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Figure 1: Dog Logic
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1. Graph Clustering

Given a set of data, the goal of clustering is to partition the data into
different groups according to their similarities.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 2: A weighted graph and its partition into two clusters.
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When the data is given in terms of a similarity graph G , where the weight
wi j between two nodes vi and vj is a measure of similarity of vi and vj , the
problem can be stated as follows:

Find a partition (A1, . . . ,AK ) of the set of nodes V into different groups
such that the edges between different groups have very low weight (which
indicates that the points in different clusters are dissimilar), and the edges
within a group have high weight (which indicates that points within the
same cluster are similar).

The above graph clustering problem can be formalized as an optimization
problem, using the notion of cut.
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Typically, the following steps are followed:

1 Formulate the discrete optimization problem in matrix form.

2 The discrete problem is often very hard (NP-hard, ...). Relax the
problem (drop some constraints and look for continuous solutions).

3 Find a discrete solution as close as possible to a continuous solution.

Step (2) often reduces to some kind of eigenvalue problem.

Step (3) is usually the hardest step.
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2. Weigted Graphs, Cuts, Laplacians

15

Encode Pairwise Relationships as a Weighted Graph

Figure 3: A weighted graph.

The thickness of an edge corresponds to the magnitude of its weight.
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Given the weight matrix

W =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 ,

the corresponding graph G is:

v1

v2

v3

v4

Figure 4: The weighted graph corresponding to W .
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Definition 1

A weighted graph is a pair G = (V ,W ), where V = {v1, . . . , vm} is a set
of nodes or vertices, and W is a symmetric matrix called the weight
matrix , such that wi j ≥ 0 for all i , j ∈ {1, . . . ,m}, and wi i = 0 for
i = 1, . . . ,m. We say that a set {vi , vj} is an edge iff wi j > 0. The
corresponding (undirected) graph (V ,E ) with E = {{vi , vj} | wi j > 0}, is
called the underlying graph of G .

We can think of the weight wi j of an edge {vi , vj} as a degree of similarity
(or affinity) in an image, or a cost in a network.
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For every node vi ∈ V , the degree d(vi ) of vi is the sum of the weights of
the edges adjacent to vi :

d(vi ) =
m∑
j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge
{vi , vj} have a nonzero contribution. Such nodes are said to be adjacent
to vi .

The degree matrix D is defined by D = diag(d(v1), . . . , d(vm)).
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Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as
the sum of the weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

d(vi ) =
∑
vi∈A

m∑
j=1

wi j .

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 5: Degree and volume.
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Observe that vol(A) = 0 if A consists of isolated vertices (wi j = 0 for all
vi ∈ A). Thus, it is best to assume that G does not have isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j .

Since the matrix W is symmetric, we have

links(A,B) = links(B,A).
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The quantity links(A,A) = links(A,A), where A = V − A denotes the
complement of A in V , measures how many links escape from A (and A),
and the quantity links(A,A) measures how many links stay within A itself.

The quantity
cut(A) = links(A,A)

is often called the cut of A.
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Figure 6: A Cut involving the set of nodes in the center and the nodes on the
perimeter.
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We now define the most important concept of this talk: The Laplacian
matrix of a graph. Actually, as we will see, it comes in several flavors.

Definition 2

Given any weighted graph G = (V ,W ) with V = {v1, . . . , vm}, the
(unnormalized) graph Laplacian L(G ) of G is defined by

L(G ) = D(G )−W ,

where D(G ) = diag(d1, . . . , dm) is the degree matrix of G (a diagonal
matrix), with

di =
m∑
j=1

wi j .
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Consider the weight matrix

W =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 ,
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v1

v2

v3

v4

Figure 7: The weighted graph corresponding to W .
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The degree matrix (diag(sum(W))) is

D(G ) =


12 0 0 0
0 6 0 0
0 0 9 0
0 0 0 9

 ,

and the Laplacian is

L = D(G )−W =


12 −3 −6 −3
−3 6 0 −3
−6 0 9 −3
−3 −3 −3 9

 .

