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Abstract
Programming languages let us communicate with machines. Yet to date, nearly every language

makes this a laborious process. Every instruction, with �ne detail, must be speci�ed to the ma-

chine. We aren’t doomed to program this way. Instead, an upgrowth of works in programming

languages aim to design programming languages which allow for more informal speci�cations of

programs. Programs can be speci�ed by providing examples of expected behavior—or by provid-

ing an informative type. �ink of how one might communicate the rules of game to a friend, both

by formal speci�cation and by examples of play. I describe these languages as having machinery

for “learning”. You specify the program you want, then the language uses its machinery to learn

the program you speci�ed.

In this work I show that System F, a classic and storied programming language, can “learn”

programs. Unlike previous works which introduce machinery explicitly for learning, I show Sys-

tem F needs nothing new. Moreover, System F can learn programs no previous language has been

shown to learn—higher-order programs from examples. �ese strengths give System F the capacity

to learn not only programs, but programming languages.

In Chapter 1, I introduce the problem of learning. �ese include musings over learning as

discussed in cognitive science, followed by learning in programming languages.

In Chapter 2, I introduce System F. Here I tersely cover the language and state important

theorems which hold in System F and which make learning possible.

In Chapter 3, I begin the technical treatment of learning, when data are types. A key theorem

is proved. Namely, that any program in System F can be learned from types.

In Chapter 4, I extend learning from types, when data are examples. Another key theorem is

proved. Namely, that any program in System F can be learned from examples.

In Chapter 5, I muse over the signi�cance of learning in System F—discussing the prospect of

learning programming languages in System F. Considerations for future work, including barriers

to implementation and extending to new type systems, are discussed.

With the exception of Chapter 2, all content and interpretatons are original contributions.
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Chapter 1

To learn a program

�e term “learning”, like a lot of other everyday terms, is used
broadly and vaguely in the English language, and we carry those
broad and vague usages over to technical �elds, where they o�en
cause confusion.

Herbert Simon
Why should machines learn? (1983)

1.1 The verb, learn

My uncle taught me chess. First, he laid down the facts. Bishops do this. Knights do that. You want

to checkmate. From there, the rules were laid out. Ideally, I should have learned chess then. But

I didn’t. My a�ention lapsed and sometimes I forgot which piece did what. �ese gaps however,

were �lled by playing. Whatever sense I had of chess quickly revised itself. Examples of play

helped me learn chess.

To learn chess, I don’t mean anything mysterious. To learn chess is to know its rules. �ese

tell you what moves you can and can’t make. And what conditions must be met to win or lose. If I

think bishops only move forward, I haven’t learned chess. If I know bishops move diagonally, I’m

learning chess.

To learn a program, I don’t mean anything mysterious. To learn a program is to know its rules,

its instructions. �ese tell you what computation it does and does not do. If I think helloWorld
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only prints “hello”, I have not learned helloWorld1:

main( ){
printf(”hello, world\n”);

}

1.2 Humans learn programs

Uncontroversially, humans learn programs. Hordes of programmers learn programs everyday.

Programs like helloWorld are o�en the �rst they learn. It was my �rst.

But we can push the idea further. Maybe programmers aren’t the only ones learning programs.

What if we all do? If the brain really is a computer, then to learn a concept is to learn a program.

1.2.1 A recurrent observation

In 1666, Leibniz said human reasoning is computation [16]. He envisioned the characteristica

universalis2: a formal language for expressing all thoughts, all concepts. Paired with his calculus

ratiocinator3, Leibniz mused over machines which could think like us. His works anticipate the

development of symbolic logic and the formal foundations of computation we enjoy today.

In 1843, Lovelace translates a lecture on Babbage’s analytical engine, the precursor to modern

programmable computers. She has a fundamental realization. In the notes of her translation, she

remarks [18]:

Again, it might act upon other things besides number…..Supposing, for instance, that the
fundamental relations of pitched sounds in the science of harmony and of musical com-
position were susceptible of such expression and adaptations, the engine might compose
elaborate and scienti�c pieces of music of any degree of complexity or extent.

