
Learning in System F
Joey Velez-Ginorio

Massachusetts Institute of Technology

Cambridge, Massachusetts, U.S.A.

joeyv@mit.edu

Nada Amin

Harvard University

Cambridge, Massachusetts, U.S.A.

namin@seas.harvard.edu

Abstract
Program synthesis, type inhabitance, inductive program-

ming, and theorem proving. Different names for the same

problem: learning programs from data. Sometimes the pro-

grams are proofs, sometimes they’re terms. Sometimes data

are examples, and sometimes they’re types. Yet the aim is

the same. We want to construct a program which satisfies

some data. We want to learn a program.

What might a programming language look like, if its pro-

grams could also be learned? We give it data, and it learns

a program from it. This work shows that System F yields

an approach for learning from types and examples. Beyond

simplicity, System F’s expressivity gives us the potential for

two key ideas. (1) Learning as a first-class activity. That is,

learning can happen anywhere in a program. (2) Bootstrap-

ping its learning to higher-level languages—much the same

way we bootstrap the capabilities of a functional core to

modern, high-level functional languages. This work takes

some first steps in that direction of the design space.

Keywords: Program Synthesis, Type Theory, Inductive Pro-

gramming

1 Introduction
1.1 A tricky learning problem
Imagine we’re teaching you a program. Your only data is

the type 𝑛𝑎𝑡→𝑛𝑎𝑡 . It takes a natural number, and returns

a natural number. Any ideas? Perhaps a program which

computes...

𝑓 (𝑥) = 𝑥, 𝑓 (𝑥) = 𝑥 + 1, 𝑓 (𝑥) = 𝑥 + · · ·

The good news is that 𝑓 (𝑥) = 𝑥 + 1 is correct. The bad news

is that the data let you learn a slew of other programs too.

It doesn’t constrain learning enough if we want to teach

𝑓 (𝑥) = 𝑥 + 1. As teachers, we can provide better data.

Round 2. Imagine we’re teaching you a program. But this

time we give you an example of the program’s behavior.

Your data are the type 𝑛𝑎𝑡→𝑛𝑎𝑡 and an example 𝑓 (1) = 2.

Authors’ addresses: Joey Velez-Ginorio, Massachusetts Institute of Technol-

ogy, 43 Vassar St., Cambridge, Massachusetts, 02139, U.S.A., joeyv@mit.edu;
Nada Amin, Harvard University, 29 Oxford St., Cambridge, Massachusetts,

02138, U.S.A., namin@seas.harvard.edu.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

data Nat = Zero
| S Nat

succ :: Nat -> Nat
succ n = [<Zero, S Zero>,<S Zero, S (S Zero)>]

main :: Nat -> Nat
main = succ

succ :: Nat -> Nat
succ n = case n[Nat] of

Zero -> S Zero
S n2 -> S (S n2)

lam x: (R.(Unit -> R) -> (R -> R) -> R).
forall X.
lam c0: (Unit -> R).

(lam c1: (R -> R).
(c1 (((x R) c0) c1))

Figure 1.An example learning problem, the learned solution

in pretty print, and the learned solution in System F.

It takes a natural number, and seems to return its successor.

Any ideas? Perhaps a program which computes...

𝑓 (𝑥) = 𝑥 + 1, 𝑓 (𝑥) = 𝑥 + 2 − 1, 𝑓 (𝑥) = 𝑥 + · · ·

The good news is that 𝑓 (𝑥) = 𝑥 + 1 is correct. And so are all

the other programs, as long as we’re agnostic to some details.

Types and examples impose useful constraints on learning.

It’s the data we use when learning in System F [Girard et al.

1989].

Existing work can learn successor from similar data [Osera

2015; Polikarpova et al. 2016]. But suppose 𝑛𝑎𝑡 is a church

encoding. For some base type 𝐴, 𝑛𝑎𝑡 B (𝐴 → 𝐴) → (𝐴 →
𝐴). Natural numbers are then higher-order functions. They

take and return functions. In this setting, existing work can

no longer learn successor.

1.2 A way forward
The difficulty is with how to handle functions in the return

type. The type 𝑛𝑎𝑡→𝑛𝑎𝑡 returns a function, a program of

type 𝑛𝑎𝑡 . To learn correct programs, you need to ensure

candidates are the correct type or that they obey examples.

https://doi.org/

Conference’17, July 2017, Washington, DC, USA Joey Velez-Ginorio and Nada Amin

Imagine we want to verify that our candidate program 𝑓

obeys 𝑓 (1) = 2. With the church encoding, 𝑓 (1) is a function,
and so is 2. To check 𝑓 (1) = 2 requires that we decide func-

tion equality—which is undecidable in a Turing-complete

language [Sipser et al. 2006]. Functions in the return type

create this issue. There are two ways out.

1. Don’t allow functions in the return type, keep Turing-

completeness.

2. Allow functions in the return type, leave Turing-

completeness.

Route 1 is the approach of existing work. They don’t allow

functions in the return type, but keep an expressive Turing-

complete language for learning. This can be a productive

move, as many interesting programs don’t return functions.

Route 2 is the approach we take. We don’t impose restric-

tions on the types or examples we learn from. We instead

sacrifice Turing-completeness. We choose a language where

function equality is decidable, but still expressive enough to

learn interesting programs. Our work shows that this too

is a productive move, as many interesting programs return

functions. This route leads us to several contributions:

• Detail how to learn arbitrary higher-order programs

in System F. (Section 2 & 3)

• Prove the soundness and completeness of learning.

