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Figure 1: Beethoven and Twitter
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Review of Part I

Given a graph G = (V ,W ) specified by a weight matrix W (with
nonnegative weights), we want to partition the set of nodes V into K
clusters by finding a partition (A1, . . . ,AK ).

To keep the clusters reasonably balanced, we find a partition (A1, . . . ,AK )
that minimizes the normalized cut

Ncut(A1, . . . ,AK ) =
K∑
i=1

links(Ai ,Ai )

vol(Ai )
=

K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.
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15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 2: A weighted graph and its partition into two clusters.
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We describe a partition (A1, . . . ,AK ) of the set of nodes V by an N × K
matrix X = [X 1 · · ·XK ] whose columns X 1, . . . ,XK are indicator vectors
of the partition (A1, . . . ,AK ).
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When N = 10 and K = 4, an example of a matrix X representing the
partition of V = {v1, v2, . . . , v10} into the four blocks

{A1,A2,A3,A4} = {{v2, v4, v6}, {v1, v5}, {v3, v8, v10}, {v7, v9}},

is shown next:

X =



0 a2 0 0
a1 0 0 0
0 0 a3 0
a1 0 0 0
0 a2 0 0
a1 0 0 0
0 0 0 a4
0 0 a3 0
0 0 0 a4
0 0 a3 0


.
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If we let

X =
{

[X 1 . . . XK ] | X j = aj(x
j
1, . . . , x

j
N), x ji ∈ {1, 0}, aj ∈ R, X j 6= 0

}
then the problem can be stated in matrix form (using the graph
Laplacian):

K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize
K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1, X ∈ X .
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The solutions that we are seeking are K -tuples (P(X 1), . . . ,P(XK )) of
points in RPN−1 determined by their homogeneous coordinates
X 1, . . . ,XK .

The above problem is very hard, so we relax it. We drop the condition
X ∈ X ; that is, we look for continuous solutions.

There are two possible relaxations:
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Problem (∗1)

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0,X j 6= 0 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1.

Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1.

Every solution Z of problem (∗2) yields a family of solutions of problem
(∗1); namely, all matrices of the form ZQ, where Q is a K × K matrix
with nonzero and pairwise orthogonal columns.
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5. Finding a Discrete Solution Close to a Continuous
Approximation

The next step is to find an exact solution
(P(X 1), . . . ,P(XK )) ∈ P(K) which is the closest (in a suitable sense) to
our approximate solution (Z 1, . . . ,ZK ).

Since the solutions ZQ of (∗1) are all equivalent (they yield the same
minimum for the normalized cut), it makes sense to look for a discrete
solution X closest to one of these ZQ.
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If we use the Riemannian metric on RPN−1 induced by the Euclidean
metric on RN and the product distance on (RPN−1)K given by

d
(
(P(X 1), . . . ,P(XK )), (P(Z 1), . . . ,P(ZK ))

)
=

K∑
j=1

d(P(X j),P(Z j)),

it can be shown that minimizing the distance
d
(
(P(X 1), . . . ,P(XK )), (P(Z 1), . . . ,P(ZK ))

)
in (RPN−1)K

is equivalent to minimizing

K∑
j=1

∥∥X j − Z j
∥∥
2
, subject to

∥∥X j
∥∥
2

=
∥∥Z j

∥∥
2

(j = 1, . . . ,K ).
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We are not aware of any optimization method to solve the above problem,
which seems difficult to tackle due to constraints

∥∥X j
∥∥
2

=
∥∥Z j

∥∥
2

(j = 1, . . . ,K ).

Therefore, we drop these constraints and attempt to minimize

‖X − Z‖2F =
K∑
j=1

∥∥X j − Z j
∥∥2
2
,

the Frobenius norm of X − Z . This is implicitly the choice made by Yu.
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Inspired by Yu and the previous discussion, given a solution Z of problem
(∗2), we look for pairs (X ,Q) with X ∈ X and where Q is a K ×K matrix
with nonzero and pairwise orthogonal columns, with ‖X‖F = ‖Z‖F , that
minimize

ϕ(X ,Q) = ‖X − ZQ‖F .

