α_k, it is guaranteed that the update (13) gets arbitrarily close to the optimal value [37], which under the conditions of Theorem 5 is the sparsest generator (or a convex combination of the sparsest generators if the minimizers are not unique) of the homology class of the initial 1-cycle x. In Section VII we provide simulations of this algorithm.

VI. DISTRIBUTED DETECTION OF REDUNDANT SENSORS

In the previous sections we presented a homological criterion for coverage. Namely, based on the results of [9], we argued that a sufficient condition for successful coverage is to have no holes in the flag complex of the proximity graph, i.e., the Rips complex of the network. This condition is translated into algebraic topological terms as $H_1(R_{\mathcal{N}}) = 0$, which means that every 1-cycle in the communication graph can be realized as the boundary of a surface built from 2-simplices of $R_{\mathcal{N}}$. We
also showed that the first combinatorial Laplacian can be used to verify our homological criterion for coverage in a distributed manner.

In this section, we present a distributed algorithm which is capable of computing a sparse cover of domain D and detect redundancies in the sensor network, in the absence of location information. In other words, the algorithm enables us to “turn off” redundant sensors without impinging upon the coverage integrity. As before, we formulate the problem of finding a sparse cover as an optimization problem to compute the sparsest generator of a certain homology class, and use subgradient methods to solve it in a distributed way. However, in contrast to the previous sections, we use the second homology of the Rips complex relative to its boundary. The advantage of the second relative homology lies in the fact that it is more robust to extensions and therefore, yields stronger information about the actual cover [10].

Consider Rips complex R corresponding to network of the sensors deployed over region D. We denote the subcomplex that is canonically identified with the fence nodes over ∂D with $F \subset R$. If the 1-cycles defined over F are null-homologous - that is, if $[F] = 0$ in $H_1(R)$ - then, the coverage is hole-free. In such a case, there exists a 2-chain which bounds F:

$$\forall \text{ 1-cycle } \beta \in C_1(F), \exists \alpha \in C_2(R) \text{ s.t. } \beta = \partial_2 \alpha$$

Therefore, when translated into the language of algebraic topology, such a 2-chain α, which is not necessarily unique, represents a relative 2-dimensional homology class, a certain generator in $H_2(R, F)$. As a result, the condition for a hole-free successful coverage can be rewritten in terms of the second relative homology classes:

Theorem 6: For a set of nodes V in a domain $D \subset \mathbb{R}^2$ satisfying the assumptions of Section II, the sensor cover contains D if there exists $[\alpha] \in H_2(R, F)$ such that $\partial_2 \alpha \neq 0$.

This theorem is first stated and proved by de Silva and Ghrist [10]. Intuitively, 2-chain α has the appearance of “filling in” D with triangles composed of projected 2-simplices from R. Note that the relative group $H_2(R, F)$ captures the second homology of the quotient space R/F, in which all the simplices in F are identified. This can be done by adding a “super node” to the complex, as depicted in Fig. 6. If the Rips complex is hole-free, then the topology of this quotient space is that of a sphere, and therefore, the second relative homology $H_2(R, F)$ has a non-trivial generator. On the other hand, if the 1-cycles defined over subcomplex F are not contractible, then the relative homology has no generator with non-zero values on the boundary.

Note that the dimension of the second relative homology $H_2(R, F)$ may be greater than one. This can happen if there exists a 2-cycle which is a generator of $H_2(R)$ as well as $H_2(R, F)$, as depicted in Fig. 7. Such 2-cycles do not represent a true relative class, as they may still exist, even if the fence cycle F is not the boundary of any 2-chain. Hence, Theorem 6 requires the existence of a relative 2-cycle α with a non-zero boundary.

