## Fall 2017 CIS 262

# Automata, Computability and Complexity Jean Gallier <br> Homework 9 

November 28, 2017; Due December 11, 2017

Problem B1 (20 pts). (1) Prove that the set of composite natural numbers is listable (a natural number $n \in \mathbb{N}$ is composite if $n \geq 2$ and if $n$ can be written as a product $n=n_{1} n_{2}$ with $n_{1}, n_{2} \geq 2$ ).
(2) Given that the set $P$ of primes is known to be listable (say, by the result of Section 11.3), prove that the set $P$ is actually computable (recursive).

Problem B2 (30 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be some alphabet and suppose $g, h_{1}, \ldots, h_{k}$ are some total functions, with $g:\left(\Sigma^{*}\right)^{n-1} \rightarrow \Sigma^{*}$, and $h_{i}:\left(\Sigma^{*}\right)^{n+1} \rightarrow \Sigma^{*}$, for $i=1, \ldots, k$. If we write $\bar{x}$ for $\left(x_{2}, \ldots, x_{n}\right)$, for any $y \in \Sigma^{*}$, where $y=a_{i_{1}} \cdots a_{i_{m}}$ (with $a_{i_{j}} \in \Sigma$ ), define the following sequences, $u_{j}$ and $v_{j}$, for $j=0, \ldots, m+1$ :

$$
\begin{aligned}
u_{0} & =\epsilon \\
u_{1} & =u_{0} a_{i_{1}} \\
& \vdots \\
u_{j} & =u_{j-1} a_{i_{j}} \\
& \vdots \\
u_{m} & =u_{m-1} a_{i_{m}} \\
u_{m+1} & =u_{m} a_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
v_{0} & =g(\bar{x}) \\
v_{1} & =h_{i_{1}}\left(u_{0}, v_{0}, \bar{x}\right) \\
& \vdots \\
v_{j} & =h_{i_{j}}\left(u_{j-1}, v_{j-1}, \bar{x}\right) \\
& \vdots \\
v_{m} & =h_{i_{m}}\left(u_{m-1}, v_{m-1}, \bar{x}\right) \\
v_{m+1} & =h_{i}\left(y, v_{m}, \bar{x}\right) .
\end{aligned}
$$

(i) Prove that

$$
v_{j}=f\left(u_{j}, \bar{x}\right)
$$

for $j=0, \ldots, m+1$, where $f$ is defined by primitive recursion from $g$ and the $h_{i}$ 's, that is

$$
\begin{aligned}
f(\epsilon, \bar{x}) & =g(\bar{x}) \\
f\left(y a_{1}, \bar{x}\right) & =h_{1}(y, f(y, \bar{x}), \bar{x}) \\
& \vdots \\
f\left(y a_{i}, \bar{x}\right) & =h_{i}(y, f(y, \bar{x}), \bar{x}) \\
& \vdots \\
f\left(y a_{k}, \bar{x}\right) & =h_{k}(y, f(y, \bar{x}), \bar{x}),
\end{aligned}
$$

for all $y \in \Sigma^{*}$ and all $\bar{x} \in\left(\Sigma^{*}\right)^{n-1}$. Conclude that $f$ is a total function.
(ii) Use (i) to prove that if $g$ and the $h_{i}$ 's are RAM computable, then the function, $f$, defined by primitive recursion from $g$ and the $h_{i}$ 's is also RAM computable.

Problem B3 (30 pts). Ackermann's function $A$ is defined recursively as follows:

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

Prove that

$$
\begin{aligned}
A(0, x) & =x+1 \\
A(1, x) & =x+2 \\
A(2, x) & =2 x+3 \\
A(3, x) & =2^{x+3}-3
\end{aligned}
$$

and

$$
\left.A(4, x)=2^{2 \cdot \cdot^{.2^{16}}}\right\}^{x}-3,
$$

with $A(4,0)=16-3=13$. Equivalently (and perhaps less confusing)

$$
\left.A(4, x)=2^{22^{2^{2^{2}}}}\right\}^{x+3}-3
$$

Problem B4 (30 pts). Give a ram program computing the function, $f: \Sigma^{*} \rightarrow \Sigma^{*}$, given by

$$
f(w)=w^{R} .
$$

( $\Sigma=\{a, b\})$.

Problem B5 (20 pts). Prove that the following properties of partial recursive functions are undecidable:
(a) A partial recursive function is a constant function.
(b) Two partial recursive functions $\varphi_{x}$ and $\varphi_{y}$ are identical. More precisely, the set $\left\{\langle x, y\rangle \mid \varphi_{x}=\varphi_{y}\right\}$ is not computable (not recursive).
(c) A partial recursive function $\varphi_{x}$ is equal to a given partial recursive function $\varphi_{a}$.
(d) A partial recursive function diverges for all input.