Yu and Shi consider the special case where Q ∈ O(K ).

We consider the more general case where Q = RΛ, with R ∈ O(K ) and Λ
is a diagonal invertible matrix.
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The key to minimizing ‖X − ZQ‖F rests on the following result:

‖X − ZQ‖2F = ‖X‖2F − 2tr(Q>Z>X ) + tr(Z>ZQQ>).

Therefore, since ‖X‖F = ‖Z‖F is fixed, minimizing ‖X − ZQ‖2F is
equivalent to

minimizing −2tr(Q>Z>X ) + tr(Z>ZQQ>).

This is a hard problem because it is a nonlinear optimization problem
involving two matrix unknowns X and Q.
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To simplify the problem, we proceed by alternating steps during which

1 we minimize ϕ(X ,Q) = ‖X − ZQ‖F with respect to X holding Q
fixed, and

2 steps during which we minimize ϕ(X ,Q) = ‖X − ZQ‖F with respect
to Q holding X fixed.

This second step in which X is held fixed has been studied, but it is still a
hard problem for which no closed–form solution is known. Consequently,
we further simplify the problem.

Since Q is of the form Q = RΛ where R ∈ O(K ) and Λ is a diagonal
invertible matrix, we minimize ‖X − ZRΛ‖F in two stages.

1 We set Λ = I and find R ∈ O(K ) that minimizes ‖X − ZR‖F .

2 Given X , Z , and R, find a diagonal invertible matrix Λ that minimizes
‖X − ZRΛ‖F .
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In stage 1, the matrix Q = R is orthogonal, so QQ> = I , and since Z and
X are given, the problem reduces to minimizing −2tr(Q>Z>X ); that is,
maximizing tr(Q>Z>X ).

This is a standard result:

Proposition 1

For any two fixed N × K matrices X and Z, the minimum of the set

{‖X − ZR‖F | R ∈ O(K )}

is achieved by R = UV>, for any SVD decomposition UΣV> = Z>X of
Z>X.
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The following proposition takes care of stage 2.

Proposition 2

For any two fixed N × K matrices X and Z, where Z has no zero column,
there is a unique diagonal matrix Λ = diag(λ1, . . . , λK ) minimizing
‖X − ZΛ‖F given by

λj =
(Z>X )jj

‖Z j‖22
j = 1, . . . ,K .

It should be noted that Proposition 2 does not guarantee that Λ is
invertible.
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We now deal with step 1, where Q = RΛ is held fixed.

For fixed Z and Q, we would like to find some X ∈ K with ‖X‖F = ‖Z‖F
so that ‖X − ZQ‖F is minimal.

Without loss of generality, we may assume that the entries a1, . . . , aK
occurring in the matrix X are positive and all equal to some common
value a 6= 0.

Recall that a matrix X ∈ X has the property that every row contains
exactly one nonzero entry, and that every column is nonzero.

The problem is to decide for each row, which column contains the nonzero
entry.
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After having found X , we rescale its columns so that ‖X‖F = ‖Z‖F .

For example, consider the following continuous solution and the discrete
solution X :

0.00 −10.31 30.40 6.36
0.00 −1.37 22.27 −6.15
−32.73 −32.60 −1.29 2.58

0.00 −1.37 22.27 −6.15
0.00 8.95 8.03 −23.86
−23.14 −20.55 −5.00 −9.39
32.73 −32.60 −1.29 2.58
23.14 −20.55 −5.00 −9.39
−0.00 −1.75 −7.20 −25.67


X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0


.

We keep the leftmost largest entry on every row and set the others entries
to 0.
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to 0.
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Unfortunately, the matrix X may not be a correct solution, because the
above prescription does not guarantee that every column of X is nonzero.