(Section 2 & 3)

• Implement learning, extending strong theoretical guar-

antees in practice. (Section 4 & 5)

2 System F
We assume you are familiar with System F, the polymor-

phic lambda calculus. You should know its syntax, typing,

and evaluation. If you don’t, we co-opt its specification in

[Pierce 2002]. For a comprehensive introduction we defer

the confused or rusty there. Additionally, we provide the

specification and relevant theorems in the appendix.

Our focus in this section is to motivate System F: its syn-

tax, typing, and evaluation. And why properties of each are

advantageous for learning. Treat this section as an answer

to the following question:

Why learn in System F?

2.1 Syntax
System F’s syntax is simple (Figure 2). There aren’t many

syntactic forms. Whenever we state, prove, or implement

things in System F we often use structural recursion on the

syntax. A minimal syntax means we are succint when we

state, prove, or implement those things.

While simple, the syntax is still expressive. We can encode

many staples of typed functional programming: algebraic

data types, inductive types, and more [Pierce 2002]. For ex-

ample, consider this encoding of products:

𝜏1 × 𝜏2 B ∀𝛼.(𝜏1 → 𝜏2 → 𝛼) → 𝛼

⟨𝑒1, 𝑒2⟩ B Λ𝛼.𝜆𝑓 : (𝜏1 → 𝜏2 → 𝛼) .𝑓 𝑒1𝑒2

2.2 Typing
System F is safe. Its typing ensures both progress and preser-

vation, i.e. that well-typed programs do not get stuck and

that they do not change type [Pierce 2002]. When we intro-

duce learning, we lift this safety and extend it to programs

we learn. We omit the presentation of typing, as it’s simi-

lar equivalent to a learning relation presented in the next

section.

2.3 Evaluation
System F is strongly normalizing. All its programs termi-

nate. As a result, we can use a simple procedure for deciding

equality of programs (including functions).

1. Run both programs until they terminate.

2. Check if they share the same normal form, up to alpha-

equivalence (renaming of variables).

3. If they do, they are equal. Otherwise, unequal.

Syntax

𝑒 ::= terms:

𝑥 variable
𝑒1𝑒2 application
𝜆𝑥 :𝜏 .𝑒 abstraction
𝑒 ⌈𝜏⌉ type application
Λ𝛼.𝑒 type abstraction

𝑣 ::= values:

𝜆𝑥 :𝜏 .𝑒 abstraction
Λ𝛼.𝑒 type abstraction

𝜏 ::= types:

𝜏1 → 𝜏2 function type
∀𝛼.𝜏 polymorphic type
𝛼 type variable

Γ ::= contexts:

· empty
𝑥 :𝜏, Γ variable
𝛼, Γ type variable

Figure 2. Syntax in System F

Learning in System F Conference’17, July 2017, Washington, DC, USA

For example, this decision procedure renders these programs

equal:

𝜆𝑥 :𝜏 .𝑥 =𝛽 (𝜆𝑦 : (𝜏 → 𝜏).𝑦)𝜆𝑧 :𝜏 .𝑧
The decision procedure checks that two programs exist in the

transitive reflexive closure of the evaluation relation. This

only works because programs always terminate in System F

[Girard et al. 1989].

3 Learning from Types
We present learning as a relation between contexts Γ, pro-
grams 𝑒 , and types 𝜏 .

Γ ⊢ 𝜏 ⇝ 𝑒

The relation asserts that given a context Γ and type 𝜏 , you

can learn program 𝑒 .

Like typing, we define the relation with a set of infer-

ence rules. These rules confer similar benefits to typing. We

can prove useful properties of learning, and the rules guide

implementation.

Unlike typing, we only consider programs 𝑒 in normal

form. We discuss later how this pays dividends in the imple-

mentation. With reference to the syntax in the appendix, we

define System F programs 𝑒 in normal form:

𝑒 B 𝑒 | 𝜆𝑥 :𝜏 .𝑒 | Λ𝛼.𝑒

𝑒 B 𝑥 | 𝑒 𝑒 | 𝑒 ⌈𝜏⌉

3.1 Learning, a relation
If you squint, you may think that learning in Figure 4 looks a

lot like typing in Figure 3. The semblance isn’t superficial, but

instead reflects an equivalence between learning and typing

which we later state. Despite this, the learning relation isn’t

redundant. It forms the core of an extended learning relation

in the next section, where we learn from both types and

examples.

(L-Var) says if 𝑥 is bound to type 𝜏 in the context Γ, then
you can learn the program 𝑥 of type 𝜏 .

𝑥 :𝜏 ∈ 𝑥 :𝜏
(L-Var)

𝑥 :𝜏 ⊢ 𝜏 ⇝ 𝑥

Typing Γ ⊢ 𝑒 : 𝜏

𝑥 : 𝜏 ∈ Γ
(T-Var)

Γ ⊢ 𝑥 : 𝜏

Γ, 𝛼 ⊢ 𝑒 : 𝜏
(T-TAbs)

Γ ⊢ Λ𝛼.𝑒 : ∀𝛼.𝜏

Γ, 𝑥 :𝜏1 ⊢ 𝑒2 : 𝜏2
(T-Abs)

Γ ⊢ 𝜆𝑥 :𝜏1 .𝑒2 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒 : ∀𝛼.𝜏1
(T-TApp)