The eigenvalues of L are: 0, 6.8038, 12, 17.1962.
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The vector 1 is the nullspace of L, but it is less obvious that L is positive
semidefinite.

Proposition 1

For any m ×m symmetric matrix W , if we let L = D −W where D is the
degree matrix of W = (wij), then we have

x>Lx =
1

2

m∑
i ,j=1

wi j(xi − xj)
2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if
wi j ≥ 0 for all i , j ∈ {1, . . . ,m}, then L is positive semidefinite.
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Proposition 1 immediately implies the following facts: For any weighted
graph G = (V ,W ),

1 The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and
nonnegative, and there is an orthonormal basis of eigenvectors of L.

2 The smallest eigenvalue λ1 of L is equal to 0, and 1 is a
corresponding eigenvector.

Normalized variants of the graph Laplacian are needed, especially in
applications to graph clustering.

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 19 / 59



Proposition 1 immediately implies the following facts: For any weighted
graph G = (V ,W ),

1 The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and
nonnegative, and there is an orthonormal basis of eigenvectors of L.

2 The smallest eigenvalue λ1 of L is equal to 0, and 1 is a
corresponding eigenvector.

Normalized variants of the graph Laplacian are needed, especially in
applications to graph clustering.

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 19 / 59



These variants make sense only if G has no isolated vertices. In this case,
the degree matrix D contains positive entries, so it is invertible and D−1/2

makes sense; namely

D−1/2 = diag(d
−1/2
1 , . . . , d

−1/2
m ).

Definition 3

Given any weighted directed graph G = (V ,W ) with no isolated vertex
and with V = {v1, . . . , vm}, the (normalized) graph Laplacians Lsym and
Lrw of G are defined by

Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2

Lrw = D−1L = I − D−1W .
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Proposition 2

Let G = (V ,W ) be a weighted graph without isolated vertices. The graph
Laplacians, L, Lsym, and Lrw satisfy the following properties:

(1) The normalized graph Laplacians Lsym and Lrw have the same
spectrum (0 = ν1 ≤ ν2 ≤ . . . ≤ νm ≤ 2), and a vector u 6= 0 is an
eigenvector of Lrw for λ iff D1/2u is an eigenvector of Lsym for λ.

(2) The graph Laplacians, L, Lsym, and Lrw are symmetric, positive,
semidefinite.
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Figure 8: Are you my mother?

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 22 / 59



3. Back to Graph Clustering

If we want to partition V into K clusters, we can do so by finding a
partition (A1, . . . ,AK ) that minimizes the quantity

cut(A1, . . . ,AK ) =
1

2

K∑
1=1

cut(Ai ).

For K = 2, the mincut problem is a classical problem that can be solved
efficiently, but in practice, it does not yield satisfactory partitions.

Indeed, in many cases, the mincut solution separates one vertex from the
rest of the graph. What we need is to design our cost function in such a
way that it keeps the subsets Ai “reasonably large” (reasonably balanced).
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A way to get around this problem is to normalize the cuts by dividing by
some measure of each subset Ai .

One possibility is to use the size (the number of elements) of Ai .

Another is to use the volume vol(Ai ) of Ai . A solution using the second
measure (the volume) (for K = 2) was proposed and investigated in a
seminal paper of Shi and Malik.

Subsequently, Stella Yu (in her dissertation) and Yu and Shi extended the
method to K > 2 clusters.
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The idea is to minimize the cost function

Ncut(A1, . . . ,AK ) =
K∑
i=1

links(Ai ,Ai )

vol(Ai )
=

K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We proceed directly to the case K > 2 which is the most interesting case,
and is harder to handle.
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Figure 9: Newton goes to Wharton
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4. K -Way Clustering Using Normalized Cuts

Two crucial issues need to be addressed:

1 The choice of a matrix representation for partitions on the set of
vertices.

It is important that such a representation be scale-invariant.

