Fall 2017 CIS 262

Automata, Computability and Complexity Jean Gallier

Homework 6

October 19, 2017; Due November 2, 2017, beginning of class

"B problems" must be turned in.

Problem B1 (80 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

$$x \approx y$$
 if and only if, for all $p \in Q$,
 $\delta^*(p, x) \in F$ iff $\delta^*(p, y) \in F$,

and

 $x \sim y$ if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$.

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is *left invariant* iff uRv implies that wuRwv for all $w \in \Sigma^*$, and R is *left and right invariant* iff uRv implies that xuyRxvy for all $x, y \in \Sigma^*$.)

(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx , consider the function $f: \Sigma^* \to 2^Q$ given by

$$f(u) = \{ p \in Q \mid \delta^*(p, u) \in F \}, \quad u \in \Sigma^*,$$

and show that $x \approx y$ iff f(x) = f(y). In the case of \sim , let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \to Q^Q$ defined such that g(u) is the function given by

 $g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \ p \in Q,$

and show that $x \sim y$ iff g(x) = g(y).

(3) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

 $u \lambda_L v$ iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$,

and

$$u \mu_L v$$
 iff, for all $x, y \in \Sigma^*$, $xuy \in L$ iff $xvy \in L$.

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx , and that the number of classes of μ_L is at most the number of classes of \sim .

Problem B2 (60 pts). (1) Prove that the intersection, $L_1 \cap L_2$, of two regular languages, L_1 and L_2 , is regular, using the Myhill-Nerode characterization of regular languages.

(2) Let $h: \Sigma^* \to \Delta^*$ be a homomorphism, as defined on pages 31-33 of the slides on DFA's and NFA's. For any regular language, $L' \subseteq \Delta^*$, prove that

$$h^{-1}(L') = \{ w \in \Sigma^* \mid h(w) \in L' \}$$

is regular, using the Myhill-Nerode characterization of regular languages.

Proceed as follows: Let \simeq' be a right-invariant equivalence relation on Δ^* of finite index n, such that L' is the union of some of the equivalence classes of \simeq' . Let \simeq be the relation on Σ^* defined by

$$u \simeq v$$
 iff $h(u) \simeq' h(v)$.

Prove that \simeq is a right-invariant equivalence relation of finite index m, with $m \leq n$, and that $h^{-1}(L')$ is the union of equivalence classes of \simeq .

To prove that that the index of \simeq is at most the index of \simeq' , use h to define a function $\widehat{h}: (\Sigma^*/\simeq) \to (\Delta^*/\simeq')$ from the partition associated with \simeq to the partition associated with \simeq' , and prove that \widehat{h} is injective.

Prove that the number of states of any minimal DFA for $h^{-1}(L')$ is at most the number of states of any minimal DFA for L'. Can it be strictly smaller? If so, give an explicit example.

TOTAL: 140 points