Γ ⊢ 𝑒 ⌈𝜏2⌉ : [𝜏2/𝛼]𝜏1

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1
(T-App)

Γ ⊢ 𝑒1𝑒2 : 𝜏2

Figure 3. Typing in System F

Learning Γ ⊢ 𝜏 ⇝ 𝑒

𝑥 : 𝜏 ∈ Γ
(L-Var)

Γ ⊢ 𝜏 ⇝ 𝑥

Γ, 𝛼 ⊢ 𝜏 ⇝ 𝑒
(L-TAbs)

Γ ⊢ ∀𝛼.𝜏 ⇝ Λ𝛼.𝑒

Γ, 𝑥 :𝜏1 ⊢ 𝜏2 ⇝ 𝑒2
(L-Abs)

Γ ⊢ 𝜏1 → 𝜏2 ⇝ 𝜆𝑥 :𝜏1.𝑒2

Γ ⊢ ∀𝛼.𝜏1 ⇝ 𝑒
(L-TApp)

Γ ⊢ [𝜏2/𝛼]𝜏1 ⇝ 𝑒 ⌈𝜏2⌉

Γ ⊢ 𝜏1 → 𝜏2 ⇝ 𝑒 Γ ⊢ 𝜏1 ⇝ 𝑒
(L-App)

Γ ⊢ 𝜏2 ⇝ 𝑒 𝑒

Figure 4. Learning from types in System F

Conference’17, July 2017, Washington, DC, USA Joey Velez-Ginorio and Nada Amin

(L-Abs) says if 𝑥 is bound to type 𝜏1 in the context and you

can learn a program 𝑒2 from type 𝜏2, then you can learn the

program 𝜆𝑥 :𝜏1 .𝑒2 from type 𝜏1→𝜏2 and 𝑥 is removed from

the context.

Γ, 𝑥 :𝜏1 ⊢ 𝜏2→𝜏2 ⇝ 𝜆𝑦:𝜏2.𝑦
(L-Abs)

Γ ⊢ 𝜏1→𝜏2→𝜏2 ⇝ 𝜆𝑥 :𝜏1.𝜆𝑦:𝜏2.𝑦

(L-App) says that if you can learn a program 𝑒 from type

𝜏1→𝜏2 and a program 𝑒 from type 𝜏1, then you can learn 𝑒 𝑒

from type 𝜏2.

Γ ⊢ 𝜏→𝜏 ⇝ 𝑓 Γ ⊢ 𝜏 ⇝ 𝑥
(L-App)

Γ ⊢ 𝜏 ⇝ 𝑓 𝑥

(L-TAbs) says that if 𝛼 is in the context, and you can learn

a program 𝑒 from type 𝜏 , then you can learn a program Λ𝛼.𝑒
from type ∀𝛼.𝜏 and 𝛼 is removed from the context.

Γ, 𝛼 ⊢ 𝛼→𝛼 ⇝ 𝜆𝑥 :𝛼.𝑥
(L-TAbs)

Γ ⊢ ∀𝛼.𝛼→𝛼 ⇝ Λ𝛼.𝜆𝑥 :𝛼.𝑥

(T-TApp) says that if you can learn a program 𝑒 from

type ∀𝛼.𝜏1, then you can learn the program 𝑒 ⌈𝜏2⌉ from type

[𝜏2/𝛼]𝜏1.

Γ ⊢ ∀𝛼.𝛼→𝛼 ⇝ 𝑓
(T-TApp)

Γ ⊢ 𝜏→𝜏 ⇝ 𝑓 ⌈𝜏⌉

3.2 Metatheory
Learning is a relation. Hence we can discuss its metatheory.

We care most about two properties: soundness and com-

pleteness. Soundness ensures we learn correct programs.

Completeness ensures we learn all programs.

We state the relevant theorems in this section. Most of the

heavy lifting for proving these properties is done by stan-

dard proofs of type systems, like progress and preservation.

Learning exploits these properties of type systems to provide

similar guarantees.

Lemma 3.1 (Soundness of Learning).
If Γ ⊢ 𝜏 ⇝ 𝑒 then Γ ⊢ 𝑒 : 𝜏

Lemma 3.2 (Completeness of Learning).
If Γ ⊢ 𝑒 : 𝜏 then Γ ⊢ 𝜏 ⇝ 𝑒

Structural induction on the learning and typing rules

proves these two lemmas. And together, they directly prove

the equivalence of typing and learning.

Theorem 3.3 (Eqivalence of Typing and Learning).
If and only if Γ ⊢ 𝜏 ⇝ 𝑒 then Γ ⊢ 𝑒 : 𝜏

Because of the equivalence we can extend strong metathe-

oretic guarantees to learning from examples, for which learn-

ing from types is a key step.

4 Learning from Examples
To learn from examples, we extend our learning relation to

include examples [𝜒].
Γ ⊢ 𝜏 � [𝜒] ⇝ 𝑒

The relation asserts that given a context Γ, a type 𝜏 , and

examples [𝜒], you can learn program 𝑒 .

