
What is a Proof?
Jean Gallier and

 Kurt W.A.J.H.Y. Reillag
CIS, Upenn and

Hospices de Beaune

Friday, February 22, 13

Reillag’s office

Friday, February 22, 13

Another office
Friday, February 22, 13

After a bad proof!

Friday, February 22, 13

Finally, some peace!

Friday, February 22, 13

Quick History

Friday, February 22, 13

Quick History

• Formalizing the rules of logic goes back to
the Greek.

Friday, February 22, 13

Quick History

• Formalizing the rules of logic goes back to
the Greek.

• Axioms and Syllogisms (Aristotle, 384
BC-322 BC)
- All humans are mortal
- Socrates is a human
- Socrates is mortal.

Friday, February 22, 13

Quick History

• Formalizing the rules of logic goes back to
the Greek.

• Axioms and Syllogisms (Aristotle, 384
BC-322 BC)
- All humans are mortal
- Socrates is a human
- Socrates is mortal.

• Modus Ponens: If (P implies Q) holds
and P holds, then Q holds.

Friday, February 22, 13

Types of Proofs

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

• Proof by obfuscation

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

• Proof by obfuscation

• Proof by confusion

Friday, February 22, 13

Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

• Proof by obfuscation

• Proof by confusion

• Proof by exhaustion

Friday, February 22, 13

More Types of Proofs

Friday, February 22, 13

More Types of Proofs

• Proof by passion

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

• Proof by funding

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

• Proof by funding

• Proof by personal communication

Friday, February 22, 13

More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

• Proof by funding

• Proof by personal communication

• Proof by metaproof, etc.

Friday, February 22, 13

Proof by
intimidation!

Friday, February 22, 13

Quick History

Friday, February 22, 13

Quick History

• Cantor (1845-1918) and the
birth of set theory

Friday, February 22, 13

Quick History

• Cantor (1845-1918) and the
birth of set theory

• Paradoxes and the “crisis of
foundations’’.

Friday, February 22, 13

Quick History

• Cantor (1845-1918) and the
birth of set theory

• Paradoxes and the “crisis of
foundations’’.

• Sets that are too big or
defined by self-reference

Friday, February 22, 13

Quick History

• Cantor (1845-1918) and the
birth of set theory

• Paradoxes and the “crisis of
foundations’’.

• Sets that are too big or
defined by self-reference

• Russell’s paradox (1902)

Friday, February 22, 13

Quick History

• Cantor (1845-1918) and the
birth of set theory

• Paradoxes and the “crisis of
foundations’’.

• Sets that are too big or
defined by self-reference

• Russell’s paradox (1902)

• There is no set of all sets

Friday, February 22, 13

Truth and Proofs

Friday, February 22, 13

Truth and Proofs

• Ideally, we would like to know what is truth

Friday, February 22, 13

Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to
do with semantics, i.e., the meaning of
statements

Friday, February 22, 13

Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to
do with semantics, i.e., the meaning of
statements

• Peter Andrew’s motto: ``Truth is elusive’’

Friday, February 22, 13

Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to
do with semantics, i.e., the meaning of
statements

• Peter Andrew’s motto: ``Truth is elusive’’

• ``To truth through proof’’

Friday, February 22, 13

Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to
do with semantics, i.e., the meaning of
statements

• Peter Andrew’s motto: ``Truth is elusive’’

• ``To truth through proof’’

• Provable implies true. Easier to study proofs

Friday, February 22, 13

Truth and Proofs

A ^B

• The logical connectives (and, or,
implication, negation, etc.) carry some
intuitive semantics

• For example, (and) means
that both and are true

• But what is the meaning of
(implies)?

A B

A B

A) B

A B

Friday, February 22, 13

Dog Logic

Friday, February 22, 13

What is a proof?

Friday, February 22, 13

What is a proof?

A) B

Friday, February 22, 13

What is a proof?

• What is a proof of ?A) B

Friday, February 22, 13

What is a proof?

• What is a proof of ?

• More generally, what is a proof?

A) B

Friday, February 22, 13

What is a proof?

• What is a proof of ?

• More generally, what is a proof?

• Basically, most people don’t know!

A) B

Friday, February 22, 13

What is a proof?

• What is a proof of ?

• More generally, what is a proof?