It is also necessary to state necessary and sufficient conditions for
such matrices to represent a partition.

2 The choice of a metric to compare solutions.
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We describe a partition (A1, . . . ,AK ) of the set of nodes V by an N × K
matrix X = [X 1 · · ·XK ] whose columns X 1, . . . ,XK are indicator vectors
of the partition (A1, . . . ,AK ).

We assume that the vector X j is of the form

X j = (x j1, . . . , x
j
N),

where x ji ∈ {aj , 0} for j = 1, . . . ,K and i = 1, . . . ,N, and with aj 6= 0.
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When N = 10 and K = 4, an example of a matrix X representing the
partition of V = {v1, v2, . . . , v10} into the four blocks

{A1,A2,A3,A4} = {{v2, v4, v6}, {v1, v5}, {v3, v8, v10}, {v7, v9}},

is shown below:

X =



0 a2 0 0
a1 0 0 0
0 0 a3 0
a1 0 0 0
0 a2 0 0
a1 0 0 0
0 0 0 a4
0 0 a3 0
0 0 0 a4
0 0 a3 0


.
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Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and we have

(X j)>LX j = a2j cut(Aj ,Aj),

(X j)>DX j = αja
2
j ,

so
cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .

von Luxburg and Yu and Shi pick

aj =
1
√
αj

=
1√

vol(Aj)
, j = 1, . . . ,K .
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If we let

X =
{

[X 1 . . . XK ] | X j = aj(x
j
1, . . . , x

j
N), x ji ∈ {1, 0}, aj ∈ R, X j 6= 0

}
then our optimization problem is:

K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1, X ∈ X .
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The solutions that we are seeking are K -tuples (P(X 1), . . . ,P(XK )) of
points in RPN−1 determined by their homogeneous coordinates
X 1, . . . ,XK .

Our original formulation (PNC1) can be converted to a more convenient
form, by chasing the denominators in the Rayleigh ratios, and by
expressing the objective function in terms of the trace of a certain matrix.
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K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1, X ∈ X .

K -way Clustering of a graph using Normalized Cut, Version 2:
Problem PNC2

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1, X ∈ X .
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Problem PNC2 is equivalent to problem PNC1 if we view the solutions as
homogeneous coordinates (up to a nonzero scalar).

The main problem in finding a good relaxation of problem PNC2 is that it
is very difficult to enforce the condition X ∈ X .

The first natural relaxation of problem PNC2 is to drop the condition that
X ∈ X , and we obtain
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Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1.

Actually, since the discrete solutions X ∈ X that we are ultimately seeking
are solutions of problem PNC1, the preferred relaxation is the one
obtained from problem PNC1 by dropping the condition X ∈ X , and
simply requiring that X j 6= 0, for j = 1, . . . ,K :
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Problem (∗1)

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0,X j 6= 0 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1.

Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1.

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 36 / 59



Problem (∗1)

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0,X j 6= 0 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1.

Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1.

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 36 / 59



Let

µ(X 1, . . . ,XK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j
.
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Proposition 3

For any orthogonal K × K matrix R, any symmetric N × N matrix A, and
any N × K matrix X = [X 1 · · · XK ], the following properties hold:

(1) µ(X ) = tr(Λ−1X>LX ), where

Λ = diag((X 1)>DX 1, . . . , (XK )>DXK ).

(2) If (X 1)>DX 1 = · · · = (XK )>DXK = α2, then

µ(X ) = µ(XR) =
1

α2
tr(X>LX ).

(3) The condition X>AX = α2I is preserved if X is replaced by XR.

(4) The condition X (X>X )−1X>1 = 1 is preserved if X is replaced by
XR.
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Every solution Z of problem (∗2) yields a family of solutions of problem
(∗1); namely, all matrices of the form ZRΛ, where R ∈ O(K ) and Λ is a
diagonal invertible matrix.