Examples are lists of tuples with the inputs and output to a

program. For example, [⟨1, 1⟩] describes a programwhose in-

put is 1 and output is 1. If wewantmore than one example, we

can add to the list: [⟨1, 1⟩, ⟨2, 2⟩]. And with System F, types

are also valid inputs. So [⟨𝑁𝑎𝑡, 1, 1⟩, ⟨𝑁𝑎𝑡, 2, 2⟩] describes a
polymorphic program instantiated at type 𝑁𝑎𝑡 whose input

is 1 and output is 1. In general, an example takes the form

𝜒 B ⟨𝑒, 𝜒⟩ | ⟨𝜏, 𝜒⟩ | ⟨𝑒, 𝑁𝑖𝑙⟩
Importantly, the syntax doesn’t restrict what can be an

input or output. Any program 𝑒 or type 𝜏 can be an in-

put. Likewise, any program 𝑒 can be an output. We can de-

scribe any input-output relationship in the language. Note

that we use the following short-hand notation for examples:

⟨𝜏, ⟨𝑒1, ⟨𝑒2, 𝑁𝑖𝑙⟩⟩⟩ ≡ ⟨𝜏, 𝑒1, 𝑒2⟩.

4.1 Learning, a relation
Unlike the previous learning relation, Figure 5 looks a bit for-

eign. Nevertheless, the intuition is simple. We demonstrate

with learning polymorphic identity from examples. With-

out loss of generality, assume a base type 𝑁𝑎𝑡 and natural

numbers.

· ⊢ ∀𝛼.𝛼→𝛼 � [⟨𝑁𝑎𝑡, 1, 1⟩] ⇝ ■
Examples describe possible worlds. ⟨𝑁𝑎𝑡, 1, 1⟩ is a world

where ■’s input is 𝑁𝑎𝑡 and 1, with an output of 1. Through-

out learning we need a way to keep track of these distinct

worlds. So our first step is always to duplicate ■, so that we

have one per example. We also introduce empty let bindings

to record constraints on variables at later steps. (L-Wrld) in

Figure 5 formalizes this step.

· ⊢ 𝛼.𝛼→𝛼 � [⟨𝑁𝑎𝑡, 1, 1⟩] ⇝ [let (·) 𝑖𝑛 ■]
Now, our target type is 𝛼.𝛼→𝛼 . So we know ■ can bind

a variable 𝛼 to some type. And since we have inputs in

[⟨𝑁𝑎𝑡, 1, 1⟩], we know what that type is. (L-ETAbs) in Figure

5 formalizes this step.

𝛼 ⊢ 𝛼→𝛼 � [⟨1, 1⟩] ⇝ [let (𝛼 = 𝑁𝑎𝑡) 𝑖𝑛 ■]
Our target type is now 𝛼→𝛼 . So we know ■ can bind a

variable 𝑥 :𝛼 to some program. And since we have inputs in

[⟨1, 1⟩], we know what that program is. (L-EAbs) in Figure

5 formalizes this step.

𝛼, 𝑥 :𝛼 ⊢ 𝛼 � [⟨1⟩] ⇝ [let (𝛼 = 𝑁𝑎𝑡, 𝑥 :𝛼 = 1) 𝑖𝑛 ■]
There aren’t any inputs left to add bindings to our possible

worlds. Therefore, we invoke the relation for learning from

types (Figure 4) to generate a candidate for ■. Then we check

Learning in System F Conference’17, July 2017, Washington, DC, USA

Learning Γ ⊢ 𝜏 � [𝜒] ⇝ 𝑒

Γ ⊢ 𝜏 � [𝜒1, . . . , 𝜒𝑛] ⇝ [let (·) in 𝑒1, . . . , let (·) in 𝑒𝑛]
∧𝑛

𝑖=1 𝑒𝑖 =𝛽 𝑒𝑛
(L-Wrld)

Γ ⊢ 𝜏 � [𝜒1, . . . , 𝜒𝑛] ⇝ 𝑒

Γ ⊢ 𝜏 ⇝ 𝑒
∧𝑛

𝑖=1 (Γ ⊢ let (𝑏𝑖) in 𝑒 : 𝜏)
∧𝑛

𝑖=1 (let (𝑏𝑖) in 𝑒 =𝛽 𝜒𝑖)
(L-Base)

Γ ⊢ 𝜏 � [⟨𝜒1⟩, . . . , ⟨𝜒𝑛⟩] ⇝ [let (𝑏1) in 𝑒, . . . , let (𝑏𝑛) in 𝑒]

Γ, 𝑥 :𝜏𝑎 ⊢ 𝜏𝑏 � [𝜒1, . . . , 𝜒𝑛] ⇝ [let (𝑏1, 𝑥 :𝜏𝑎 = 𝑒1) in 𝑒1, . . . , let (𝑏𝑛, 𝑥 :𝜏𝑎 = 𝑒𝑛) in 𝑒𝑛]
(L-EAbs)

Γ ⊢ 𝜏𝑎→𝜏𝑏 � [⟨𝑒1, 𝜒1⟩, . . . , ⟨𝑒𝑛, 𝜒𝑛⟩] ⇝ [let (𝑏1) in 𝜆𝑥 :𝜏𝑎 .𝑒1, . . . , let (𝑏𝑛) in 𝜆𝑥 :𝜏𝑎 .𝑒𝑛]

Γ, 𝛼 ⊢ 𝜏𝑎 � [𝜒1, . . . , 𝜒𝑛] ⇝ [let (𝑏1, 𝛼 = 𝜏𝑏) in 𝑒1, . . . , let (𝑏𝑛, 𝛼 = 𝜏𝑏) in 𝑒𝑛]
(L-ETAbs)

Γ ⊢ ∀𝛼.𝜏𝑎 � [⟨𝜏𝑏, 𝜒1⟩, . . . , ⟨𝜏𝑏, 𝜒𝑛⟩] ⇝ [let (𝑏1) in Λ𝛼.𝑒1, . . . , let (𝑏𝑛) in Λ𝛼.𝑒𝑛]

Figure 5. Learning from examples in System F

that this candidate evaluates to the correct output in each

possible world.

