Fall, 2017 CIS 262

Automata, Computability and Complexity
Jean Gallier

Solutions of the Practice Final Exam

December 6, 2017

Problem 1 (10 pts). Let ¥ be an alphabet.

(1) What is an ambiguous context-free grammar? What is an inherently ambiguous
context-free language?

(2) Is the following context-free grammar ambiguous, and if so demonstrate why?

EFE—FE+FE
EF— ExE
E — (E)
E — a.

Solution. (1) See Definition 6.5, page 134 of the notes tcbook-u.pdf.

(2) Yes, this grammar is ambiguous. For example, the string a + a * @ has two distinct
leftmost derivations

E—=E+«F—=E+ExFE
—a+ExEF=—a+axE=—a+axa,

and

E—FE+F—a+E
—ao+E+xF—a+a*xE=—a+axa.

Problem 2 (5pts). Given any trim DFA D = (Q,3, 0, qo, F') accepting a language L =
L(D), if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation ~p, is
equal to pr.



Solution. We proved in Proposition 5.13 (page 99) that for any trim DFA D accepting a
language L, we have

~pC prL.
We also proved that the number of equivalence classes of py, is the size of the minimal DFA’s
for L (again, see page 99). Therefore, if D is a minimal DFA, then ~p and py, have the same
number of classes, which implies that ~p= py.

Problem 3 (10 pts).

Consider the following DFA D, with start state A and final state D given by the following
transition table:

Reverse all the arrows of Dy, obtaining the following NFA N (wihout e-transitions) with
start state D and final state A given by the following table:

L [ a | b |

0 |{A B,C,D}
{A}
{B}

{C, D}

O Q| |

ISSIRSSTRSS

This NFA accepts the language {aaa}{a,b}*.
(1) Use the subset construction to convert N to a DFA D (with 5 states).
(2) Prove that D is a minimal DFA.

Solution. (1) Applying the subset construction, we obtain the following DFA with start state
0 and final state 4:

L] [a]b]
0 {D} 1]2
1 {C D} [3]2
2 0 22
3 {B,C,D} |42
1[{A,B,C,D} [4] 4




(2) Let’s apply the method for propagating inequivalence described in Section 5.19 of the
notes on pages 109-110. Since 4 is the only final state, the intial table is the following (where
X means inequivalent, and [0 means don’t know yet):

=~ W N =
oxgoo
=X OO0

O
X X
2 3

Let us proceed from the botttom up and from right to left (as opposed to the top down).
At the end of the first round, we get

1 x

2 x X

3 X X X

4 X X X X
0 1 2 3

Nothing changes during the second round, so we conclude that there are no pairs of
equivalent states, which means that the DFA is minimal.

Problem 4 (10 pts). Given any context-free grammar G = (V, X, P, S"), with special start-
ing production S’ — S where S” only appears in this production, the set of characteristic
strings Cg is defined by

Co={af eV |5 =" aBv = afv,
a,f eV veX B— e P}

Consider the grammar G with nonterminal set {S, A, C'} and terminal set {a,b,c} given
by the following productions:

S — S
S — AC
A — aAb
A—ab
C —c

Describe all rightmost derivations and the set Cg.

Solution. Rightmost derivations are of the form

S =S



or

or

AC = Ac

or
S’ —
S = AC
AC = Ac
Ac ﬁ* a"Ab"c
a" Ab"c = a1 e = a" b e

or
S =S
S = AC
AC = Ac
Ac ﬁ* a" Ab"c
a"Ab"c = a"tt AP e = a" T Abb" ¢
with n > 0. It follows that

Cq ={S,AC, Ac,a"b,a" Ab | n > 1}.

Problem 5 (20 pts).

(i) Give a context-free grammar for the language
Ly ={ad™b"c® | n#p, m,n,p > 1}.
(ii) Prove that the language Lo is not regular.

4



Solution. Let G5 be the grammar whose productions are

S
Y

ABY | AYC
bY ¢ | be
aAla
bB | b
cC|c.

B
C

Lell

It is easy to check (by induction on the length of derivations) that L(Gs) = Ls.

(ii) We proceed by contradiction using Myhill-Nerode. If Lj is regular, then there is a
right-invariant equivalence relation ~ of finite index such that L, is the union of classes of
~. Consider the infinite sequence

ab,ab?, ... ab", . ...

Since ~ has a finite number of classes, there are two distinct strings ab® and al’ in the above
sequence such that

ab® ~ ab’
with 1 < ¢ < j. By right-invariance, by concatenating on the right with ¢!, we obtain
ab'c ~ ab’ct
and since i < j, we have ab/c' € Ly and abc’ ¢ Lo, a contradiction.
Problem 6 (10 pts).
(i) Give a context-free grammar for the language

Ly ={a™b" | n <3m, m>0,n>0}.

Solution.

S — aSXXX
S — aXX
X —b]e
By induction, every leftmost derivation is of the form
S == aMSXI — " TIXIE S g
im im Im ’

with m > 0 and n < 3(m + 1).

Problem 7 (10 pts).



Prove that if the language L; = {a™b™c¢" | n > 1} is not context-free (which is indeed the
case), then the language Ly = {w | w € {a,b,c}*, #(a) = #(b) = #(c)} is not context-free
either.

Solution. We know from Homework 8 that the context-free languages are closed under
intersection with the regular languages. Assume by contradiction that L, is context-free.
The language R = {a}*{b}*{c}* is regular (for example, an NFA can be easily constructed),
and

L1 = LQ N R.

Since Lo is context-free and R is regular, then L; is context-free, a contradiction.