• Basically, most people don’t know!

• Unfortunately, there is more than one
formalism to define the notion of proof

A) B

Friday, February 22, 13

What is a proof?

• What is a proof of ?

• More generally, what is a proof?

• Basically, most people don’t know!

• Unfortunately, there is more than one
formalism to define the notion of proof

• Hilbert systems, natural deduction, sequent
calculus, categorical logic, etc.

A) B

Friday, February 22, 13

Hilbert

David Hilbert (1862-1943)

Friday, February 22, 13

Hilbert Systems

Friday, February 22, 13

Hilbert Systems

• Hilbert systems have many axioms and few
inference rules

Friday, February 22, 13

Hilbert Systems

• Hilbert systems have many axioms and few
inference rules

• The axioms are very unnatural!

Friday, February 22, 13

Hilbert Systems

• Hilbert systems have many axioms and few
inference rules

• The axioms are very unnatural!

• That’s because they are chosen to yield the
deduction theorem

Friday, February 22, 13

Hilbert Systems

• Hilbert systems have many axioms and few
inference rules

• The axioms are very unnatural!

• That’s because they are chosen to yield the
deduction theorem

• Unfriendly system for humans.

Friday, February 22, 13

Hilbert Systems

• Hilbert systems have many axioms and few
inference rules

• The axioms are very unnatural!

• That’s because they are chosen to yield the
deduction theorem

• Unfriendly system for humans.

• Proofs in Hilbert systems are very far from
proofs that a human would write

Friday, February 22, 13

Gentzen’s Systems

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction
systems and sequent calculi

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction
systems and sequent calculi

• Trivial axioms, ``natural rules’’

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction
systems and sequent calculi

• Trivial axioms, ``natural rules’’

• The rules formalize informal r
rules of reasoning

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction
systems and sequent calculi

• Trivial axioms, ``natural rules’’

• The rules formalize informal r
rules of reasoning

• Symmetry of the rules

Friday, February 22, 13

Gentzen’s Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction
systems and sequent calculi

• Trivial axioms, ``natural rules’’

• The rules formalize informal r
rules of reasoning

• Symmetry of the rules

• Introduction/Elimination

Friday, February 22, 13

Proofs and Deductions

Friday, February 22, 13

Proofs and Deductions

• A proof of a proposition, P, does not
depend on any assumptions (premises).

Friday, February 22, 13

Proofs and Deductions

• A proof of a proposition, P, does not
depend on any assumptions (premises).

• When we construct a proof, we usually
introduce extra premises which are later
closed (dismissed, discharged).

Friday, February 22, 13

Proofs and Deductions

• A proof of a proposition, P, does not
depend on any assumptions (premises).

• When we construct a proof, we usually
introduce extra premises which are later
closed (dismissed, discharged).

• Such an ``unfinished’’ proof is a deduction.

Friday, February 22, 13

Proofs and Deductions

• A proof of a proposition, P, does not
depend on any assumptions (premises).

• When we construct a proof, we usually
introduce extra premises which are later
closed (dismissed, discharged).

• Such an ``unfinished’’ proof is a deduction.

• We need a mechanism to keep track of
closed (discharged) premises (the others
are open).

Friday, February 22, 13

Natural Deduction Rules

• A proof is a tree labeled with propositions

• To prove an implication, , from a list
of premises, , do this:

• Add to the list and prove from
and .

• When this deduction is finished, we obtain
a proof of which does not depend
on , so the premise needs to be
discharged (closed).

Γ = (P1, . . . , Pn)

P ⇒ Q

ΓP Q

P

P ⇒ Q

P

Γ

P

Friday, February 22, 13

Natural Deduction Rules

The axioms and inference rules for implicational logic are:

Axioms:

Γ, P

P

The ⇒-elimination rule:

Γ

P ⇒ Q

∆

P

Q

Friday, February 22, 13

Natural Deduction Rules

xIn the introduction rule, the tag indicates which
rule caused the premise, , to be discharged. P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q

Friday, February 22, 13

Natural Deduction Rules

xIn the introduction rule, the tag indicates which
rule caused the premise, , to be discharged. P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q

Every tag is associated with a unique rule but
several premises can be labeled with the same

tag and all discharged in a single step.