𝛼, 𝑥 :𝛼 ⊢ 𝛼 ⇝ 𝑥 let (𝛼 = 𝑁𝑎𝑡, 𝑥 :𝛼 = 1) 𝑖𝑛 𝑥 =𝛽 1

With our examples satisfied, we can trivially extract the

program Λ𝛼.𝜆𝑥 :𝛼.𝑥 from the nested let expression. Note

that these expressions are merely a syntactic sugaring of

System F programs.

let (·) 𝑖𝑛 𝑡 ≡ 𝑡

let (𝑥 :𝜏 = 𝑠) 𝑖𝑛 𝑡 ≡ (𝜆𝑥 :𝜏 .𝑡)𝑠
let (𝛼 = 𝜏) 𝑖𝑛 𝑡 ≡ (Λ𝛼.𝑡) ⌈𝜏⌉

let (𝑥 :𝜏 = 𝑡1, 𝑏𝑠) 𝑖𝑛 𝑡2 ≡ let (𝑥 :𝜏 = 𝑡1) 𝑖𝑛 let (𝑏𝑠) 𝑖𝑛 𝑡2
where 𝑏 B · | 𝑥 :𝜏 = 𝑒, 𝑏 | 𝛼 = 𝜏, 𝑏

4.2 Metatheory
As before, we care most about two properties: soundness and

completeness. Soundness ensures we learn correct programs

from examples. Completeness ensures we learn all programs

from examples.

We state the relevant theorems in this section. This time,

there is no equivalence to typing. As a result, the proofs

are more distinct. We omit the proofs here, but they are

not controversial. Completeness and soundness proofs for

similar relations exist in [Osera 2015].

Lemma 4.1 (Soundness of Learning).
If Γ ⊢ 𝜏 � [𝜒1, . . . , 𝜒𝑛] ⇝ 𝑒 then Γ ⊢ 𝑒 : 𝜏

Lemma 4.2 (Completeness of Learning).
If Γ ⊢ 𝑒 : 𝜏 and there exist some [𝜒1, . . . , 𝜒𝑛] which satisfies 𝑒 ,
then Γ ⊢ 𝜏 � [𝜒1, . . . , 𝜒𝑛] ⇝ 𝑒 .

Learning from examples maintains strong metatheoretic

properties. As a result, it forms the basis for a powerful

theory for learning programs from examples. However, the

relation is non-deterministic, and does not directly translate

to an algorithm. Nevertheless, it does provide a blueprint for

what that algorithm looks like—as we saw when learning

polymorphic identity. In the next sections we explore the

strength of this blueprint by implementation.

5 Implementation
Throughout this section we discuss the transition from the-

ory to practice. In doing so, we answer two questions:

• Does our learning relation yield an algorithm for learn-

ing programs from examples? The answer is yes.

• Canwe lift learning in System F to learn in higher-level

languages? The answer is also yes, but complicated.

5.1 Language: System F + Sugar
Our implementation is System F with sugared Haskell-like

syntax for features of modern functional languages: datatype

declarations, function declarations, case analysis, and let

bindings. The only new syntactic form we introduce is for

specifying learning problems. Otherwise, we desugar, type-

check, learn, and run programs in System F (and in that

order).

We use standard methods for desugaring these features to

System F. Algebraic data types and case analysis are the most

involved. Algebraic data are encoded as folds, and case anal-

ysis is syntactic sugar for providing the requisite functions

for the fold [Girard et al. 1989; Jansen 2013]. As a result, our

case syntax deviates slightly from what you may be familiar

Conference’17, July 2017, Washington, DC, USA Joey Velez-Ginorio and Nada Amin

with. We illustrate with example code from our implemented

language.

data Bool = True
| False

data Nat = Zero
| S Nat

isZero :: Nat -> Bool
isZero n = case n[Bool] of

Zero -> True
S n2 -> False

There are two key distinctions from the typical case syntax.

The type application on the case argument, which specifies

the return type of the case analysis. And the lack of recursive

function call in the case analysis. For inductive data like

natural numbers, this recursive call is typical. Due to our

encoding scheme, it’s not necessary to recursively call the

function. Instead, case analysis is syntactic sugar for defining

the functions we use to fold over algebraic data. Under the

hood, that case analysis looks like the following code snippet.

lam n:Nat.n[Bool]
(lam _:Unit.True)
(lam n2:Bool.False)

Learning specifications are first-class entities in the lan-

guage, so they can appear anywhere a term can. If we en-

counter a learning specification during evaluation, we learn

the program and then continue evaluation. In practice, we

use a special declaration for learning specifications, since

writing examples inside of other programs can quickly ob-

fuscate code. The declaration is a type signature followed by

a list of examples.

data Bool = True
| False

data Nat = Zero
| S Nat

isZero :: Nat -> Bool
isZero n = case n[Bool] of

Zero -> True
S n2 -> False

and :: Bool -> Bool -> Bool
and = [<True,True,True>,

<True,False,False>,
<False,True,False>,
<False,False,False>]

bothZero :: Nat -> Nat -> Nat

bothZero = [<Zero,Zero,True>,
<S Zero, S Zero, False>]

When using these declarations for learning, the code above

the declaration sets the context for learning. For example,

when learning and, the user-defined helper function isZero
will be in context, and so will constructors for Bool and

Nat. Interestingly, once we learn and it becomes part of the

learning context for bothZero. This means we can set up a

curriculum (a sequence) of learning problems. In practice,

we find that setting up a curriculum leads to far quicker

synthesis. For instance, the program for bothZero is much

simpler if you already know and. Therefore it benefits to set

up a curriculum, as we did, where you learn and first.