When this happens, we reassign certain nonzero entries in columns having
“many” nonzero entries to zero columns, so that we get a matrix in K.
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If we apply the method to the graph associated with the the matrix W1

shown in Figure 3 for K = 4 clusters, the algorithm converges in 3 steps
and we find the clusters shown in Figure 4.

Figure 3: Underlying graph of the matrix W1.
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Figure 4: Four blocks of a normalized cut for the graph associated with W1 .
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The solution Z of the relaxed problem is

Z =



−21.3146 −0.0000 19.4684 −15.4303
−4.1289 0.0000 16.7503 −15.4303
−21.3146 32.7327 −19.4684 −15.4303
−4.1289 −0.0000 16.7503 −15.4303
19.7150 0.0000 9.3547 −15.4303
−4.1289 23.1455 −16.7503 −15.4303
−21.3146 −32.7327 −19.4684 −15.4303
−4.1289 −23.1455 −16.7503 −15.4303
19.7150 −0.0000 −9.3547 −15.4303


.

We find the following sequence for Q,Z ∗ Q,X :
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Q =


0 0.6109 −0.3446 −0.7128

−1.0000 0.0000 0.0000 −0.0000
0.0000 0.5724 0.8142 0.0969
−0.0000 0.5470 −0.4672 0.6947

 ,

which is the initial Q obtained by method 1;
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Z ∗ Q =



0.0000 −10.3162 30.4065 6.3600
0.0000 −1.3742 22.2703 −6.1531
−32.7327 −32.6044 −1.2967 2.5884

0.0000 −1.3742 22.2703 −6.1531
0.0000 8.9576 8.0309 −23.8653
−23.1455 −20.5505 −5.0065 −9.3982
32.7327 −32.6044 −1.2967 2.5884
23.1455 −20.5505 −5.0065 −9.3982
−0.0000 −1.7520 −7.2027 −25.6776


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X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0


;
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Q =


−0.0803 0.8633 −0.4518 −0.2102
−0.6485 0.1929 0.1482 0.7213
−0.5424 0.0876 0.5546 −0.6250
−0.5281 −0.4581 −0.6829 −0.2119


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Z ∗ Q =



−0.6994 −9.6267 30.9638 −4.4169
−0.6051 4.9713 21.6922 −6.3311
−0.8081 −6.7218 14.2223 43.5287
−0.6051 4.9713 21.6922 −6.3311
1.4913 24.9075 6.8186 −6.7218
2.5548 6.5028 6.5445 31.3015

41.6456 −19.3507 4.5190 −3.6915
32.5742 −2.4272 −0.3168 −2.0882
11.6387 23.2692 −3.5570 4.9716



Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 28 / 64



X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


;

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 29 / 64



Q =


−0.3201 0.7992 −0.3953 −0.3201
−0.7071 −0.0000 0.0000 0.7071
−0.4914 −0.0385 0.7181 −0.4914
−0.3951 −0.5998 −0.5728 −0.3951


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Z ∗ Q =



3.3532 −8.5296 31.2440 3.3532
−0.8129 5.3103 22.4987 −0.8129
−0.6599 −7.0310 3.2844 45.6311
−0.8129 5.3103 22.4987 −0.8129
−4.8123 24.6517 7.7629 −4.8123
−0.7181 6.5997 −1.5571 32.0146
45.6311 −7.0310 3.2844 −0.6599
32.0146 6.5997 −1.5571 −0.7181
4.3810 25.3718 −5.6719 4.3810


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X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


.

During the next round, the exact same matrices are obtained and the
algorithm stops.
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Any matrix obtained by flipping the signs of some of the columns of a
solution ZR of problem (∗2) is still a solution.

Moreover, all entries in X are nonnegative. It follows that a “good”
solution ZQp (that is, close to a discrete solution) should have the
property that the average of each of its column is nonnegative.

