Fall 2008 CIS 260

Mathematical Foundations of Computer Science Jean Gallier

Homework 9

November 19, 2008; Due December 1, 2008

Problem 1. Consider the function, $J \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, given by

$$J(m,n) = \frac{1}{2}[(m+n)^2 + 3m + n].$$

(a) Prove that for any $z \in \mathbb{N}$, if J(m, n) = z, then

$$8z + 1 = (2m + 2n + 1)^2 + 8m.$$

Deduce from the above that

$$2m + 2n + 1 \le \sqrt{8z + 1} < 2m + 2n + 3.$$

(b) If $x \mapsto \lfloor x \rfloor$ is the function from \mathbb{R} to \mathbb{N} (the *floor function*), where $\lfloor x \rfloor$ is the largest integer $\leq x$ (for example, $\lfloor 2.3 \rfloor = 2$, $\lfloor \sqrt{2} \rfloor = 1$), then prove that

$$\lfloor \sqrt{8z+1} \rfloor + 1 = 2m + 2n + 2$$
 or $\lfloor \sqrt{8z+1} \rfloor + 1 = 2m + 2n + 3$,

so that

$$\lfloor (\lfloor \sqrt{8z+1} \rfloor + 1)/2 \rfloor = m+n+1.$$

(c) Since J(m, n) = z means that

$$2z = (m+n)^2 + 3m + n,$$

prove that m and n are solutions of the system

$$m+n = \lfloor (\lfloor \sqrt{8z+1} \rfloor + 1)/2 \rfloor - 1 3m+n = 2z - (\lfloor (\lfloor \sqrt{8z+1} \rfloor + 1)/2 \rfloor - 1)^2.$$

If we let

$$Q_1(z) = \lfloor (\lfloor \sqrt{8z+1} \rfloor + 1)/2 \rfloor - 1 Q_2(z) = 2z - (\lfloor (\lfloor \sqrt{8z+1} \rfloor + 1)/2 \rfloor - 1)^2 = 2z - (Q_1(z))^2,$$

then prove that $Q_2(z) - Q_1(z)$ is even and that

$$m = \frac{1}{2}(Q_2(z) - Q_1(z)) = K(z)$$

$$n = Q_1(z) - \frac{1}{2}(Q_2(z) - Q_1(z)) = L(z)$$

Conclude that J is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} , with

$$m = K(J(m, n))$$
$$n = L(J(m, n)).$$

Remark: It can also be shown that J(K(z), L(z)) = z.

Problem 2. Let S_{np} be the number of surjections from the set $\{1, \ldots, n\}$ onto the set $\{1, \ldots, p\}$, where $1 \le p \le n$. Observe that $S_{n1} = 1$.

(a) Recall that n! (factorial) is defined for all $n \in \mathbb{N}$ by 0! = 1 and (n+1)! = (n+1)n!. Also recall that $\binom{n}{k}$ (n choose k) is defined for all $n \in \mathbb{N}$ and all $k \in \mathbb{Z}$ as follows:

$$\begin{pmatrix} n \\ k \end{pmatrix} = 0, \quad \text{if} \quad k \notin \{0, \dots, n\}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} n \\ k \end{pmatrix} = \binom{n-1}{k} + \binom{n-1}{k-1}, \quad \text{if} \quad n \ge 1$$

Prove by induction on n that

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

(b) Prove that

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n} \quad (n \ge 0) \quad \text{and} \quad \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0 \quad (n \ge 1).$$

Hint. Use the *binomial formula* shown in the class notes: For all $a, b \in \mathbb{R}$ and all $n \ge 0$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

(c) Prove that

$$p^{n} = S_{np} + {p \choose 1} S_{np-1} + {p \choose 2} S_{np-2} + \dots + {p \choose p-1}.$$

(d) For all $p \ge 1$ and all i, k, with $0 \le i \le k \le p$, prove that

$$\binom{p}{i}\binom{p-i}{k-i} = \binom{k}{i}\binom{p}{k}.$$

Use the above to prove that

$$\binom{p}{0}\binom{p}{k} - \binom{p}{1}\binom{p-1}{k-1} + \dots + (-1)^k\binom{p}{k}\binom{p-k}{0} = 0.$$

(e) Prove that

$$S_{np} = p^n - \binom{p}{1}(p-1)^n + \binom{p}{2}(p-2)^n + \dots + (-1)^{p-1}\binom{p}{p-1}.$$

Hint. Write all p equations given by (c) for $1, 2, \ldots, p - 1, p$, multiply both sides of the equation involving $(p - k)^n$ by $(-1)^k {p \choose k}$, add up both sides of theses equations and use (b) to simplify the sum on the righthand side.