Fall, 2017 CIS 262

Automata, Computability and Complexity Jean Gallier Solutions of the Practice Final Exam

December 6, 2017

Problem 1 (10 pts). Let Σ be an alphabet.
(1) What is an ambiguous context-free grammar? What is an inherently ambiguous context-free language?
(2) Is the following context-free grammar ambiguous, and if so demonstrate why?

$$
\begin{aligned}
& E \longrightarrow E+E \\
& E \longrightarrow E * E \\
& E \longrightarrow(E) \\
& E \longrightarrow a .
\end{aligned}
$$

Solution. (1) See Definition 6.5, page 134 of the notes tcbook-u.pdf.
(2) Yes, this grammar is ambiguous. For example, the string $a+a * a$ has two distinct leftmost derivations

$$
\begin{aligned}
& \mathbf{E} \Longrightarrow \mathbf{E} * E \Longrightarrow \mathbf{E}+E * E \\
& \Longrightarrow a+\mathbf{E} * E \Longrightarrow a+a * \mathbf{E} \Longrightarrow a+a * a,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{E} \Longrightarrow \mathbf{E}+E \Longrightarrow a+\mathbf{E} \\
& \Longrightarrow a+\mathbf{E} * E \Longrightarrow a+a * \mathbf{E} \Longrightarrow a+a * a
\end{aligned}
$$

Problem 2 (5pts). Given any trim DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepting a language $L=$ $L(D)$, if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation \simeq_{D} is equal to ρ_{L}.

Solution. We proved in Proposition 5.13 (page 99) that for any trim DFA D accepting a language L, we have

$$
\simeq_{D} \subseteq \rho_{L}
$$

We also proved that the number of equivalence classes of ρ_{L} is the size of the minimal DFA's for L (again, see page 99). Therefore, if D is a minimal DFA, then \simeq_{D} and ρ_{L} have the same number of classes, which implies that $\simeq_{D}=\rho_{L}$.

Problem 3 (10 pts).

Consider the following DFA D_{0} with start state A and final state D given by the following transition table:

	a	b
A	B	A
B	C	A
C	D	A
D	D	A

Reverse all the arrows of D_{0}, obtaining the following NFA N (wihout ϵ-transitions) with start state D and final state A given by the following table:

	a	b
A	\emptyset	$\{A, B, C, D\}$
B	$\{A\}$	\emptyset
C	$\{B\}$	\emptyset
D	$\{C, D\}$	\emptyset

This NFA accepts the language $\{a a a\}\{a, b\}^{*}$.
(1) Use the subset construction to convert N to a DFA D (with 5 states).
(2) Prove that D is a minimal DFA.

Solution. (1) Applying the subset construction, we obtain the following DFA with start state 0 and final state 4:

		a	b
0	$\{D\}$	1	2
1	$\{C, D\}$	3	2
2	\emptyset	2	2
3	$\{B, C, D\}$	4	2
4	$\{A, B, C, D\}$	4	4

(2) Let's apply the method for propagating inequivalence described in Section 5.19 of the notes on pages 109-110. Since 4 is the only final state, the intial table is the following (where \times means inequivalent, and \square means don't know yet):

Let us proceed from the botttom up and from right to left (as opposed to the top down). At the end of the first round, we get

1	\times			
2	\times	\times		
3	\times	\times	\times	
4	\times	\times	\times	\times
	0	1	2	3

Nothing changes during the second round, so we conclude that there are no pairs of equivalent states, which means that the DFA is minimal.

Problem 4 (10 pts). Given any context-free grammar $G=\left(V, \Sigma, P, S^{\prime}\right)$, with special starting production $S^{\prime} \longrightarrow S$ where S^{\prime} only appears in this production, the set of characteristic strings C_{G} is defined by

$$
\begin{array}{r}
C_{G}=\left\{\alpha \beta \in V^{*} \mid S^{\prime} \Longrightarrow_{r m}^{*} \alpha B v \underset{r m}{\Longrightarrow} \alpha \beta v,\right. \\
\left.\alpha, \beta \in V^{*}, v \in \Sigma^{*}, B \rightarrow \beta \in P\right\} .
\end{array}
$$

Consider the grammar G with nonterminal set $\{S, A, C\}$ and terminal set $\{a, b, c\}$ given by the following productions:

$$
\begin{aligned}
& S^{\prime} \longrightarrow S \\
& S \longrightarrow A C \\
& A \longrightarrow a A b \\
& A \longrightarrow a b \\
& C \longrightarrow c .
\end{aligned}
$$