We found that the following heuristic is quite helpful in finding a better
discrete solution X :

Given a solution ZR of problem (∗2), we compute ZQp, defined such that
if the average of column (ZR)j is negative, then (ZQp)j = −(ZR)j , else
(ZQp)j = (ZR)j .
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Figure 5 shows a graph (on the left) and the graph drawings X and Z ∗ R
obtained by applying our method for three clusters.

The rows of X are represented by the red points along the axes, and the
rows of Z ∗ R by the green points (on the right).

The original vertices corresponding to the rows of Z are represented in
blue.
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Figure 5: A graph and its drawing to find 3 clusters.
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We can see how the two red points correspond to an edge, the three red
points correspond to a triangle, and the four red points to a quadrangle.

These constitute the clusters.
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It remains to initialize Q∗ to start the process, and then steps (1) (holding
Q fixed) and (2) (holding X fixed) are iterated, starting with step (1).

Actually, what we really need is a “good” initial X ∗, but to find it, we
need an initial R∗.

Method 1. One method is to use an orthogonal matrix denoted R1, such
that distinct columns of ZR1 are simultaneously orthogonal and
D-orthogonal.

The matrix R1 can be found by diagonalizing Z>Z as Z>Z = R1ΣR>1 , as
we explained earlier. We write Z2 = ZR1.
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Method 2. The method advocated by Yu is to pick K rows of Z that are
as orthogonal to each other as possible and to make a matrix R whose
columns consist of these rows normalized to have unit length.

The intuition behind this method is that if a continuous solution Z can be
sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned with the
canonical basis vectors, and these rows are good candidates for some of
the rows of the discrete solution X .

We also have implemented various methods for improving the initial X .
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Figure 6: Newton goes to Wharton
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6. Signed Graphs

Intuitively, in a weighted graph, an edge with a positive weight denotes
similarity or proximity of its endpoints.

For many reasons, it is desirable to allow edges labeled with negative
weights, the intuition being that a negative weight indicates dissimilarity or
distance.

Weighted graphs for which the weight matrix is a symmetric matrix in
which negative and positive entries are allowed are called signed graphs.
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Such graphs (with weights (−1, 0,+1)) were introduced as early as 1953
by Harary, to model social relations involving disliking, indifference, and
liking.

The problem of clustering the nodes of a signed graph arises naturally as a
generalization of the clustering problem for weighted graphs.

From our perspective, we would like to know whether clustering using
normalized cuts can be extended to signed graphs.

Given a signed graph G = (V ,W ) (where W is a symmetric matrix with
zero diagonal entries), the underlying graph of G is the graph with node
set V and set of (undirected) edges E = {{vi , vj} | wij 6= 0}.
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Given the signed matrix

W =



0 1 0 1 0 0 0 0 0
1 0 −1 −1 1 0 0 1 0
0 −1 0 0 1 1 0 0 0
1 −1 0 0 −1 0 1 1 0
0 1 1 −1 0 1 0 −1 1
0 0 1 0 1 0 0 −1 1
0 0 0 1 0 0 0 1 0
0 1 0 1 −1 −1 1 0 −1
0 0 0 0 1 1 0 −1 0


the corresponding signed graph is
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Figure 7: A signed graph G .
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The first obstacle is that the degree matrix may now contain zero or
negative entries.

As a consequence, the Laplacian L may no longer be positive semidefinite,
and worse, D−1/2 may not exist.

A simple remedy is to use the absolute values of the weights in the degree
matrix!

This idea applied to signed graph with weights (−1, 0, 1) occurs in Hou.
Kolluri, Shewchuk and O’Brien take the natural step of using absolute
values of weights in the degree matrix in their original work on surface
reconstruction from noisy point clouds.
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Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 45 / 64



Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 45 / 64



Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 45 / 64



Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 45 / 64



If (V ,W ) is a signed graph, where W is an m ×m symmetric matrix with
zero diagonal entries and with the other entries wij ∈ R arbitrary, for any
node vi ∈ V , the signed degree of vi is defined as

d i = d(vi ) =
m∑
j=1

|wij |,

and the signed degree matrix D as

D = diag(d(v1), . . . , d(vm)).