Friday, February 22, 13

Examples of Proofs
(a)

P x

P
x

P ⇒ P

So, P ⇒ P is provable; this is the least we should expect from our proof
system!

(Q) R)y

(P) Q)z P x

Q

(b)

Friday, February 22, 13

Examples of Proofs

(Q) R)y

(P) Q)z P x

Q

R

(Q) R)y

(P) Q)z P x

Q

R
x

P) R

Friday, February 22, 13

Example of Proofs

(Q) R)y

(P) Q)z P x

Q

R
x

P) R
y

(Q) R)) (P) R)

Friday, February 22, 13

Example of Proofs

(Q) R)y

(P) Q)z P x

Q

R
x

P) R
y

(Q) R)) (P) R)
z

(P) Q)) ((Q) R)) (P) R))

Friday, February 22, 13

Examples of proofs

(c) In the next example, the two occurrences of A labeled x are discharged
simultaneously.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y Ax

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

Friday, February 22, 13

More Examples of Proofs

(d) In contrast to Example (c), in the proof tree below the two occurrences
of A are discharged separately. To this effect, they are labeled differently.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y At

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

t

A ⇒

(

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

)

Friday, February 22, 13

Wow, I landed it! (the proof)
Friday, February 22, 13

Natural Deduction in Sequent-Style

• A different way of keeping track of open
premises (undischarged) in a deduction

• The nodes of our trees are now sequents of
the form , with

• The variables are pairwise distinct but the
premises may be repeated

• We can view the premise as the type of
the variable !

Γ → P

Γ = x1 : P1, . . . , xm : Pm

Pi

xi

Friday, February 22, 13

Natural Deduction in Sequent-Style

The axioms and rules for implication in Gentzen-sequent style:

Γ, x : P → P

Γ, x : P → Q

Γ → P ⇒ Q
(⇒-intro)

Γ → P ⇒ Q Γ → P

Γ → Q
(⇒-elim)

Friday, February 22, 13

Redundant Proofs
Proof Normalization

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q

Friday, February 22, 13

Redundant Proofs
Proof Normalization

• When an elimination step immediately
follows an introduction step, a proof can be
normalized (simplified)

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q

Friday, February 22, 13

Proof Normalization

• A simpler (normalized) proof:

((R ⇒ R) ⇒ Q)x

Rz

R
z

R ⇒ R

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q

Friday, February 22, 13

Where is that simpler proof?

Friday, February 22, 13

Normalization and Strong
Normalization of Proofs

Friday, February 22, 13

Normalization and Strong
Normalization of Proofs

• In the sixties, Dag Prawitz gave reduction
rules.

Friday, February 22, 13

Normalization and Strong
Normalization of Proofs

• In the sixties, Dag Prawitz gave reduction
rules.

• He proved that every proof can be reduced
to a normal form (normalization).

Friday, February 22, 13

Normalization and Strong
Normalization of Proofs

• In the sixties, Dag Prawitz gave reduction
rules.

• He proved that every proof can be reduced
to a normal form (normalization).

• In 1971, he proved that every reduction
sequence terminates (strong normalization)
and that every proof has a unique normal
form.

Friday, February 22, 13

Propositions as types and proofs as
simply-typed lambda terms

Γ, x : P → x : P

Γ, x : P → M : Q

Γ → λx : P · M : P ⇒ Q
(⇒-intro)

Γ → M : P ⇒ Q Γ → N : P

Γ → MN : Q
(⇒-elim)

Friday, February 22, 13

The Curry-Howard Isomorphism

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

• Propositions can be viewed as types.

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to
lambda-conversion.

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to
lambda-conversion.

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to
lambda-conversion.

• Strong normalization (SN) in the typed
lambda-calculus implies SN of proofs.

Friday, February 22, 13

The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to
lambda-conversion.

• Strong normalization (SN) in the typed
lambda-calculus implies SN of proofs.

