Fall 2008 CIS 260

Mathematical Foundations of Computer Science Jean Gallier
 Homework 9

November 19, 2008; Due December 1, 2008

Problem 1. Consider the function, $J: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, given by

$$
J(m, n)=\frac{1}{2}\left[(m+n)^{2}+3 m+n\right] .
$$

(a) Prove that for any $z \in \mathbb{N}$, if $J(m, n)=z$, then

$$
8 z+1=(2 m+2 n+1)^{2}+8 m
$$

Deduce from the above that

$$
2 m+2 n+1 \leq \sqrt{8 z+1}<2 m+2 n+3
$$

(b) If $x \mapsto\lfloor x\rfloor$ is the function from \mathbb{R} to \mathbb{N} (the floor function), where $\lfloor x\rfloor$ is the largest integer $\leq x$ (for example, $\lfloor 2.3\rfloor=2,\lfloor\sqrt{2}\rfloor=1$), then prove that

$$
\lfloor\sqrt{8 z+1}\rfloor+1=2 m+2 n+2 \quad \text { or } \quad\lfloor\sqrt{8 z+1}\rfloor+1=2 m+2 n+3,
$$

so that

$$
\lfloor(\lfloor\sqrt{8 z+1}\rfloor+1) / 2\rfloor=m+n+1 .
$$

(c) Since $J(m, n)=z$ means that

$$
2 z=(m+n)^{2}+3 m+n,
$$

prove that m and n are solutions of the system

$$
\begin{aligned}
m+n & =\lfloor(\lfloor\sqrt{8 z+1}\rfloor+1) / 2\rfloor-1 \\
3 m+n & =2 z-(\lfloor(\lfloor\sqrt{8 z+1}\rfloor+1) / 2\rfloor-1)^{2}
\end{aligned}
$$

If we let

$$
\begin{aligned}
& Q_{1}(z)=\lfloor(\lfloor\sqrt{8 z+1}\rfloor+1) / 2\rfloor-1 \\
& Q_{2}(z)=2 z-(\lfloor(\lfloor\sqrt{8 z+1}\rfloor+1) / 2\rfloor-1)^{2}=2 z-\left(Q_{1}(z)\right)^{2}
\end{aligned}
$$

then prove that $Q_{2}(z)-Q_{1}(z)$ is even and that

$$
\begin{aligned}
m & =\frac{1}{2}\left(Q_{2}(z)-Q_{1}(z)\right)=K(z) \\
n & =Q_{1}(z)-\frac{1}{2}\left(Q_{2}(z)-Q_{1}(z)\right)=L(z) .
\end{aligned}
$$

Conclude that J is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}, with

$$
\begin{aligned}
m & =K(J(m, n)) \\
n & =L(J(m, n))
\end{aligned}
$$

Remark: It can also be shown that $J(K(z), L(z))=z$.
Problem 2. Let $S_{n p}$ be the number of surjections from the set $\{1, \ldots, n\}$ onto the set $\{1, \ldots, p\}$, where $1 \leq p \leq n$. Observe that $S_{n 1}=1$.
(a) Recall that $n!$ (factorial) is defined for all $n \in \mathbb{N}$ by $0!=1$ and $(n+1)!=(n+1) n!$. Also recall that $\binom{n}{k}$ (n choose k) is defined for all $n \in \mathbb{N}$ and all $k \in \mathbb{Z}$ as follows:

$$
\begin{aligned}
& \binom{n}{k}=0, \quad \text { if } \quad k \notin\{0, \ldots, n\} \\
& \binom{0}{0}=1 \\
& \binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}, \quad \text { if } \quad n \geq 1 .
\end{aligned}
$$

Prove by induction on n that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

(b) Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \quad(n \geq 0) \quad \text { and } \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 \quad(n \geq 1)
$$

Hint. Use the binomial formula shown in the class notes: For all $a, b \in \mathbb{R}$ and all $n \geq 0$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

(c) Prove that

$$
p^{n}=S_{n p}+\binom{p}{1} S_{n p-1}+\binom{p}{2} S_{n p-2}+\cdots+\binom{p}{p-1} .
$$

(d) For all $p \geq 1$ and all i, k, with $0 \leq i \leq k \leq p$, prove that

$$
\binom{p}{i}\binom{p-i}{k-i}=\binom{k}{i}\binom{p}{k} .
$$

Use the above to prove that

$$
\binom{p}{0}\binom{p}{k}-\binom{p}{1}\binom{p-1}{k-1}+\cdots+(-1)^{k}\binom{p}{k}\binom{p-k}{0}=0 .
$$

(e) Prove that

$$
S_{n p}=p^{n}-\binom{p}{1}(p-1)^{n}+\binom{p}{2}(p-2)^{n}+\cdots+(-1)^{p-1}\binom{p}{p-1}
$$

Hint. Write all p equations given by (c) for $1,2, \ldots, p-1, p$, multiply both sides of the equation involving $(p-k)^{n}$ by $(-1)^{k}\binom{p}{k}$, add up both sides of theses equations and use (b) to simplify the sum on the righthand side.