For any subset A of the set of nodes V , let

vol(A) =
∑
vi∈A

d i .
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For any two subsets A and B of V , define links+(A,B), links−(A,B), and
cut(A,A) by

links+(A,B) =
∑

vi∈A,vj∈B
wij>0

wij

links−(A,B) =
∑

vi∈A,vj∈B
wij<0

−wij

cut(A,A) =
∑

vi∈A,vj∈A
wij 6=0

|wij |.

Note that

cut(A,A) = links+(A,A) + links−(A,A).
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Then, the signed Laplacian L is defined by

L = D −W ,

and its normalized version Lsym by

Lsym = D
−1/2

LD
−1/2

= I − D
−1/2

WD
−1/2

.

For a graph without isolated vertices, we have d(vi ) > 0 for i = 1, . . . ,m,

so D
−1/2

is well defined.

The signed Laplacian is symmetric positive semidefinite.
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The signed Laplacian of the matrix W given earlier is

L =



2 −1 0 −1 0 0 0 0 0
−1 5 1 1 −1 0 0 −1 0
0 1 3 0 −1 −1 0 0 0
−1 1 0 5 1 0 −1 −1 0
0 −1 −1 1 6 −1 0 1 −1
0 0 −1 0 −1 4 0 1 −1
0 0 0 −1 0 0 2 −1 0
0 −1 0 −1 1 1 −1 6 1
0 0 0 0 −1 −1 0 1 3


.

The eigenvalues of L are

0.5175, 1.5016, 1.7029, 2.7058, 3.7284, 4.9604, 5.6026, 7.0888, 8.1921.

The matrix L is actually positive definite!
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For any real λ ∈ R, define sgn(λ) by

sgn(λ) =


+1 if λ > 0

−1 if λ < 0

0 if λ = 0.

Proposition 3

For any m ×m symmetric matrix W = (wij), if we let L = D −W where
D is the signed degree matrix associated with W , then we have

x>Lx =
1

2

m∑
i ,j=1

|wij |(xi − sgn(wij)xj)
2 for all x ∈ Rm.

Consequently, L is positive semidefinite.
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7. Signed Normalized Cuts

As before, given a partition of V into K clusters (A1, . . . ,AK ), if we
represent the jth block of this partition by a vector X j such that

X j
i =

{
aj if vi ∈ Aj

0 if vi /∈ Aj ,

for some aj 6= 0, then we have the following result.

Proposition 4

For any vector X j representing the jth block of a partition (A1, . . . ,AK ) of
V , we have

(X j)>LX j = a2j (cut(Aj ,Aj) + 2links−(Aj ,Aj)).
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Since with the revised definition of vol(Aj), we also have

(X j)>DX j = a2j
∑
vi∈Aj

d i = a2j vol(Aj),

we deduce that

(X j)>LX j

(X j)>DX j
=

cut(Aj ,Aj) + 2links−(Aj ,Aj)

vol(Aj)
.

The calculations of the previous paragraph suggest the following definition.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 52 / 64



Since with the revised definition of vol(Aj), we also have

(X j)>DX j = a2j
∑
vi∈Aj

d i = a2j vol(Aj),

we deduce that

(X j)>LX j

(X j)>DX j
=

cut(Aj ,Aj) + 2links−(Aj ,Aj)

vol(Aj)
.

The calculations of the previous paragraph suggest the following definition.