Given the above, it is easy to see that the minimal cover is simply the sparsest generator of a second homology class of R relative to F. Therefore, one can formulate the problem of finding the sparsest cover over D as an optimization problem, simply by extending the results of the previous section to a higher dimension. The only difference lies in the fact that instead of the Rips complex corresponding to the network, we use the quotient complex R/F which is obtained by identifying all the simplices of F with a super node. Once this quotient simplicial complex is formed, we compute its second combinatorial Laplacian in a distributed manner, and by running the decentralized linear dynamical system $\dot{x}(t) = -L_2 x(t)$, with a random initial condition, obtain a point $x \in \ker L_2$ asymptotically. The limit of this dynamical update is a relative 2-cycle which does not vanish on the boundary, for almost all initial conditions. Once such a 2-cycle x is computed, the minimizer of the optimization problem

$$\min_{y \in \mathbb{R}^D} \|y\|_0 \quad \text{subject to } y = x + B_3 z$$

represents the sparsest generator of the relative homology class that x belong to. In the above problem, B_3 is the triangle-by-tetrahedron incidence matrix of the quotient complex R/F, x and y are 2-cycles and z is a 3-chain. Similar to problem (9), the constraint $y - x \in \text{img } B_1$ guarantees that y and x are homologous 2-cycles. Since (14) is NP-hard, one can instead solve its ℓ_1-relaxation:

$$\min_{z \in \mathbb{R}^{D_3}} \|x + B_3 z\|_1$$

Note that this object can be formed in a distributed fashion. All that is required is that the fence nodes take the local neighborhood relations of each other into account and update their values together.
which can be solved by the means of the distributed subgradient update

\[z^{(k+1)} = z^{(k)} - \alpha_k B_3^T \text{sgn}(B_3 z^{(k)} + x). \]

in a distributed manner.

Distributed iteration 16 leads to a sparse generator of the second relative homology, in which most 2-simplices have a corresponding value equal to zero. Any vertex that only belongs to 2-simplices with zero valuations in the optimal solution can be removed from the network, without generating a coverage hole. The next section contains simulations that demonstrate the performance of our algorithm.

VII. SIMULATIONS

In this section, we present the simulation results for the algorithms presented in Sections V and VI, for hole localization and computation of the minimal cover, respectively.

A. Hole Localization

We demonstrate the performance of our distributed hole localization algorithm with a randomly generated numerical example. Fig. 8(a) depicts the Rips shadow of a simplicial complex on \(n = 81 \) vertices distributed over \(\mathbb{R}^2 \). The 2-skeleton of this simplicial complex consists of 81 vertices, 372 edges, and 66 triangles (2-simplices). As Fig. 8(a) suggests, the null space of the first combinatorial Laplacian of this Rips complex is 2-dimensional. The two non-trivial homology classes correspond to two eigenvectors of the Laplacian matrix corresponding to eigenvalue zero. We generated a point in \(x \in \ker L_1 \) by running the distributed linear dynamical system (8) with a random initial condition \(x(0) \). The edge-evaluation of the limiting \(x \in \ker L_1 \) is depicted in Fig. 8(b), where the thickness of an edge is directly proportional to the magnitude of its corresponding component in \(x \). It can be seen that all components of the generated 1-cycle in null space of \(L_1 \) are more or less of the same order of magnitude. In order to localize the two holes, we ran subgradient update (13) with a diminishing square summable but not summable step size. The edge evaluation of the 1-cycles after 1000 and 4000 iterations are depicted in Figs. 8(c) and 8(d). These figures illustrate that after enough iterations, the subgradient method converges to a 1-cycle that has non-zero values only over the cycles that are tight around the holes. In Fig. 8(d), the value of the 12 edges adjacent to the holes are 3 orders of magnitude higher than the rest.

Note that our algorithm is only capable of finding the tightest minimal-length cycles surrounding the holes, which do not necessarily coincide with the cycles that are closer in distance to the holes. As stated before, after all, we are not using any metric information and the combinatorial relations between vertices is the only information available. Moreover, in the case that there are two minimal-length cycles surrounding the same hole (as in the upper hole in Fig. 7), any convex combination of those is also a minimizer of the LP relaxation problem (10). In such cases, the subgradient method in general converges to a point in the convex hull of the two solutions, rather than a corner solution. Also note that the two holes in the Rips complex are far relative to their sizes and therefore, Theorem 5 guarantees that the solution

Fig. 8. Subgradient methods can be used to localize the holes in a distributed fashion.
obtained by the ℓ_1-minimization lies in the convex hull of the ℓ_0-minimizers.