(λx : σ · M)N −→β M [N/x]

Friday, February 22, 13

Adding the connectives and, or, not

• To deal with negation, we introduce falsity
(absurdum), the proposition always false:

• We view , the negation of , as an
abbreviation for

⊥

¬P P

P ⇒⊥

Friday, February 22, 13

Rules for and

The ∧-introduction rule:

Γ

P

∆

Q

P ∧ Q

The ∧-elimination rule:

Γ

P ∧ Q

P

Γ

P ∧ Q

Q

Friday, February 22, 13

Rules for or

The ∨-introduction rule:

Γ

P

P ∨ Q

Γ

Q

P ∨ Q

The ∨-elimination rule:

Γ

P ∨ Q

∆, P x

R

Λ, Qy

R
x,y

R

Friday, February 22, 13

Rules for negation

The ¬-introduction rule:

Γ, P x

⊥
x

¬P

The ¬-elimination rule:

Γ

¬P

∆

P

⊥

Friday, February 22, 13

The ``Controversial ’’ Rules

The ⊥-elimination rule:

Γ

⊥

P

The proof-by-contradiction rule (also known as
reductio ad absurdum rule, for short RAA):

Γ,¬P x

⊥
x

P

Friday, February 22, 13

Problems With Negation

• The rule is not so bad.

• It says that once we have reached an
absurdity, then everything goes!

• RAA is worse! I allows us to prove double
negation elimination and the law of the
excluded middle:

•

• Constructively, these are problematic!

⊥-elimination

¬¬P ⇒ P ¬P ∨ P

Friday, February 22, 13

Lack of Constructivity

• The provability of and is
equivalent to RAA.

• RAA allows proving disjunctions (and
existential statements) that may not be
constructive; this means that if is
provable, in general, it may not be possible
to give a proof of or a proof of

• This lack of constructivity of classical logic
led Brouwer to invent intuitionistic logic

¬¬P ⇒ P ¬P ∨ P

A ∨ B

A B

Friday, February 22, 13

That’s too abstract, give me
something concrete!

Friday, February 22, 13

A non-constructive proof

• Claim: There exist two reals numbers, ,
both irrational, such that is rational.

• Proof: We know that is irrational. Either

• (1) is rational; , or

• (2) is irrational;

• In (2), we use

• Using the law of the excluded middle, our
claim is proved! But, what is ?

a, b
a

b

√

2

√

2

√

2

√

2

√

2

√

2

a = b =
√

2

a =
√

2

√

2

, b =
√

2

(
√

2
√

2

)
√

2 = 2

√

2

Friday, February 22, 13

Non-constructive Proofs

• The previous proof is non-constructive.

• It shows that and must exist but it
does not produce an explicit solution.

• This proof gives no information as to the
irrationality of

• In fact, is irrational, but this is very
hard to prove!

• A ``better’’ solution:

√

2

√

2

a b

√

2

√

2

a =
√

2, b = log2 9

Friday, February 22, 13

Existence proofs are often
non-constructive

• Fixed-points Theorems often only assert
the existence of a fixed point but provide
no method for computing them.

• For example, Brouwer’s Fixed Point
Theorem.

• That’s too bad, this theorem is used in the
proof of the Nash Equilibrium Theorem!

Friday, February 22, 13

Intuitionism (Brouwer, Heyting)

Friday, February 22, 13

Intuitionism (Brouwer, Heyting)

• L E J
Brouwer(1881-1966)

Friday, February 22, 13

Intuitionism (Brouwer, Heyting)

• L E J
Brouwer(1881-1966)

• Founder of intuitionism
(1907)

Friday, February 22, 13

Intuitionism (Brouwer, Heyting)

• L E J
Brouwer(1881-1966)

• Founder of intuitionism
(1907)

• Also important work in
topology

Friday, February 22, 13

A. Heyting

Friday, February 22, 13

A. Heyting

• Arend Heyting
(1898-1980)

Friday, February 22, 13

A. Heyting

• Arend Heyting
(1898-1980)

• Heyting algebras
(semantics for
intuitionistic logic)

Friday, February 22, 13

Intuitionistic Logic

• In intuitionistic logic, it is forbidden to use
the proof by contradiction rule (RAA)

• As a consequence, no longer implies
and is no longer provable (in
general)

• The connectives, and, or, implication and
negation are independent

• No de Morgan laws

¬¬P P

¬P ∨ P

Friday, February 22, 13

Intuitionistic Logic

• Fewer propositions are provable (than in
classical logic) but proofs are more
constructive.

• If a disjunction, , is provable, then a
proof of or a proof of can be found.

• Similarly, if is provable, then there is a
term, , such that is provable.