5.2 Learning from examples
Learning from examples has two stages. The first stage col-

lects constraints from your examples. The second stage learns

a term from the type which satisfies those constraints.

Our implementation is a faithful rendition of the first stage,

captured by rules L-Wrld, L-EAbs, and L-ETAbs in Figure 5.

The algorithm for learning only spends a marginal amount

of time at this stage, and follows closely to the informal

description given in section 4.1.

It’s worth noting that the formal rules here are also fairly

simple. Early iterations of this work sought out to find a min-

imal basis with which to express similar ideas in the type-

directed synthesis literature [Osera 2015]. We pare down

the incidental details in this work, and reformulate similar

mechanisms in concise notation. For this stage in particu-

lar, this lends itself towards a near direct translation to our

implementation.

Lastly, a key distinction in this work is that examples

describe any input-output relationship in the language. Most

related works impose restrictions on examples that break

this property. As a result, learning isn’t a first class activity

in the language. Learning can’t happen in arbitrary spots in

a program, because you can’t have functions in the output.

5.3 Learning from types
The second stage is learning from types. We have constraints

to satify, and now need to search for a program to satisfy

those constraints. The algorithm for learning spends almost

all its time at this stage. This is unsurprising, given that

search can be demanding. When learning non-trivial pro-

grams, it’s always demanding.

The translation from the rules in Figure 4 to an algorithm

is less direct than with learning from examples. So we list

a set of design principles not inherent to the relation, but

which are crucial in the design of its implicit algorithm.

• Enumerate programs by increasing size, where size is

the number of nodes in the program’s abstract syntax

tree.

Learning in System F Conference’17, July 2017, Washington, DC, USA

• Enumerate programs in normal form. An insightful

analysis from [Osera 2015] describes how this dramat-

ically reduces the space of programs.

• When instantiating a polymorphic type, only do so

from types in the context.

These are the crux of the design commitments we make

which deviate from the relation in Figure 4. For the first two

points, [Osera 2015] is a treatise for implementing relations

like Figure 4. For a more comprehensive tutorial on those

design commitments we defer the interested there. Instead,

we focus on the last point.

Unrestricted polymorphism is profoundly expressive [Gi-

rard et al. 1989]. And this makes learning hard. Because

if you enrich your language with polymorphism, suddenly

there are many more programs which inhabit a particular

type. The last commitment is a way of taming the combina-

torial explosion inherent to polymorphism. Similar to type

inference, learning is only possible in System F if we make

some concessions. And this is one possible concession that

results in huge improvements in performance on programs

which manipulate algebraic data.

The rules (L-App) and (L-TApp) are what trigger the combi-

natorial explosion. In (L-App), if I’m trying to learn a program

for type 𝜏2 then one possibility is an application of two pro-

grams. To find that application, I have to learn a program of

type 𝜏1→𝜏2. But I don’t have the type on-hand, and have to

find all possible types to 𝜏2. With polymorphic types in the

context, there can be many ways to arrive at 𝜏2. For exam-

ple, with ∀𝑋 .𝑋→𝜏2 in the context there are many options:

𝐵𝑜𝑜𝑙→𝜏2, 𝑁𝑎𝑡→𝜏2, (𝐵𝑜𝑜𝑙→𝐵𝑜𝑜𝑙)→𝜏2, etc.

The inception of the heuristic came when looking at the

System F encoding of case analyses over algebraic data. For

many useful programs, the type application in the encoding

is always at a type in the context. These type applications,

like the ones in previous examples, specify the return type.

And generally (but not always), the return type of a case

analysis is a type that exists as a binding in the context.

5.4 Strengths/Weaknesses
The strengths of the implementation are in its ability to han-

dle functions in the output, which enable the learning of

a class of programs from examples not previously demon-

strated. As testament, we show in the next section a slew of

programs over algebraic types that we learn. In each case, the

programs always return a function. Because each program

works over higher-order encodings of algebraic data.

Another strength is the emphasis on a functional core for

learning. The language we built on top of the functional core

is incidental, and we merely lift the machinery for synthesis

to the high-level language. But we could have built other

high-level languages all while maintaining the same func-

tional core for learning. This departs from typical design

strategies for learning, which embed the learning machinery

in the high-level language. This forces language designers

who want to implement learning in their own languages to

adopt idiosyncracies of other high-level languages to enable

learning. System F has its own idiosyncracies for sure, but

these are amenable to the development of a broad swath of

languages—each where we can lift the learning machinery.

A weakness of the current implementation is that learning

complex programs is difficult. Since all our programs desugar

to System F, they are larger than their sugared representa-

tion. In practice, learning succeeds (generally, not just in

this work) when there are means to tame the combinatorial

explosion in programs. As programs grow larger, the more

likely you are to feel the explosion.

