Fall 2017 CIS 262

Automata, Computability and Complexity Jean Gallier

Homework 7

November 2, 2017; Due November 14, 2017, beginning of class

"B problems" must be turned in.

Problem B1 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Recall that the reversal of a string, $w \in \Sigma^*$, is defined inductively as follows:

$$\epsilon^R = \epsilon$$
$$(ua)^R = au^R,$$

for all $u \in \Sigma^*$ and all $a \in \Sigma$.

(1) Let ~ be a congruence (on Σ^*) and assume that ~ has n equivalence classes. Define \sim_R and \approx by

 $u \sim_R v$ iff $u^R \sim v^R$, for all $u, v \in \Sigma^*$ and $\approx = \sim \cap \sim_R$.

Prove that the relation \approx is a congruence and that \approx has at most n^2 equivalence classes.

(2) Given any regular language L over Σ^* let

$$L^{(1/2)} = \{ w \in \Sigma^* \mid ww^R \in L \}.$$

Prove that $L^{(1/2)}$ is also regular using the relation \approx of part (1).

(3) Let L be any regular language over some alphabet Σ . For any natural number $k \geq 2$, let

$$L^{(1/k)} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L \} = \{ w \in \Sigma^* \mid \underbrace{ww^R ww^R \cdots ww^R}_{k-1} \in L \}$$

Also define the languages

$$L^{1/\infty} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for all } k \ge 2 \}, \text{ and} \\ L^\infty = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for some } k \ge 2 \}.$$

Prove that every language $L^{(1/k)}$ is regular.

(4) Prove that there are only finitely many distinct languages of the form $L^{(1/k)}$ (this means that the set of languages $\{L^{(1/k)}\}_{k\geq 2}$ is finite). Prove that $L^{1/\infty}$ and L^{∞} are regular.

Problem B2 (100 pts). Which of the following languages are regular? Justify each answer.

(1)
$$L_1 = \{wcw \mid w \in \{a, b\}^*\}$$
. (here $\Sigma = \{a, b, c\}$).

- (2) $L_2 = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}.$ (here $\Sigma = \{a, b\}$)
- (3) $L_3 = \{a^n \mid n \text{ is a prime number}\}.$ (here $\Sigma = \{a\}$).
- (4) $L_4 = \{a^m b^n \mid gcd(m, n) = 23\}.$ (here $\Sigma = \{a, b\}$).
- (5) Consider the language

$$L_5 = \{a^{4n+3} \mid 4n+3 \text{ is prime}\}.$$

Assuming that L_5 is infinite, prove that L_5 is not regular.

(6) Let $F_n = 2^{2^n} + 1$, for any integer $n \ge 0$, and let

$$L_6 = \{ a^{F_n} \mid n \ge 0 \}$$

Here $\Sigma = \{a\}$.

Extra Credit (from 10 up to 10^{100} pts). Find explicitly what F_0, F_1, F_2, F_3 are, and check that they are prime. What about F_4 ?

Is the language

$$L_7 = \{a^{F_n} \mid n \ge 0, F_n \text{ is prime}\}$$

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form 4n + 3.

The list of such primes begins with

$$3, 7, 11, 19, 23, 31, 43, \cdots$$

Say we already have n + 1 of these primes, denoted by

$$3, p_1, p_2, \cdots, p_n,$$

where $p_i > 3$. Consider the number

$$m = 4p_1p_2\cdots p_n + 3.$$

If $m = q_1 \cdots q_k$ is a prime factorization of m, prove that $q_j > 3$ for $j = 1, \ldots k$ and that no q_j is equal to any of the p_i 's. Prove that one of the q_j 's must be of the form 4n + 3, which

shows that there is a prime of the form 4n + 3 greater than any of the previous primes of the same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Recall that *state equivalence* is the equivalence relation \equiv on Q, defined such that,

$$p \equiv q$$
 iff $\forall z \in \Sigma^*(\delta^*(p, z) \in F$ iff $\delta^*(q, z) \in F)$,

and that *i*-equivalence is the equivalence relation \equiv_i on Q, defined such that,

 $p \equiv_i q$ iff $\forall z \in \Sigma^*, |z| \leq i \ (\delta^*(p, z) \in F)$ iff $\delta^*(q, z) \in F$).

A relation $S \subseteq Q \times Q$ is a *forward closure* iff it is an equivalence relation and whenever $(p,q) \in S$, then $(\delta(p,a), \delta(q,a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p,q) \in S$, then good(p,q), where good(p,q) holds iff either both $p,q \in F$, or both $p,q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_{\approx} containing R is the relation $(R \cup R^{-1})^*$ (where $R^{-1} = \{(q, p) \mid (p, q) \in R\}$, and $(R \cup R^{-1})^*$ is the reflexive and transitive closure of $(R \cup R^{-1})$). We define the sequence of relations $R_i \subseteq Q \times Q$ as follows:

$$R_0 = R_{\approx}$$

$$R_{i+1} = (R_i \cup \{ (\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, \ a \in \Sigma \})_{\approx}.$$

(1) Prove that $R_{i_0+1} = R_{i_0}$ for some least i_0 . Prove that R_{i_0} is the smallest forward closure containing R.

Hint. First, prove that

 $R_i \subseteq R_{i+1}$

for all $i \geq 0$, Next, prove that R_{i_0} is forward closed.

If \sim is any forward closure containing R, prove by induction that

$$R_i \subseteq \sim$$

for all $i \geq 0$.

We denote the smallest forward closure R_{i_0} containing R as R^{\dagger} , and call it the *forward* closure of R.

(2) Prove that $p \equiv q$ iff the forward closure R^{\dagger} of the relation $R = \{(p,q)\}$ is good.

 $\mathit{Hint.}\,$ First, prove that if R^{\dagger} is good, then

 $R^{\dagger} \subseteq \equiv .$

For this, prove by induction that

 $R^{\dagger} \subseteq \equiv_i$

for all $i \ge 0$.

Then, prove that if $p \equiv q$, then

$$R^{\dagger} \subseteq \equiv$$

For this, prove that \equiv is an equivalence relation containing $R = \{(p,q)\}$ and that \equiv is forward closed.

TOTAL: 260 points + 30 points