• However, the complexity of proof search is
higher.

P ∨ Q

P Q

∃tP

τ P [τ/t]

Friday, February 22, 13

Intuitionistic Logic and Typed
lambda-Calculi

Friday, February 22, 13

Intuitionistic Logic and Typed
lambda-Calculi

• Proofs in intuitionistic logic can be
represented as certain kinds of lambda-
terms.

Friday, February 22, 13

Intuitionistic Logic and Typed
lambda-Calculi

• Proofs in intuitionistic logic can be
represented as certain kinds of lambda-
terms.

• We now have conjunctive, disjunctive,
universal and existential types.

Friday, February 22, 13

Intuitionistic Logic and Typed
lambda-Calculi

• Proofs in intuitionistic logic can be
represented as certain kinds of lambda-
terms.

• We now have conjunctive, disjunctive,
universal and existential types.

• Falsity can be viewed as an ``error type’’

Friday, February 22, 13

Intuitionistic Logic and Typed
lambda-Calculi

• Proofs in intuitionistic logic can be
represented as certain kinds of lambda-
terms.

• We now have conjunctive, disjunctive,
universal and existential types.

• Falsity can be viewed as an ``error type’’

• Strong Normalization still holds, but some
subtleties with disjunctive and existential
types (permutative reductions)

Friday, February 22, 13

Higher-order Intuitionistic Logic

Friday, February 22, 13

Higher-order Intuitionistic Logic

• We allow quantification over functions.

Friday, February 22, 13

Higher-order Intuitionistic Logic

• We allow quantification over functions.

• The corresponding lambda-calculus is a
polymorphic lambda calculus (first invented
by J. Y. Girard, systems F and F-omega, 1971)

Friday, February 22, 13

Higher-order Intuitionistic Logic

• We allow quantification over functions.

• The corresponding lambda-calculus is a
polymorphic lambda calculus (first invented
by J. Y. Girard, systems F and F-omega, 1971)

• System F was independently discovered by
J. Reynolds (1974) for very different
reasons.

Friday, February 22, 13

Higher-order Intuitionistic Logic

• We allow quantification over functions.

• The corresponding lambda-calculus is a
polymorphic lambda calculus (first invented
by J. Y. Girard, systems F and F-omega, 1971)

• System F was independently discovered by
J. Reynolds (1974) for very different
reasons.

• Later, even richer typed calculi, the theory
of construction (Coquand, Huet)

Friday, February 22, 13

Degree of Formality of Proofs

Friday, February 22, 13

Degree of Formality of Proofs

• Proofs can be very informal (loosely defined
rules, premises and steps omitted).

Friday, February 22, 13

Degree of Formality of Proofs

• Proofs can be very informal (loosely defined
rules, premises and steps omitted).

• Proofs can be completely formal, using
clearly defined rules and premises. Such
proofs are usually processed or produced
by proof checkers and theorem provers.

Friday, February 22, 13

Degree of Formality of Proofs

• Proofs can be very informal (loosely defined
rules, premises and steps omitted).

• Proofs can be completely formal, using
clearly defined rules and premises. Such
proofs are usually processed or produced
by proof checkers and theorem provers.

• A human prover evolves in a spectrum of
formality!

Friday, February 22, 13

Formal and Informal Proofs

Friday, February 22, 13

Formal and Informal Proofs

• It is practically impossible to write formal
proofs.

Friday, February 22, 13

Formal and Informal Proofs

• It is practically impossible to write formal
proofs.

• This would be extremely tedious and time-
consuming, and these proofs would be
huge, thus very hard to read.

Friday, February 22, 13

Formal and Informal Proofs

• It is practically impossible to write formal
proofs.

• This would be extremely tedious and time-
consuming, and these proofs would be
huge, thus very hard to read.

• In principle, it is possible to write
formalized proofs.

Friday, February 22, 13

Formal and Informal Proofs

• It is practically impossible to write formal
proofs.

• This would be extremely tedious and time-
consuming, and these proofs would be
huge, thus very hard to read.

• In principle, it is possible to write
formalized proofs.

• This is desirable if we want to have
absolute confidence in a proof.

Friday, February 22, 13

The Need for Proofs

Friday, February 22, 13

The Need for Proofs

• Pieces of code controlling critical systems
such as flight control, nuclear reactors,
nuclear anything, should be verified.