We will take advantage of this fact in looking for a discrete solution X
“close” to a solution Z of the relaxed problem (∗2).

Observe that a matrix is of the form RΛ with R ∈ O(K ) and Λ a diagonal
invertible matrix iff its columns are nonzero and pairwise orthogonal.
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If we make the change of variable Y = D1/2X or equivalently
X = D−1/2Y , we get

Problem (∗∗2)

minimize tr(Y>D−1/2LD−1/2Y )

subject to Y>Y = I ,

YY>D1/21 = D1/21.

We pass from a solution Y of problem (∗∗2) to a solution Z of problem
(∗2) by Z = D−1/2Y .
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It is not a priori obvious that the minimum of tr(Y>LsymY ) over all
N × K matrices Y satisfying Y>Y = I is equal to the sum ν1 + · · ·+ νK
of the first K eigenvalues of Lsym = D−1/2LD−1/2.

Fortunately, the Poincaré separation theorem guarantees that the sum of
the K smallest eigenvalues of Lsym is a lower bound for tr(Y>LsymY ).

Furthermore, if we temporarily ignore the second constraint, the minimum
of problem (∗∗2) is achieved by any K unit eigenvectors (u1, . . . , uK )
associated with the smallest eigenvalues

0 = ν1 ≤ ν2 ≤ . . . ≤ νK
of Lsym.
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We may assume that ν2 > 0, namely that the underlying graph is
connected (otherwise, we work with each connected component), in which
case Y 1 = D1/21/

∥∥D1/21
∥∥
2
, because 1 is in the nullspace of L.

Then, Z = D−1/2Y with Y = [u1 . . . uK ] yields a minimum of our relaxed
problem (∗1) (the second constraint is satisfied because 1 is in the range
of Z ).

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 42 / 59



We may assume that ν2 > 0, namely that the underlying graph is
connected (otherwise, we work with each connected component), in which
case Y 1 = D1/21/

∥∥D1/21
∥∥
2
, because 1 is in the nullspace of L.

Then, Z = D−1/2Y with Y = [u1 . . . uK ] yields a minimum of our relaxed
problem (∗1) (the second constraint is satisfied because 1 is in the range
of Z ).

Jean Gallier (Upenn) Normalized Graph Cuts September 29, 2015 42 / 59



-

vJIL~UfIt \ZO'NTGLEt'l'; fIRS, ATi£Mf'T AT X-RAiS: 
'5r\ltJIN~ A E?RI~t\l L'~\-\T m~OU~H NkvAMr: 1\ONT6EN 

Figure 10: Try and try again
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The conditions (Z i )>DZ j = 0 do not necessarily imply that Z i and Z j are
orthogonal (w.r.t. the Euclidean inner product), but we can obtain a
solution of Problems (∗2) and (∗1) achieving the same minimum for which
distinct columns Z i and Z j are simultaneously orthogonal and
D-orthogonal, by multiplying Z by some K × K orthogonal matrix R on
the right.
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Indeed, if Z is a solution of (∗2) obtained as above, the K × K symmetric
matrix Z>Z can be diagonalized by some orthogonal K × K matrix R as

Z>Z = RΣR>,

where Σ is a diagonal matrix,

and thus,
R>Z>ZR = (ZR)>ZR = Σ,

which shows that the columns of ZR are orthogonal.
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6. What if the weight matrix is very large?

Given a n× n matrix W for n ≈ 105, we want to find to compute a rank-k
approximation, with k � n (where k ∼ the number of clusters ),

W ≈ E F>.

n × n n × k k × n

The columns of E and F are required to be orthogonal.

This problem requires algorithms for computing the
Singular Value Decomposition (SVD).
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What if the weight matrix is very large?

We use randomized algorithms that compute partial matrix
decompositions (Halko, Martinsson, Tropp).