B. Computing a Sparse Cover

Fig. 9 illustrates the performance of the algorithm presented in Section VI. The randomly generated Rips complex used for this simulation consists of 66 vertices, 22 of which function as fence nodes (Fig. 9(a)). The second relative homology of this simplicial complex contains one non-trivial class of relative 2-cycles.

In order to compute a non-trivial representative of the second relative homology, we introduced an extra node, connected to all the fence nodes. We computed the second combinatorial Laplacian of the resulting complex and used the linear update $\dot{x}(t) = -L_2 x(t)$ to obtain a point in the null space of L_2. Subgradient update (16) is used to solve optimization problem (14). The minimizer 2-cycle is depicted in Fig. 9(b). We have removed the vertices that do not belong to any 2-simplex with a non-zero value at the optimal point. As illustrated in Fig. 9(b), 32 sensors can be removed from the network, without impinging upon the coverage integrity.

As a last remark, note that we can remove either vertex a or b in Fig. 9(b) without generating a coverage hole. In fact, the removal of either one, would lead to an even sparser solution than the one obtained by the subgradient update. This is due to the fact that the generator depicted in Fig. 9(b) is a convex combination of two distinct solutions to the original integer programming problem (14). As in the earlier example, since the original problem has more than one minimizer, any relative 2-cycle in their convex hull is also a minimizer of the LP relaxation problem (15).

VIII. CONCLUSIONS

In this paper, we presented distributed algorithms for coverage verification in a sensor network, when no metric information is available. We used simplicial complexes and combinatorial Laplacians to capture topological properties of the network. Furthermore, we showed how, in the absence of location information, simplicial homologies of the Rips complex can be used in verifying coverage. In particular, we illustrated the relationship between the kernel of the first combinatorial Laplacian of the Rips complex and the number of coverage holes. We formulated the problem of localizing coverage holes (in the sense of finding tight cycles encircling them) as an optimization problem that can be solved in a distributed fashion using subgradient methods. Along the same lines, we showed how one can compute a sparse cover, and detect redundancies in the network. We presented a subgradient update that is capable of computing a sparse generator of the second homology classes of the Rips complex relative to its boundary, in a decentralized manner. We then used the minimizer to detect redundant sensors. Finally, we provided simulations to demonstrate the performance of our algorithms.

ACKNOWLEDGMENT

The authors would like to thank Robert Ghrist for many helpful comments and discussions.

REFERENCES

Alireza Tahbaz-Salehi received the B.Sc. degree from Sharif University of Technology, Tehran, Iran in 2004. He received the M.S.E. degree in electrical engineering, the M.A. degree in economics, and his Ph.D. degree in electrical and systems engineering, all from the University of Pennsylvania, Philadelphia, PA, in 2006, 2008, and 2009, respectively. He is currently a Postdoctoral Associate at the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA.

His research interests are in distributed control of multi-agent systems, networked dynamical systems, social and economic networks, and game theory.

Ali Jadbabaie got his Bachelors degree from Sharif University of Technology in 1995. He received a Masters degree in electrical and computer engineering from the University of New Mexico, Albuquerque in 1997 and a Ph.D. degree in control and dynamical systems from California Institute of Technology in 2001. From July 2001 to July 2002 he was a postdoctoral associate at the department of Electrical Engineering at Yale University. Since July 2002 he has been with the department of Electrical and Systems Engineering and GRASP Laboratory at the University of Pennsylvania, Philadelphia, PA, where he is now the Skirkanich Associate Professor of Innovation.

He is a recipient of an NSF Career Award, an ONR Young Investigator award, Best student paper award (as advisor) of the American Control Conference 2007, the O. Hugo Schuck Best Paper award of the American Automatic Control Council, and the George S. Axelby Outstanding Paper Award of the IEEE Control Systems Society.

His research is broadly in control theory and network science, specifically, analysis, design and optimization of networked dynamical systems with applications to sensor networks, multi-vehicle control, social aggregation and other collective phenomena, such as synchronization and flocking.