Problem 8 (10 pts). (1) Prove that the following sets are not computable (¢1, @2, ..., @i,
... is an enumeration of the partial computable functions):

A={i e N| ;= o *pp}
B ={(i,j,k) € N| ¢; = @; * o1}
C={ieN|pi(i) =a}

where a and b are two fixed natural numbers.

(2) Prove that C is listable.

Solution. (1) The function @, * ¢ is a partial computable function, say ., since both ¢, and
¢p are partial computable and # is partial computable (in fact, primitive recursive). Thus,
there is a partial computable function, ¢;, namely ., such that

Vi = Pa * Pp.

If oo = @4 * @p is the partial function undefined everywhere, then the identity function
differs from ¢. and otherwise the partial computable function ¢.+ 1 differs from the partial
computable function ¢, * ¢,. By Rice’s Theorem, A is not recursive.

Consider the reduction function, f: A — B, given by

f@) = (i,a,b).

The function f is computable (in fact, primitive recursive) and obviously,
ie Aiff f(i) = (i,a,b) € Biff p; = ¢, *pp. Since A is not computable, B is not computable
either.

The constant function with value a is computable so it appears as ¢; for some i. Thus
i € C,and C # (). On the other hand, the partial computable function undefined everywhere
is a partial recursive function, ¢;, such that j ¢ C. By Rice’s Theorem, C' is not recursive.



(2) Since the function cond is primitive recursive, the set C' is listable because it is the
domain of the partial computable function (obtained by composition)

1 if p.(x) =a
= d T ) 717 defined) =
f(@) = cond(p,(w), a, 1, undefined) {undeﬁned otherwise,

where “undefined” stands for the partial computable function undefined for all inputs.

Problem 9 (5 pts). Define the sets K, Ky and TOTAL. For each one, state whether it is
computable, computably enumerable, or not computably enumerable.

Solution. If (¢;)en is the enumeration of the partial computable functions defined in Chapter
8, Section 8.3 of the slides, then

K ={x € N| p,(z) is defined}
Ko ={(z,y) € N| ¢.(y) is defined}
TOTAL = {x € N | ¢, is defined for all input}.

The sets K and Ky are both computably enumerable but not computable (see Chapter 8).
The set TOTAL is not computably enumerable (Lemma 8.10 of the slides).
Problem 10 (5 pts).

Let f: N — N be a total computable function. Prove that if f is a bijection, then its

inverse f~! is also (total) computable.

Solution. Since the subtraction operation on natural numbers (monus) is primitive recursive,
and since f is computable, the functions g, go: N x N — N given by

gl(xvy):f(x)_ya 92(x7y):y_f($)

are computable. Then the function h: N — N defined by minimization by

h(y) = min xlabs(f(x),y) = 0] = min xladd(f(x) — y,y — f(x)) = 0]

is partial computable. However, since f is bijective, for any y € N, there is a unique x € N
such that f(x) = y, namely z = f~!(y), so in fact h = f~!. This shows that f~! is partial
computable, but since it is a total function, it is computable.

Problem 11 (10 pts). Recall that the Clique Problem for undirected graphs is this:
Given an undirected graph G = (V, E') and an integer K > 2, is there a set C' of nodes with
|C| > K such that for all v;,v; € C, there is some edge {v;,v;} € E?7 Equivalently, does G
contain a complete subgraph with at least K nodes?



Give a polynomial reduction from the Clique Problem for undirected graphs to the
Satisfiability Problem.

Assuming that the graph G = (V| E)) has n nodes and that the budget is an integer K
such that 2 < K < n, create nK boolean variables x;; with intended meaning that x;; = T
if node v; is chosen as the kth element of a clique C, with 1 < k < K, and write clauses
asserting that K nodes are chosen to belong to a clique C.

Solution. We want to assert that there is an injection x: {1,..., K} — {1,...,n} such that
for all h,k with 1 < h < k < K, there is an edge between v; and v;, with x(h) = ¢ and
k(k) = j. Since k(k) = i iff z;, = T, this is equivalent to saying that if z;, = T and x;, = T,
then {v;,v;} € E.

To assert that K choices of nodes are made, equivalently that (k) is defined for all
ke{l,...,K}, write the K clauses

(l’lk\/iﬂgk\/"'\/l'nk), kzl,,K

To assert that at most one node is chosen as the kth node in C, equivalently that x is a
functional relation, write the clauses

T VT 1<i<j<n k=1,... K.
To assert that no node is picked twice, equivalently that  is injective, write the clauses
T VTg) 1<h<k<K, i=1,...,n.

To assert that any two distinct nodes in C' are connected by an edge, we say that for all h, k
with 1 <h <k <k, if x;, = T and xj; = T, namely z;, Az, = T, then {v;,v;} € E. The
contrapositive says that if {v;,v;} ¢ E, then z;, Axj, = T, or equivalently (7, V Zj;) = T.
Thus we have the clauses

(@ V) if {v,v} ¢ B, 1<h<k<K,

which assert that if there is no edge between v; and v;, then v; and v; should not be chosen
to be in C. Let S be the above set of clauses,

If the graph G has a clique with at least K nodes, then it has a clique C' = {v;,,..., v }
with K nodes, and then it is clear that the clauses in S are satisfied by the truth assignment
v such that

v(zig) =
i F otherwise.

Conversely, if the clauses in S are satisfied by a truth assignment v, then we obtain the
clique of size K given by C = {v;,,...,v;, } with

Therefore, GG has a clique of size at least K iff the set of clauses S is satisfiable.



