Fall 2017 CIS 262

Automata, Computability and Complexity
Jean Gallier

Homework 9

November 28, 2017; Due December 11, 2017

Problem B1 (20 pts). (1) Prove that the set of composite natural numbers is listable (a
natural number n € N is composite if n > 2 and if n can be written as a product n = nins

with ny,ny > 2).

(2) Given that the set P of primes is known to be listable (say, by the result of Section
11.3), prove that the set P is actually computable (recursive).

Problem B2 (30 pts). Let ¥ = {ay,..

.,ai} be some alphabet and suppose g, hy, ..., hy

are some total functions, with g: (¥*)"! — ¥* and h;: (X*)"" — 2% fori=1,... k. If
we write T for (zg,...,zy), for any y € ¥*, where y = a;, - - - a;,, (With a;; € X), define the
following sequences, u; and v;, for j =0,...,m + 1:
Uo €
Uy Uiy
u; = Uj1ay
Um = Um-1Ga4,,
Um+1 = UGy
and
Vo 9(T)
vy hi, (uo, vo, T)
v;i = hi(uj-1,vj-1,T)
Umpm = him(um—lavm—laf)
Uma1 = hi(y,0m, T).
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(i) Prove that

vj = f(ujv ),
for y =0,...,m+ 1, where f is defined by primitive recursion from g and the h;’s, that is
fleT) = ¢(T)

f(yar,7) = m(y, f(y,7),7)
fya;,T) = hi(y, f(y,T),T)

f(yalmT) = h’k(y7f(yvf)7f)7
for all y € ¥* and all 7 € (X*)"~!. Conclude that f is a total function.

(ii) Use (i) to prove that if g and the h;’s are RAM computable, then the function, f,
defined by primitive recursion from g and the h;’s is also RAM computable.

Problem B3 (30 pts). Ackermann’s function A is defined recursively as follows:
A0, y) = y+1,

Alx+1,0) = Az, 1),
Alz+ 1, y+1) = Az, A(z+ 1,y)).

Prove that
A0, z) = x+1,
All,z) = x+42,
A2, z) = 2x+3,
A(3, 7) 2713 3,
and

516
A4, z) =27 } -3,
with A(4,0) = 16 — 3 = 13. Equivalently (and perhaps less confusing)

Ald,z) = 27 }“3 — 3.

Problem B4 (30 pts). Give a ram program computing the function, f: ¥* — 3*  given
by

flw) = wh.
(X ={a,b}).



Problem B5 (20 pts). Prove that the following properties of partial recursive functions
are undecidable:

(a) A partial recursive function is a constant function.

(b) Two partial recursive functions ¢, and ¢, are identical. More precisely, the set
{(z,y) | ¢» = ¢y} is not computable (not recursive).

(c) A partial recursive function ¢, is equal to a given partial recursive function ¢,.
(

d) A partial recursive function diverges for all input.

Problem B6 (30 pts). Given any set, X, for any subset, A C X recall that the charac-
teristic function, x4, of A is the function defined so that

(x):{l ifxze A
XA 0 iffzeX—A

(i) Prove that, for any two subsets, A, B C X,

XAnB = XA XB
XAUB = XA T XB— XA XB-

(ii) Prove that the union and the intersection of any two Diophantine sets A, B C N is
also Diophantine.

(iii) Prove that the union and the intersection of any two listable sets A, B C N, is also
listable.

(iv) Prove that the union and the intersection of any two computable (recursive) sets,
A, B C N, is also a computable set (a recursive set).

Problem B7 (50 pts). Given an undirected graph G = (V, E) and a set C' = {cy,..., ¢}
of p colors, a coloring of G is an assignment of a color from C to each node in V such
that no two adjacent nodes share the same color, or more precisely such that for evey edge
{u,v} € E, the nodes u and v are assigned different colors. A k-coloring of a graph G is
a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a
3-coloring (using green, blue, red).

The graph coloring problem is to decide whether a graph G is k-colorable for a given
integer k > 1.

(1) Give a polynomial reduction from the graph 3-coloring problem to the
3-satisfiability problem for propositions in CNF.

If |V| = n, create n x 3 propositional variables z;; with the intended meaning that z;;
is true iff node v; is colored with color j. You need to write sets of clauses to assert the
following facts:



Figure 1: Petersen graph.

1. Every node is colored.
2. No two distinct colors are assigned to the same node.

3. For every edge {v;,v;}, nodes v; and v; cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color
using a proposition in disjunctive normal form, but this is not a correct answer; we want a
proposition in conjunctive normal form.

(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff its is bipartite, but do not use this
fact to solve B3(2). Only use material covered in the notes for C1S262.

The problem of 3-coloring is actually NP-complete, but this is a bit tricky to prove.

Problem B8 (60 pts). Let A be any p x ¢ matrix with integer coefficients and let b € ZP be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether



a system of p linear equations in ¢ variables

aj xy + -+ A1qLg = b1
;171 + -t Aijqlyq = bl
ap1T1 + -+ GpgTq = bp

with a;;,b; € Z has any solution = € {0, 1}, that is, with z; € {0,1}. In matrix form, if we
let
a1;p - Qg by €

A=
apr -+ Qpq by Lq

then we write the above system as
Ax =0b.

(i) Prove that the 0-1 integer programming problem is in N'P.

(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of
A are 0 or 1 and all entries in b are equal to 1 is N'P-complete by providing a polynomial-time
reduction from the bounded-tiling problem. Do not try to reduce any other problem
to the 0-1 integer programming problem.

Hint. Given a tiling problem, ((7,V, H), s, 0g), create a 0-1-valued variable, z,,,;, such that
Tmne = 1 iff tile ¢ occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the

equation
Z Lmnt = ]-7
teT

for all m,n with 1 <m <2sand 1 <n <s. Also, if you have an inequality such as
21’1 + 31’2 — X3 S 5! (*)

with 1, 2o, 23 € Z, then using a new variable y; taking its values in N, that is, nonnegative
values, we obtain the equation

2r1 + 3x9 — w3 +y1 = 5, (%)

and the inequality (x) has solutions with 1,9, x5 € Z iff the equation (#*) has a solution
with x1, 29,23 € Z and y; € N. The variable y; is called a slack variable (this terminology



comes from optimization theory, more specifically, linear programming). For the 0-1-integer
programming problem, all variables, including the slack variables; take values in {0, 1}.

Conclude that the 0-1 integer programming problem is N/P-complete.

TOTAL: 270 points



