Fall 2017 CIS 262

Automata, Computability and Complexity Jean Gallier
 Homework 6

October 19, 2017; Due November 2, 2017, beginning of class
"B problems" must be turned in.
Problem B1 (80 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^{*} as follows:

$$
\begin{array}{ll}
x \approx y & \text { if and only if, for all } \quad p \in Q, \\
& \delta^{*}(p, x) \in F \quad \text { iff } \quad \delta^{*}(p, y) \in F,
\end{array}
$$

and

$$
x \sim y \quad \text { if and only if, for all } p \in Q, \quad \delta^{*}(p, x)=\delta^{*}(p, y)
$$

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^{*} is left invariant iff $u R v$ implies that $w u R w v$ for all $w \in \Sigma^{*}$, and R is left and right invariant iff $u R v$ implies that $x u y R x v y$ for all $x, y \in \Sigma^{*}$.)
(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^{n} equivalence classes and that \sim has at most n^{n} equivalence classes.
Hint. In the case of \approx, consider the function $f: \Sigma^{*} \rightarrow 2^{Q}$ given by

$$
f(u)=\left\{p \in Q \mid \delta^{*}(p, u) \in F\right\}, \quad u \in \Sigma^{*},
$$

and show that $x \approx y$ iff $f(x)=f(y)$. In the case of \sim, let Q^{Q} be the set of all functions from Q to Q and consider the function $g: \Sigma^{*} \rightarrow Q^{Q}$ defined such that $g(u)$ is the function given by

$$
g(u)(p)=\delta^{*}(p, u), \quad u \in \Sigma^{*}, \quad p \in Q
$$

and show that $x \sim y$ iff $g(x)=g(y)$.
(3) Given any language $L \subseteq \Sigma^{*}$, define the relations λ_{L} and μ_{L} on Σ^{*} as follows:

$$
u \lambda_{L} v \quad \text { iff, for all } \quad z \in \Sigma^{*}, \quad z u \in L \quad \text { iff } \quad z v \in L,
$$

and

$$
u \mu_{L} v \quad \text { iff, for all } \quad x, y \in \Sigma^{*}, \quad x u y \in L \quad \text { iff } \quad x v y \in L .
$$

Prove that λ_{L} is left-invariant, and that μ_{L} is left and right-invariant. Prove that if L is regular, then both λ_{L} and μ_{L} have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_{L} is at most the number of classes of \approx, and that the number of classes of μ_{L} is at most the number of classes of \sim.

Problem B2 (60 pts). (1) Prove that the intersection, $L_{1} \cap L_{2}$, of two regular languages, L_{1} and L_{2}, is regular, using the Myhill-Nerode characterization of regular languages.
(2) Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism, as defined on pages 31-33 of the slides on DFA's and NFA's. For any regular language, $L^{\prime} \subseteq \Delta^{*}$, prove that

$$
h^{-1}\left(L^{\prime}\right)=\left\{w \in \Sigma^{*} \mid h(w) \in L^{\prime}\right\}
$$

is regular, using the Myhill-Nerode characterization of regular languages.
Proceed as follows: Let \simeq^{\prime} be a right-invariant equivalence relation on Δ^{*} of finite index n, such that L^{\prime} is the union of some of the equivalence classes of \simeq^{\prime}. Let \simeq be the relation on Σ^{*} defined by

$$
u \simeq v \quad \text { iff } \quad h(u) \simeq^{\prime} h(v) .
$$

Prove that \simeq is a right-invariant equivalence relation of finite index m, with $m \leq n$, and that $h^{-1}\left(L^{\prime}\right)$ is the union of equivalence classes of \simeq.

To prove that that the index of \simeq is at most the index of \simeq^{\prime}, use h to define a function $\widehat{h}:\left(\Sigma^{*} / \simeq\right) \rightarrow\left(\Delta^{*} / \simeq^{\prime}\right)$ from the partition associated with \simeq to the partition associated with \simeq^{\prime}, and prove that \widehat{h} is injective.

Prove that the number of states of any minimal DFA for $h^{-1}\left(L^{\prime}\right)$ is at most the number of states of any minimal DFA for L^{\prime}. Can it be strictly smaller? If so, give an explicit example.

TOTAL: 140 points