Friday, February 22, 13

The Need for Proofs

• Pieces of code controlling critical systems
such as flight control, nuclear reactors,
nuclear anything, should be verified.

• It is important to build tools to check or
construct proofs.

Friday, February 22, 13

The Need for Proofs

• Pieces of code controlling critical systems
such as flight control, nuclear reactors,
nuclear anything, should be verified.

• It is important to build tools to check or
construct proofs.

• Even if we never write formal proofs, it is
important to understand clearly what are
the rules of reasoning that we use when we
construct informal proofs.

Friday, February 22, 13

Proof Checking; Recent Success

Friday, February 22, 13

Proof Checking; Recent Success

• Georges Gonthier’s group (MSR and
INRIA) just completed a formalization in
Coq of the Odd Order theorem (Feit and
Thompson, 1962-1963)

Friday, February 22, 13

Proof Checking; Recent Success

• Georges Gonthier’s group (MSR and
INRIA) just completed a formalization in
Coq of the Odd Order theorem (Feit and
Thompson, 1962-1963)

• The theorem says that every finite group of
odd order is solvable. This implies that a
nonabelian simple group has even order.

Friday, February 22, 13

Proof Checking; Recent Success

• Georges Gonthier’s group (MSR and
INRIA) just completed a formalization in
Coq of the Odd Order theorem (Feit and
Thompson, 1962-1963)

• The theorem says that every finite group of
odd order is solvable. This implies that a
nonabelian simple group has even order.

• Feit and Thompson’s paper is 255 pages
long.

Friday, February 22, 13

Proof Verification

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

• ~ 170 000 lines of code

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

• ~ 170 000 lines of code

• ~ 4200 definitions

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

• ~ 170 000 lines of code

• ~ 4200 definitions

• ~ 15 000 theorems

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

• ~ 170 000 lines of code

• ~ 4200 definitions

• ~ 15 000 theorems

• Georges Gonthier:

Friday, February 22, 13

Proof Verification

• Formalizing and verifying the proof took 6
years, with a team of 15 researchers.

• The Coq development contains

• ~ 170 000 lines of code

• ~ 4200 definitions

• ~ 15 000 theorems

• Georges Gonthier:

Friday, February 22, 13

FEIT-THOMPSON TRUE
Feit-Thompson theorem has been totally checked in Coq
Thursday 20 September 2012, 18:16. We received following mail from Georges Gonthier (see below).
It concludes the proof in Coq of the Feit-Thompson theorem. This theorem, also named the Odd Order Theorem, is the first main result in the
classification of finite groups.
This work was achieved by the team formed by addressees of Georges' mail, team strongly led by Georges Gonthier. It is the end of a 6-year
long research effort (almost fulltime work) started in May 2006. After the Four Color theorem, this is the second impressive mathematical
theorem totally proved in the Coq proof assistant.
More info can be found in this mail by Laurent Théry.

From Laurent Théry
Date: Thursday 20 September 2012, 20:24
Re: [Coqfinitgroup-commits] r4105 - trunk
Hi,

Just for fun

Feit Thompson statement in Coq:

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) : odd #|G| -> solvable G.

How is it proved?

You can see only green lights there:

http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html

and the final theory graph at:

http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html

How big it is:

Number of lines ~ 170 000
Number of definitions ~15 000
Number of theorems ~ 4 200
Fun ~ enormous!

-- Laurent
Friday, February 22, 13

http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html

Proposition coprime_Hall_trans A G H1 H2 :
 A \subset 'N(G) -> coprime #|G| #|A| -> solvable G ->
 pi.-Hall(G) H1 -> A \subset 'N(H1) ->
 pi.-Hall(G) H2 -> A \subset 'N(H2) ->
 exists2 x, x \in 'C_G(A) & H1 :=: H2 :^ x.

 A complement to the above: 'C(A) acts on 'Nby(A)
Lemma norm_conj_cent A G x : x \in 'C(A) ->
 (A \subset 'N(G :^ x)) = (A \subset 'N(G)).