Jean Gallier (Upenn) Normalized Graph Cuts October 1, 2015 52 / 64



Definition 1

The signed normalized cut
sNcut(A1, . . . ,AK ) of the partition (A1, . . . ,AK ) is defined as

sNcut(A1, . . . ,AK ) =
K∑
j=1

cut(Aj ,Aj)

vol(Aj)
+ 2

K∑
j=1

links−(Aj ,Aj)

vol(Aj)
.
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Based on previous computations, we have

sNcut(A1, . . . ,AK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j
.

where X is the N × K matrix whose jth column is X j .

Therefore, this is the same problem as in the unsigned case, with L
replaced by L and D replaced by D.
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Observe that minimizing sNcut(A1, . . . ,AK ) amounts to

1 minimizing the number of positive and negative edges between
clusters, and also

2 minimizing the number of negative edges within clusters.

This second minimization captures the intuition that nodes connected by a
negative edge should not be together (they do not “like” each other; they
should be far from each other).

The K -clustering problem for signed graphs is related but not equivalent
to another problem known as correlation clustering .
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In correlation clustering, in our terminology and notation, given a graph
G = (V ,W ) with positively and negatively weighted edges, one seeks a
clustering of V that

1 minimizes the sum links−(Aj ,Aj) of the absolute values of the
negative weights of the edges within each cluster Aj , and

2 minimizes the sum links+(Aj ,Aj) of the positive weights of the edges
between distinct clusters.

In contrast to K -clustering, the number K of clusters is not given in
advance, and there is no normalization with respect to size of volume.
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Figure 8: Just the right tech
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8. Semantic Word Clusters

Finding sets of similar words is important for various Natural Language
Processing (NLP) tasks. The desired similarity can be part-of-speech,
tense, etc. and in our case we want closest semantic equivalence. For
tasks such as machine translation, considering antonyms as equivalent is
extremely problematic.

This is akin to thesaurus sets, but given the fact that language changes
rapidly be changes in meaning, new words or spellings (especially for
twitter), as well as multitudes of languages, we aim to have data driven
clusters.
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Semantic Word Cluster Problem

Figure 9: Thesaurus based (left) versus data-driven (right) clusters for “hot”. It is
important to note cool on the right.
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Representing Words as Vectors

For word representations the initial obvious vector representation is a
“one-hot” representations where word i is represented by a vector having
all zeros for the size of our vocabulary aside from position i which is 1.

hot =
(
0 0 0 · · · 0 1 0 · · · 0 0

)>
scorching =

(
0 0 0 · · · 0 0 0 · · · 1 0

)>
However, in this representation all words are orthogonal, which is highly
undesirable.
Instead, we use so called word embeddings, which are dense vector
representations in RD where D is much smaller than the vocabulary.
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Representing Words as Vectors
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Representing Words as Vectors

The distributional hypothesis is that similar words are used in similar
context (Harris 1954). Many vector popular representations (Eigenwords,
GloVe, and word2vec) use adjacent words. However often antonyms such
as “hot” and “cold” occur in similar contexts and thus have similar
representations.

I meant... do I have time to fix you a hot lunch?

Tossing the hot pan holder on the counter, she untied the apron

He sipped the hot liquid and grimaced.

Her face felt hot again.

”Aren’t you cold?” he asked

But, unfortunately, I struck my foot on a rock and fell forward
into the cold water.

Table 1: “hot” and “cold” in sentence contexts 1 .

1from http://sentence.yourdictionary.com/
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Embedding into Graph

We define the distance between two words wordi and wordj as
dist(wordi ,wordj) = ‖wordi − wordj‖.
For the edge weight between two words

Wij =

0 if e−
dist(wordi ,wordj )

2

σ < thresh

e−
dist(wordi ,wordj )

2

σ otherwise
.

We can represent the thesaurus as a matrix where

Tij =


1 if words i and j are synonyms

−1 if words i and j are antonyms

0 otherwise

.

We can write the weight matrix of the signed graph as Ŵij = TijWij or in

matrix form Ŵ = T �W where � denotes element-wise multiplication.
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Embedding into Graph
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