Describe all rightmost derivations and the set C_{G}.
Solution. Rightmost derivations are of the form

$$
S^{\prime} \underset{r m}{\Longrightarrow} S
$$

or

$$
\begin{aligned}
& S^{\prime} \underset{r m}{\Longrightarrow} S \\
& S \underset{r m}{\Longrightarrow} A C
\end{aligned}
$$

or

$$
\begin{array}{r}
S^{\prime} \underset{r m}{\Longrightarrow} S \\
S \xrightarrow[r m]{\Longrightarrow} A C \\
A C \underset{r m}{\Longrightarrow} A c
\end{array}
$$

or

$$
\begin{aligned}
S^{\prime} & \underset{r m}{\Longrightarrow} S \\
S & \underset{r m}{\Longrightarrow} A C \\
A C & \underset{r m}{\Longrightarrow} A c \\
A c & \underset{r m}{\Longrightarrow} a^{n} A b^{n} c \\
a^{n} A b^{n} c & \Longrightarrow m \\
\Longrightarrow & a^{n+1} b^{n+1} c=a^{n+1} b b^{n} c
\end{aligned}
$$

or

$$
\begin{aligned}
& S^{\prime} \underset{r m}{\Longrightarrow} S \\
& S \underset{r m}{\Longrightarrow} A C \\
& A C \underset{r m}{\Longrightarrow} A c \\
& A c \underset{r m}{\Longrightarrow} a^{n} A b^{n} c \\
& a^{n} A b^{n} c \underset{r m}{\Longrightarrow} a^{n+1} A b^{n+1} c=a^{n+1} A b b^{n} c
\end{aligned}
$$

with $n \geq 0$. It follows that

$$
C_{G}=\left\{S, A C, A c, a^{n} b, a^{n} A b \mid n \geq 1\right\}
$$

Problem 5 (20 pts).
(i) Give a context-free grammar for the language

$$
L_{2}=\left\{a^{m} b^{n} c^{p} \mid n \neq p, m, n, p \geq 1\right\}
$$

(ii) Prove that the language L_{2} is not regular.

Solution. Let G_{2} be the grammar whose productions are

$$
\begin{aligned}
S & \longrightarrow A B Y \mid A Y C \\
Y & \longrightarrow b Y c \mid b c \\
A & \longrightarrow a A \mid a \\
B & \longrightarrow b B \mid b \\
C & \longrightarrow c C \mid c
\end{aligned}
$$

It is easy to check (by induction on the length of derivations) that $L\left(G_{2}\right)=L_{2}$.
(ii) We proceed by contradiction using Myhill-Nerode. If L_{2} is regular, then there is a right-invariant equivalence relation \simeq of finite index such that L_{2} is the union of classes of \simeq. Consider the infinite sequence

$$
a b, a b^{2}, \ldots, a b^{n}, \ldots .
$$

Since \simeq has a finite number of classes, there are two distinct strings $a b^{i}$ and $a b^{j}$ in the above sequence such that

$$
a b^{i} \simeq a b^{j}
$$

with $1 \leq i<j$. By right-invariance, by concatenating on the right with c^{i}, we obtain

$$
a b^{i} c^{i} \simeq a b^{j} c^{i}
$$

and since $i<j$, we have $a b^{j} c^{i} \in L_{2}$ and $a b^{i} c^{i} \notin L_{2}$, a contradiction.
Problem 6 (10 pts).
(i) Give a context-free grammar for the language

$$
L_{2}=\left\{a^{m} b^{n} \mid n<3 m, m>0, n \geq 0\right\} .
$$

Solution.

$$
\begin{aligned}
& S \longrightarrow a S X X X \\
& S \longrightarrow a X X \\
& X \longrightarrow b \mid \epsilon
\end{aligned}
$$

By induction, every leftmost derivation is of the form

$$
S \underset{l m}{m} a^{m} S X^{3 m} \underset{l m}{\Longrightarrow} a^{m+1} X^{3 m+2} \underset{l m}{*} a^{m+1} b^{n},
$$

with $m \geq 0$ and $n<3(m+1)$.
Problem 7 (10 pts).

Prove that if the language $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context-free (which is indeed the case), then the language $L_{2}=\left\{w \mid w \in\{a, b, c\}^{*}, \#(a)=\#(b)=\#(c)\right\}$ is not context-free either.