 Strongest version of the centraliser lemma -- not found in textbooks!
 Obviously, the solvability condition could be removed once we have the
 Odd Order Theorem.
Lemma strongest_coprime_quotient_cent A G H :
 let R := H :&: [~: G, A] in
 A \subset 'N(H) -> R \subset G -> coprime #|R| #|A| ->
 solvable R || solvable A ->
 'C_G(A) / H = 'C_(G / H)(A / H).

 A weaker but more practical version, still stronger than the usual form
 (viz. Aschbacher 18.7.4), similar to the one needed in Aschbacher's
 proof of Thompson factorization. Note that the coprime and solvability
 assumptions could be further weakened to H :&: G (and hence become
 trivial if H and G are TI). However, the assumption that A act on G is
 needed in this case.

A very small piece of the code

Friday, February 22, 13

http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/div.html#coprime
http://ssr.msr-inria.inria.fr/~jenkins/current/div.html#coprime
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#InternalAction.pi
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#InternalAction.pi
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#InternalAction.pi
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#InternalAction.pi
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/pgroup.html#:group_scope:x_'.-Hall'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/ssrbool.html#:bool_scope:x_'%5Cin'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/ssrbool.html#:bool_scope:x_'%5Cin'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:'exists2'_x_','_x_'&'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H1
http://ssr.msr-inria.inria.fr/~jenkins/current/finset.html#:set_scope:x_':=:'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/finset.html#:set_scope:x_':=:'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H2
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:x_':%5E'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:x_':%5E'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#x
http://ssr.msr-inria.inria.fr/~jenkins/current/ssrbool.html#:bool_scope:x_'%5Cin'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/ssrbool.html#:bool_scope:x_'%5Cin'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C'_'('_x_')'
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:x_':%5E'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:x_':%5E'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/finset.html#:set_scope:x_':&:'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/finset.html#:set_scope:x_':&:'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'%5B'_'~:'_x_','_x_','_'..'_','_x_'%5D'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''N'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:bool_scope:x_'%5Csubset'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/div.html#coprime
http://ssr.msr-inria.inria.fr/~jenkins/current/div.html#coprime
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/fintype.html#:nat_scope:'%23%7C'_x_'%7C'
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#R
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes.html#:bool_scope:x_'%7C%7C'_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes.html#:bool_scope:x_'%7C%7C'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/nilpotent.html#solvable
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_x_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Logic.html#:type_scope:x_'='_x
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#G
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#A
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/quotient.html#:group_scope:x_'/'_x
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/hall.html#H
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'
http://ssr.msr-inria.inria.fr/~jenkins/current/fingroup.html#:group_scope:'''C_'_'('_x_')'_'('_x_')'

What about Semantics?

Friday, February 22, 13

What about Semantics?

• For classical propositional logic: truth
values semantics ({true, false}).

Friday, February 22, 13

What about Semantics?

• For classical propositional logic: truth
values semantics ({true, false}).

• For intuitionistic propositional logic:
Heyting algebras, Kripke models.

Friday, February 22, 13

What about Semantics?

• For classical propositional logic: truth
values semantics ({true, false}).

• For intuitionistic propositional logic:
Heyting algebras, Kripke models.

• For classical first-order logic: first-order
structures (Tarskian semantics).

Friday, February 22, 13

What about Semantics?

• For classical propositional logic: truth
values semantics ({true, false}).

• For intuitionistic propositional logic:
Heyting algebras, Kripke models.

• For classical first-order logic: first-order
structures (Tarskian semantics).

• For intuitionistic first-order logic: Kripke
models.

Friday, February 22, 13

Soundness and Completeness

Friday, February 22, 13

Soundness and Completeness

• Soundness: Every provable formula is valid
(has the value true for all interpretations).

Friday, February 22, 13

Soundness and Completeness

• Soundness: Every provable formula is valid
(has the value true for all interpretations).

• A proof system must be sound or else it is
garbage!

Friday, February 22, 13

Soundness and Completeness

• Soundness: Every provable formula is valid
(has the value true for all interpretations).

• A proof system must be sound or else it is
garbage!

• Completeness: Every valid formula is
provable.

Friday, February 22, 13

Soundness and Completeness

• Soundness: Every provable formula is valid
(has the value true for all interpretations).

• A proof system must be sound or else it is
garbage!

• Completeness: Every valid formula is
provable.

• Completeness is desirable but not always
possible.