While our design strategy in lifting synthesis is quite dis-

tinct from related works, we still wanted to be able to learn

similar programs. And we do, but performance suffers. This

is in part because our System F encodings are much larger,

but also because we don’t make all the same optimizations as

related works. Because of this, we view the implementation

as successfully demonstrating a proof of concept: that we can

lift learning in System F to higher-level languages to learn

non-trivial programs. It sets the stage for further research in

this direction, helping to carve what functional core ought

to be.

6 Experiments
The implementation comes with a benchmark suite, whose

results we show in Figure 5. They are a variety of programs

over algebraic data. Some are simple, and others are quite

complex like Figure 6: a curriculum for learning an inter-

preter for expressions in the natural number semiring. We

now analyze these results. Endingwith some intuitions about

when to expect learning to succeed and when to expect it to

fail.

Generally, the language succeeds when algebraic data are

simple and the folds required are easy to write in case syntax.

If it’s not easy to write the fold, then you can try and help

by providing a curriculum. In many instances, this helps.

Like with nat_bothZero, but not always. In instances where

curriculums don’t help, there’s simply so much in context

for learning that performance suffers. Or the shape of the

algebraic data make it such that it’s easy to generate well-

typed but useless programs. Both of these are the case with

natexpr in Figure 6. By the time learning happens at natexpr

there is a lot in the learning context. Additionally, the shape

of natural numbers is such that it’s very easy to generate

many terms of type Nat under any context. You can generate

1, 2, 3, etc. These candidates are generated despite the fact

that constants aren’t frequently used for the programs we

write. Other algebraic data suffer from similar issues.

A path forward to resolving these bottlebecks are to extend

the learning relation in Figure 5 to better exploit examples

from algebraic data. In [Osera 2015], they develop clever

Conference’17, July 2017, Washington, DC, USA Joey Velez-Ginorio and Nada Amin

Name Size Time (s) # Ex # Help
bexpr_eval 139 2.50 15 7

bool_nand 58 1.08 4 2

bool_or 42 0.06 4 2

bool_and 42 0.03 4 2

bool_not 53 0.02 2 2

bool_xor 72 3.75 4 2

data_fun 37 21.21 13 8

nat_bothZero 192 0.28 10 6

nexpr_eval 230 53.93 10 7

fun_plus 60 0.01 7 6

nat_plus 68 0.05 3 4

church_like 43 9.10 3 2

not_fun2 77 0.02 4 3

not_fun 36 0.05 4 3

poly_id 4 0.002 3 2

poly_twice 12 0.004 3 3

twice 38 0.002 3 3

Figure 6. Performance on a benchmark suite. Breaks down size of learned System F program (includes size of provided

components as well). Time to learn. Number of examples. Number of helper functions: including constructors from datatype

declarations, user-defined functions, and learned functions.

ways to use examples to reduce the combinatorial explosion

of program space. The trick would be to express the seman-

tics of their learning formulation in terms of our functional

core for learning, System F. Another path is by moving up

the lambda cube [Barendregt 1992].

7 Related Work

7.1 Rosette
Rosette is a programming language which extends Racket

with machinery for synthesis, or learning [Torlak and Bodik

2013]. It imbues the language with SMT solvers.
1
With them,

it’s possible to write programs with holes, called sketches

[Solar-Lezama 2008], which an SMT solver can fill. If a sketch

has holes amenable to reasoning via SMT, Rosette can be

quite effective.

For instance, recentwork shows Rosette can reverse-engineer

parts of an ISA [Zorn et al. 2017]—the instruction set architec-

ture of a CPU (central processing unit). From bit-level data,

you can recover programs which govern the behavior of the

CPU. This works because SMT solvers support reasoning

about bit-vector arithmetic, the sort of arithmetic governing

low-level behavior of CPUs [Kroening and Strichman 2016].

1
Satisfiability modulo theories (SMT) is a spin on the satisfiability problem,

where one checks whether a boolean formulae is satisfied by a certain set

of assignments to its variables. [Barrett and Tinelli 2018]

7.2 Synquid
Synquid is a programming language which uses refinement

types to learn programs [Polikarpova et al. 2016]. A refine-

ment type lets you annotate programs with types containing

logical predicates [Freeman 1994]. The logical predicates

constrain the space of programs which inhabit that type, and

are used to guide learning.

Consider learning with and without refinement types. I’m

going to teach you a program. But all I’ll say is that its of type

𝑛𝑎𝑡 → 𝑛𝑎𝑡 . As we saw in the introduction, the type alone

isn’t enough to constrain learning. With synquid, instead of

going the route of examples they go the route of enriching

types. Enter refinement types, which let you learn as follows.

We want you to learn a program. But all we say is that its

of type 𝑥 :𝑛𝑎𝑡→{𝑦:𝑛𝑎𝑡 | 𝑦 = 𝑥 +1}. It takes a natural number

𝑥 , and returns a natural number 𝑦 one greater than 𝑥 . Any

ideas? Perhaps a program which computes...

𝑓 (𝑥) = 𝑥+1, 𝑓 (𝑥) = 𝑥+2−1, 𝑓 (𝑥) = 𝑥+3−2, · · ·

The good news is that 𝑓 (𝑥) = 𝑥 + 1 is correct. And so are all

the other programs, as long as I’m agnostic to implementa-

tion details. Refinement types impose useful constraints on

learning, it’s the crux of Synquid.

7.3 Myth
Myth is a programming language which uses types and ex-

amples to learn programs [Osera 2015]. Types, like in Syn-

quid, let you annotate programs by their behavior. But Myth

doesn’t use refinement types, its types aren’t as expressive.