Problem B6 (30 pts). Given any set, $X$, for any subset, $A \subseteq X$, recall that the characteristic function, $\chi_{A}$, of $A$ is the function defined so that

$$
\chi_{A}(x)= \begin{cases}1 & \text { iff } x \in A \\ 0 & \text { iff } x \in X-A\end{cases}
$$

(i) Prove that, for any two subsets, $A, B \subseteq X$,

$$
\begin{aligned}
& \chi_{A \cap B}=\chi_{A} \cdot \chi_{B} \\
& \chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B} .
\end{aligned}
$$

(ii) Prove that the union and the intersection of any two Diophantine sets $A, B \subseteq \mathbb{N}$, is also Diophantine.
(iii) Prove that the union and the intersection of any two listable sets $A, B \subseteq \mathbb{N}$, is also listable.
(iv) Prove that the union and the intersection of any two computable (recursive) sets, $A, B \subseteq \mathbb{N}$, is also a computable set (a recursive set).

Problem B7 (50 pts). Given an undirected graph $G=(V, E)$ and a set $C=\left\{c_{1}, \ldots, c_{p}\right\}$ of $p$ colors, a coloring of $G$ is an assignment of a color from $C$ to each node in $V$ such that no two adjacent nodes share the same color, or more precisely such that for evey edge $\{u, v\} \in E$, the nodes $u$ and $v$ are assigned different colors. A $k$-coloring of a graph $G$ is a coloring using at most $k$-distinct colors. For example, the graph shown in Figure 1 has a 3 -coloring (using green, blue, red).

The graph coloring problem is to decide whether a graph $G$ is $k$-colorable for a given integer $k \geq 1$.
(1) Give a polynomial reduction from the graph 3-coloring problem to the 3 -satisfiability problem for propositions in CNF.

If $|V|=n$, create $n \times 3$ propositional variables $x_{i j}$ with the intended meaning that $x_{i j}$ is true iff node $v_{i}$ is colored with color $j$. You need to write sets of clauses to assert the following facts:


Figure 1: Petersen graph.

1. Every node is colored.
2. No two distinct colors are assigned to the same node.
3. For every edge $\left\{v_{i}, v_{j}\right\}$, nodes $v_{i}$ and $v_{j}$ cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color using a proposition in disjunctive normal form, but this is not a correct answer; we want a proposition in conjunctive normal form.
(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff its is bipartite, but do not use this fact to solve B3(2). Only use material covered in the notes for CIS262.

The problem of 3 -coloring is actually $\mathcal{N} \mathcal{P}$-complete, but this is a bit tricky to prove.
Problem B8 ( 60 pts ). Let $A$ be any $p \times q$ matrix with integer coefficients and let $b \in \mathbb{Z}^{p}$ be any vector with integer coefficients. The 0-1 integer programming problem is to find whether
a system of $p$ linear equations in $q$ variables

$$
\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 q} x_{q}= & b_{1} \\
\vdots & \vdots \\
a_{i 1} x_{1}+\cdots+a_{i q} x_{q}= & b_{i} \\
\vdots & \vdots \\
a_{p 1} x_{1}+\cdots+a_{p q} x_{q}= & b_{p}
\end{array}
$$

with $a_{i j}, b_{i} \in \mathbb{Z}$ has any solution $x \in\{0,1\}^{q}$, that is, with $x_{i} \in\{0,1\}$. In matrix form, if we let

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 q} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \cdots & a_{p q}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{p}
\end{array}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{q}
\end{array}\right),
$$

then we write the above system as

$$
A x=b .
$$

(i) Prove that the 0-1 integer programming problem is in $\mathcal{N P}$.
(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of $A$ are 0 or 1 and all entries in $b$ are equal to 1 is $\mathcal{N} \mathcal{P}$-complete by providing a polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any other problem to the 0-1 integer programming problem.
Hint. Given a tiling problem, $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, create a 0 -1-valued variable, $x_{m n t}$, such that $x_{m n t}=1$ iff tile $t$ occurs in position $(m, n)$ in some tiling. Write equations or inequalities expressing that a tiling exists and then use "slack variables" to convert inequalities to equations. For example, to express the fact that every position is tiled by a single tile, use the equation

$$
\sum_{t \in \mathcal{T}} x_{m n t}=1,
$$

for all $m, n$ with $1 \leq m \leq 2 s$ and $1 \leq n \leq s$. Also, if you have an inequality such as

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3} \leq 5 \tag{*}
\end{equation*}
$$

with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$, then using a new variable $y_{1}$ taking its values in $\mathbb{N}$, that is, nonnegative values, we obtain the equation

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3}+y_{1}=5, \tag{**}
\end{equation*}
$$

and the inequality $(*)$ has solutions with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ iff the equation $(* *)$ has a solution with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ and $y_{1} \in \mathbb{N}$. The variable $y_{1}$ is called a slack variable (this terminology
comes from optimization theory, more specifically, linear programming). For the 0-1-integer programming problem, all variables, including the slack variables, take values in $\{0,1\}$.

Conclude that the 0-1 integer programming problem is $\mathcal{N} \mathcal{P}$-complete.
TOTAL: 270 points