Friday, February 22, 13

Completeness: Good News

Friday, February 22, 13

Completeness: Good News

• The systems I presented are all sound and
complete.

Friday, February 22, 13

Completeness: Good News

• The systems I presented are all sound and
complete.

• Godel (completeness theorem for classical
logic)

Friday, February 22, 13

Completeness: Good News

• The systems I presented are all sound and
complete.

• Godel (completeness theorem for classical
logic)

• Kripke (completeness theorem for
intuitionistic logic)

Friday, February 22, 13

Completeness: Good News

• The systems I presented are all sound and
complete.

• Godel (completeness theorem for classical
logic)

• Kripke (completeness theorem for
intuitionistic logic)

• Classical Propositional validity: decidable.

Friday, February 22, 13

Completeness: Good News

• The systems I presented are all sound and
complete.

• Godel (completeness theorem for classical
logic)

• Kripke (completeness theorem for
intuitionistic logic)

• Classical Propositional validity: decidable.

• Intuitionistic Propositional validity: decidable

Friday, February 22, 13

Completeness: Bad News!

Friday, February 22, 13

Completeness: Bad News!

• Complexity of classical prop. validity: co-NP
complete (Cook, Karp, 1970)

Friday, February 22, 13

Completeness: Bad News!

• Complexity of classical prop. validity: co-NP
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:
P-space complete! (Statman, 1979)

Friday, February 22, 13

Completeness: Bad News!

• Complexity of classical prop. validity: co-NP
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:
P-space complete! (Statman, 1979)

• The decision problem (validity problem) for
first-order (classical) logic is undecidable
(Church, 1936)

Friday, February 22, 13

Completeness: Bad News!

• Complexity of classical prop. validity: co-NP
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:
P-space complete! (Statman, 1979)

• The decision problem (validity problem) for
first-order (classical) logic is undecidable
(Church, 1936)

• Decision problem for intuitionistic logic also
undecidable (double negation translation)

Friday, February 22, 13

Kurt Godel (1906-1978)
(Right: with A. Einstein)

Friday, February 22, 13

Alonzo Church
(1903-1995)

Friday, February 22, 13

Other Logics?

Friday, February 22, 13

Other Logics?

• One will note that in a deduction (natural
or Gentzen sequent style), the same
premise can be used as many times as
needed.

Friday, February 22, 13

Other Logics?

• One will note that in a deduction (natural
or Gentzen sequent style), the same
premise can be used as many times as
needed.

• Girard (and Lambeck earlier) had the idea
to restrict the use of premises (charge for
multiple use).

Friday, February 22, 13

Other Logics?

• One will note that in a deduction (natural
or Gentzen sequent style), the same
premise can be used as many times as
needed.

• Girard (and Lambeck earlier) had the idea
to restrict the use of premises (charge for
multiple use).

• This leads to logics where the connectives
have a double identity: additive or
multiplicative.

Friday, February 22, 13

Finer Logics: Linear Logic, ...

Friday, February 22, 13

Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves
much finer control over the use of
premises.

Friday, February 22, 13

Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves
much finer control over the use of
premises.

• The notion of proof becomes more general:
proof nets (certain types of graphs)

Friday, February 22, 13

Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves
much finer control over the use of
premises.

• The notion of proof becomes more general:
proof nets (certain types of graphs)

• linear logic can be viewed as an attempt to
deal with resources and parallelism

Friday, February 22, 13

Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves
much finer control over the use of
premises.

• The notion of proof becomes more general:
proof nets (certain types of graphs)

• linear logic can be viewed as an attempt to
deal with resources and parallelism

• Negation is an involution

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very
fruitful to design logics with intended
semantics, such as time, concurrency, ...

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very
fruitful to design logics with intended
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very
fruitful to design logics with intended
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

• Process logic (Manna, Pnueli)

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very
fruitful to design logics with intended
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

• Process logic (Manna, Pnueli)

• Dynamic logic (Harel, Pratt)

Friday, February 22, 13

Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very
fruitful to design logics with intended
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

• Process logic (Manna, Pnueli)

• Dynamic logic (Harel, Pratt)

• The world of logic is alive and well!

Friday, February 22, 13

Searching for that proof!

Friday, February 22, 13

The proof is hard to reach
Friday, February 22, 13