Solution. We know from Homework 8 that the context-free languages are closed under intersection with the regular languages. Assume by contradiction that L_{2} is context-free. The language $R=\{a\}^{*}\{b\}^{*}\{c\}^{*}$ is regular (for example, an NFA can be easily constructed), and

$$
L_{1}=L_{2} \cap R
$$

Since L_{2} is context-free and R is regular, then L_{1} is context-free, a contradiction.
Problem 8 (10 pts). (1) Prove that the following sets are not computable $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{i}\right.$, \ldots is an enumeration of the partial computable functions):

$$
\begin{aligned}
& A=\left\{i \in \mathbb{N} \mid \varphi_{i}=\varphi_{a} * \varphi_{b}\right\} \\
& B=\left\{\langle i, j, k\rangle \in \mathbb{N} \mid \varphi_{i}=\varphi_{j} * \varphi_{k}\right\} \\
& C=\left\{i \in \mathbb{N} \mid \varphi_{i}(i)=a\right\}
\end{aligned}
$$

where a and b are two fixed natural numbers.
(2) Prove that C is listable.

Solution. (1) The function $\varphi_{a} * \varphi_{b}$ is a partial computable function, say φ_{c}, since both φ_{a} and φ_{b} are partial computable and $*$ is partial computable (in fact, primitive recursive). Thus, there is a partial computable function, φ_{i}, namely φ_{c}, such that

$$
\varphi_{i}=\varphi_{a} * \varphi_{b}
$$

If $\varphi_{c}=\varphi_{a} * \varphi_{b}$ is the partial function undefined everywhere, then the identity function differs from φ_{c} and otherwise the partial computable function $\varphi_{c}+1$ differs from the partial computable function $\varphi_{a} * \varphi_{b}$. By Rice's Theorem, A is not recursive.

Consider the reduction function, $f: A \rightarrow B$, given by

$$
f(i)=\langle i, a, b\rangle
$$

The function f is computable (in fact, primitive recursive) and obviously, $i \in A$ iff $f(i)=\langle i, a, b\rangle \in B$ iff $\varphi_{i}=\varphi_{a} * \varphi_{b}$. Since A is not computable, B is not computable either.

The constant function with value a is computable so it appears as φ_{i} for some i. Thus $i \in C$, and $C \neq \emptyset$. On the other hand, the partial computable function undefined everywhere is a partial recursive function, φ_{j}, such that $j \notin C$. By Rice's Theorem, C is not recursive.
(2) Since the function cond is primitive recursive, the set C is listable because it is the domain of the partial computable function (obtained by composition)

$$
f(x)=\operatorname{cond}\left(\varphi_{x}(x), a, 1, \text { undefined }\right)= \begin{cases}1 & \text { if } \varphi_{x}(x)=a \\ \text { undefined } & \text { otherwise }\end{cases}
$$

where "undefined" stands for the partial computable function undefined for all inputs.
Problem 9 (5 pts). Define the sets K, K_{0} and TOTAL. For each one, state whether it is computable, computably enumerable, or not computably enumerable.

Solution. If $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ is the enumeration of the partial computable functions defined in Chapter 8, Section 8.3 of the slides, then

$$
\begin{aligned}
K & =\left\{x \in \mathbb{N} \mid \varphi_{x}(x) \text { is defined }\right\} \\
K_{0} & =\left\{\langle x, y\rangle \in \mathbb{N} \mid \varphi_{x}(y) \text { is defined }\right\} \\
\text { TOTAL } & =\left\{x \in \mathbb{N} \mid \varphi_{x} \text { is defined for all input }\right\} .
\end{aligned}
$$

The sets K and K_{0} are both computably enumerable but not computable (see Chapter 8). The set TOTAL is not computably enumerable (Lemma 8.10 of the slides).

Problem 10 (5 pts).

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a total computable function. Prove that if f is a bijection, then its inverse f^{-1} is also (total) computable.

Solution. Since the subtraction operation on natural numbers (monus) is primitive recursive, and since f is computable, the functions $g_{1}, g_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
g_{1}(x, y)=f(x)-y, \quad g_{2}(x, y)=y-f(x)
$$

are computable. Then the function $h: \mathbb{N} \rightarrow \mathbb{N}$ defined by minimization by

$$
h(y)=\min x[a b s(f(x), y)=0]=\min x[\operatorname{add}(f(x)-y, y-f(x))=0]
$$

is partial computable. However, since f is bijective, for any $y \in \mathbb{N}$, there is a unique $x \in \mathbb{N}$ such that $f(x)=y$, namely $x=f^{-1}(y)$, so in fact $h=f^{-1}$. This shows that f^{-1} is partial computable, but since it is a total function, it is computable.