For a dense input matrix, randomized algorithms require
O(mn log(k)) floating-point operations in contrast with O(mnk) for
classical algorithms.

randomized techniques require only a constant number of passes over
the data.

probabilistic bound on accuracy.

We want to find A ≈ UΣkV
>.
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Fast SVD

Given an m× n matrix A and integers ` and q, this algorithm computes an
m × ` orthonormal matrix Q whose range approximates the range of A.

Algorithm 1 Computing SVD using Randomized Algorithm

1: Draw an n × ` Gaussian random matrix Ω.
2: Form the m × ` matrix Y = (AA>)qAΩ via alternating application of

A and A>.
3: Construct an m× ` matrix Q whose columns form an orthonormal basis

for the range of Y , e.g., via the QR factorization Y = QR.
4: Form B = Q>A.
5: Compute an SVD of the small matrix: B = ŨΣV>.
6: Set U = QŨ.
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Probabilistic Bounds

What is the error ek =
∥∥A− UΣkV

>∥∥?

Theorem 4

Eckart-Young Theorem: ek is bounded from below by the (k + 1)th
singular value σk+1 of A.

We want ek to be close to σk+1, but this is not true.
The expectation of ek

σk+1
is large with high variance.

However, using oversampling where we compute k + p where p = k solves
this issue.
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Probabilistic Bounds

Theorem 5

Suppose that A is a real m × n matrix. Select an exponent q and a target
number k of singular vectors, where 2 ≤ k ≤ 0.5 min{m, n}. Randomized
SVD algorithm to obtain a rank-2k factorization UΣV>. Then

E
[
‖A− UΣkV

>‖
]
≤

[
1 + 4

√
2 min{m, n}

k − 1

]1/(2q+1)

σk+1,

where E denotes expectation with respect to the random test matrix and
σk+1 is the (k + 1)th singular value of A. (Halko, Martinsson, Tropp 2011)
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Bound Example
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7. Signed Graphs

Intuitively, in a weighted graph, an edge with a positive weight denotes
similarity or proximity of its endpoints.

For many reasons, it is desirable to allow edges labeled with negative
weights, the intuition being that a negative weight indicates dissimilarity or
distance.

Weighted graphs for which the weight matrix is a symmetric matrix in
which negative and positive entries are allowed are called signed graphs.
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Given the signed matrix

W =



0 1 0 1 0 0 0 0 0
1 0 −1 −1 1 0 0 1 0
0 −1 0 0 1 1 0 0 0
1 −1 0 0 −1 0 1 1 0
0 1 1 −1 0 1 0 −1 1
0 0 1 0 1 0 0 −1 1
0 0 0 1 0 0 0 1 0
0 1 0 1 −1 −1 1 0 −1
0 0 0 0 1 1 0 −1 0


the corresponding signed graph is
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Figure 11: A signed graph G .
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The first obstacle is that the degree matrix may now contain zero or
negative entries.

As a consequence, the Laplacian L may no longer be positive semidefinite,
and worse, D−1/2 may not exist.

A simple remedy is to use the absolute values of the weights in the degree
matrix!

This idea applied to signed graph with weights (−1, 0, 1) occurs in Hou.
Kolluri, Shewchuk and O’Brien take the natural step of using absolute
values of weights in the degree matrix in their original work on surface
reconstruction from noisy point clouds.
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Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut.
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Definition 6

The signed normalized cut
sNcut(A1, . . . ,AK ) of the partition (A1, . . . ,AK ) is defined as

sNcut(A1, . . . ,AK ) =
K∑
j=1

cut(Aj ,Aj)

vol(Aj)
+ 2

K∑
j=1

links−(Aj ,Aj)

vol(Aj)
.
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Then, we can show that

sNcut(A1, . . . ,AK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j
.

where X is the N × K matrix whose jth column is X j and L is the signed
Laplacian of W .

Therefore, this is the same problem as in the unsigned case, with L
replaced by L and D replaced by D.
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Figure 12: Just Checking!
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