Learning in System F Conference’17, July 2017, Washington, DC, USA

data Nat = Zero
| S Nat

data NExpr = Val Nat
| NAdd NExpr NExpr
| NMul NExpr NExpr

plus :: Nat -> Nat -> Nat
plus = [<Zero,Zero,Zero>,<Zero, S Zero, S Zero>, <S Zero, Zero, S Zero>]

mul :: Nat -> Nat -> Nat
mul a b = case a[Nat] of

Zero -> Zero
S c -> plus b c

neval :: NExpr -> Nat
neval = [<Val (S Zero), S Zero>,

<NAdd (Val Zero) (Val Zero), Zero>,
<NAdd (Val (S Zero)) (Val Zero), S Zero>,
<NAdd (NAdd (Val Zero) (Val (S Zero))) (NAdd (Val Zero) (Val Zero)), S Zero>,
<NMul (Val Zero) (Val Zero), Zero>,
<NMul (Val (S Zero)) (Val Zero), Zero>,
<NMul (NAdd (Val Zero) (Val (S Zero))) (NAdd (Val (S Zero)) (Val Zero)), (S Zero)>]

main :: Unit
main = neval

Figure 7. Learning an interpreter for arithmetic expressions in the natural number semiring. Multiplication provided by the

user to speed up learning.

Instead of deferring to richer types, Myth offers examples

to constrain learning. Examples are nice because they’re

often convenient to provide, and at times easier to provide

than richer types. Think of the difference between teaching

chess by explaining all its principles, versus teaching chess

by playing. In practice, a mix of both tends to do the trick.

Formally specifying the rules, but also letting example play

guide learning as when my uncle taught me.

This work was most directly inspired by Myth, and we

borrow and refine many ideas therein. Of special curiosity,

that isn’t of focus in Myth is the capability of learning as a

first class activity in languages—which we further speculate

about through the conclusion.

8 Conclusion
In the 60’s, Peter Landin published The next 700 program-
ming languages [Landin 1966]. He noticed a trend at the time,

which was that everyone was designing different languages

for solving different problems. Not because they had to, but

because it was the only obvious design strategy. As a result,

the idiosyncracies of the languages became interwined with

the idiosyncracies of the problems they were trying to solve.

So he formulated ISWIM, a functional core language with

which you could express other languages. And the idea per-

sists to this day. Modern functional languages typically sit

on top a functional core. We don’t need fundamentally new

languages for every programming task.

It’s a matter of empirical investigation, but the most im-

portant idea in this paper is whether we need fundamentally

new languages for every learning task. As it stands, the prolif-

eration of learning tools (Rosette, Synquid, Myth) means the

proliferation of languages. But could there not be a functional

core with which to express other learning mechanisms? We

tackle this question with the following contributions:

• (On theory) A simple description of learning from

examples as a relation.

• (On practice) An implementation of learning from ex-

amples in System F.

• (On practice) An implementation of a high-level lan-

guage, which lifts learning from System F into itself.

This work steps in a different direction of the design space,

and while there’s clearly plenty left to be desired, we see

plenty trail ahead.

Conference’17, July 2017, Washington, DC, USA Joey Velez-Ginorio and Nada Amin

References
Henk P Barendregt. 1992. Lambda calculi with types. (1992).

Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories. In

Handbook of Model Checking. Springer, 305–343.
Tim Freeman. 1994. Refinement Types for ML. Technical Report. Carnegie-

Mellon University, Department of Computer Science, No. CMU-CS-94-

110.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7.
Jan Martin Jansen. 2013. Programming in the 𝜆-calculus: From Church to

Scott and back. In The Beauty of Functional Code. Springer, 168–180.
Daniel Kroening and Ofer Strichman. 2016. Decision procedures. Springer.
Peter J Landin. 1966. The next 700 programming languages. Commun. ACM

9, 3 (1966), 157–166.

Peter-Michael Santos Osera. 2015. Program synthesis with types. University
of Pennsylvania, Department of Computer Science. PhD Thesis. (2015).

Benjamin C Pierce. 2002. Types and programming languages. MIT press.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program

synthesis from polymorphic refinement types. In ACM SIGPLAN Notices,
Vol. 51. ACM, 522–538.

Michael Sipser et al. 2006. Introduction to the Theory of Computation. Vol. 2.
Thomson Course Technology Boston.

Armando Solar-Lezama. 2008. Program synthesis by sketching. Citeseer.
Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages

with rosette. In Proceedings of the 2013 ACM international symposium on
New ideas, new paradigms, and reflections on programming & software.
ACM, 135–152.

Bill Zorn, Dan Grossman, and Luis Ceze. 2017. Solver Aided Reverse Engi-

neering of Architectural. Proceedings of the 44th Annual International
Symposium on Computer Architecture (2017).

	Abstract
	1 Introduction
	1.1 A tricky learning problem
	1.2 A way forward

	2 System F
	2.1 Syntax
	2.2 Typing
	2.3 Evaluation

	3 Learning from Types
	3.1 Learning, a relation
	3.2 Metatheory

	4 Learning from Examples
	4.1 Learning, a relation
	4.2 Metatheory

	5 Implementation
	5.1 Language: System F + Sugar
	5.2 Learning from examples
	5.3 Learning from types
	5.4 Strengths/Weaknesses

	6 Experiments
	7 Related Work
	7.1 Rosette
	7.2 Synquid
	7.3 Myth

	8 Conclusion
	References