Problem 11 (10 pts). Recall that the Clique Problem for undirected graphs is this: Given an undirected graph $G=(V, E)$ and an integer $K \geq 2$, is there a set C of nodes with $|C| \geq K$ such that for all $v_{i}, v_{j} \in C$, there is some edge $\left\{v_{i}, v_{j}\right\} \in E$? Equivalently, does G contain a complete subgraph with at least K nodes?

Give a polynomial reduction from the Clique Problem for undirected graphs to the Satisfiability Problem.

Assuming that the graph $G=(V, E)$ has n nodes and that the budget is an integer K such that $2 \leq K \leq n$, create $n K$ boolean variables $x_{i k}$ with intended meaning that $x_{i k}=\mathbf{T}$ if node v_{i} is chosen as the k th element of a clique C, with $1 \leq k \leq K$, and write clauses asserting that K nodes are chosen to belong to a clique C.

Solution. We want to assert that there is an injection $\kappa:\{1, \ldots, K\} \rightarrow\{1, \ldots, n\}$ such that for all h, k with $1 \leq h<k \leq K$, there is an edge between v_{i} and v_{j}, with $\kappa(h)=i$ and $\kappa(k)=j$. Since $\kappa(k)=i$ iff $x_{i k}=\mathbf{T}$, this is equivalent to saying that if $x_{i h}=\mathbf{T}$ and $x_{j k}=\mathbf{T}$, then $\left\{v_{i}, v_{j}\right\} \in E$.

To assert that K choices of nodes are made, equivalently that $\kappa(k)$ is defined for all $k \in\{1, \ldots, K\}$, write the K clauses

$$
\left(x_{1 k} \vee x_{2 k} \vee \cdots \vee x_{n k}\right), \quad k=1, \ldots, K
$$

To assert that at most one node is chosen as the k th node in C, equivalently that κ is a functional relation, write the clauses

$$
\left(\overline{x_{i k}} \vee \overline{x_{j k}}\right) \quad 1 \leq i<j \leq n, k=1, \ldots, K
$$

To assert that no node is picked twice, equivalently that κ is injective, write the clauses

$$
\left(\overline{x_{i h}} \vee \overline{x_{i k}}\right) \quad 1 \leq h<k \leq K, i=1, \ldots, n .
$$

To assert that any two distinct nodes in C are connected by an edge, we say that for all h, k with $1 \leq h<k \leq k$, if $x_{i h}=\mathbf{T}$ and $x_{j k}=\mathbf{T}$, namely $x_{i h} \wedge x_{j k}=\mathbf{T}$, then $\left\{v_{i}, v_{j}\right\} \in E$. The contrapositive says that if $\left\{v_{i}, v_{j}\right\} \notin E$, then $\overline{x_{i h} \wedge x_{j k}}=\mathbf{T}$, or equivalently ($\overline{x_{i h}} \vee \overline{x_{j k}}$) $=\mathbf{T}$. Thus we have the clauses

$$
\left(\overline{x_{i h}} \vee \overline{x_{j k}}\right) \quad \text { if } \quad\left\{v_{i}, v_{j}\right\} \notin E, 1 \leq h<k \leq K,
$$

which assert that if there is no edge between v_{i} and v_{j}, then v_{i} and v_{j} should not be chosen to be in C. Let S be the above set of clauses,

If the graph G has a clique with at least K nodes, then it has a clique $C=\left\{v_{i_{1}}, \ldots, v_{i_{K}}\right\}$ with K nodes, and then it is clear that the clauses in S are satisfied by the truth assignment v such that

$$
v\left(x_{j k}\right)= \begin{cases}\mathbf{T} & \text { if } j=i_{k}, 1 \leq k \leq K, 1 \leq j \leq n \\ \mathbf{F} & \text { otherwise }\end{cases}
$$

Conversely, if the clauses in S are satisfied by a truth assignment v, then we obtain the clique of size K given by $C=\left\{v_{i_{1}}, \ldots, v_{i_{K}}\right\}$ with

$$
i_{k}=j \quad \text { iff } \quad v\left(x_{j k}\right)=\mathbf{T} .
$$

Therefore, G has a clique of size at least K iff the set of clauses S is satisfiable.