A machine designed to compute with numbers is not restricted to reason over numbers. Num-

bers can denote more, like the “relations of pitched sounds.” From which to reason about numbers

is to reason about music, to create music.
1helloWorld is a famous test program. It prints out the words “hello, world”. Its adoption traces back to a 1974

memo from Bell Labs by Brian Kerrighan. [12]
2Universal characteristic
3A framework for computation, predating mathematical logic. Leibniz built a machine called the Stepped Reckoner,

using the calculus ratiocinator as its model of computation.
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In 1958, Von Neumann’s un�nished notes for Yale’s Silliman lectures are published posthu-

mously. �ey’re titled “�e Computer and the Brain” [30]. He muses on the correspondence

between computation and human thought, except now in reference to the brain.

1.2.2 A current controversy

�e recurrent observation, a correspondence between human thought and computation, led to the

inception of cognitive science in the 1970s. �e observation lives on with tenuous status. �at

is, it’s an open question as to how strict to interpret the correspondence, or even if it holds. Are

brains literally computers, something like a computer, or something else entirely?

Opposition to the correspondence emerges in the dynamical systems approach. It claims that

counter to orthodoxy, the brain is not a computer but instead a dynamical system [28]. A growing

body of empirical work substantiates the approach [19].

Yet empirical work also substantiates the correspondence. Many works, including some of my

own, show that you can predict what people learn when you treat learning as learning programs.

[10, 29, 14]. It leaves cognitive science in a thorny situation. Robust empirical work support both,

opposing views.4

Despite this, I’m inspired by the controversy. My alliances are with the pioneers of computing,

that there is a real correspondence between human thought and computers.

�e current work aims to explore the correspondence. If the brain is a computer, then it’s

programs are wri�en in a peculiar programming language. One which lets us both write and learn

the programs which govern our behavior. What might that language look like?

1.3 Computers learn programs

Program synthesis, type inhabitance, inductive programming, and theorem proving [11]. Di�erent

names for the same problem: learning programs from data. Sometimes the programs are proofs,

sometimes they’re terms.5 Sometimes data are examples, sometimes they’re types. Yet the aim is

the same.
4It’s possible that these are complentary, not competing views. �is is argued in [5]. However, to date the views are

o�en framed in opposition.
5�e equivalence between programs, terms, and proofs is established by the Curry-Howard correspondence. [31]
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What might a programming language look like, if its programs could also be learned by ma-

chines? To moment, the literature consists of languages which explicitly introduce machinery to

enable learning. �ey are useful to discuss before beginning on the greater exposition—learning

in System F, a presentation which avoids explicitly introducing machinery.

1.3.1 Rosette

Rose�e is a programming language which extends Racket with machinery for synthesis, or learn-

ing [27]. It imbues the language with SMT solvers.6 With them, it’s possible to write programs

with holes, called sketches [26], which an SMT solver can �ll. If a sketch has holes amenable to

reasoning via SMT, Rose�e can be quite e�ective.

For instance, recent work shows Rose�e can reverse-engineer parts of an ISA [32]—the in-

struction set architecture of a CPU (central processing unit). From bit-level data, you can recover

programs which govern the behavior of the CPU. �is works because SMT solvers support rea-

soning about bit-vector arithmetic, the sort of arithmetic governing low-level behavior of CPUs

[13].

1.3.2 Synqid

Synquid is a programming language which uses re�nement types to learn programs [24]. A re-

�nement type lets you annotate programs with types containing logical predicates [8]. �e logical

predicates constrain the space of programs which inhabit that type, and are used to guide learning.

Consider learning with and without re�nement types. I’m going to teach you a program. But

all I’ll say is that its of type nat→nat . It takes a natural number, and returns a natural number.

Any ideas? Perhaps a program which computes…

f (x ) = x , f (x ) = x + 1, f (x ) = x + 2, f (x ) = x + · · ·

�e good news is that f (x ) = x + 1 is correct. �e bad news is that the data (type) let you learn a

slew of other programs too. It doesn’t constrain learning enough if I want to teach f (x ) = x + 1.

Enter re�nement types, which let data be speci�c.
6Satis�ability modulo theories (SMT) is a spin on the satis�ability problem, where one checks whether a boolean

formulae is satis�ed by a certain set of assignments to its variables. [3]
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Round 2. I’m going to teach you a program. But all I’ll say is that its of type x :nat→{y:nat |

y = x + 1}. It takes a natural number x , and returns a natural number y one greater than x . Any

ideas? Perhaps a program which computes…

f (x ) = x + 1, f (x ) = x + 2 − 1, f (x ) = x + 3 − 2, · · ·

�e good news is that f (x ) = x + 1 is correct. And so are all the other programs, as long as I’m

agnostic to implementation details. Re�nement types impose useful constraints on learning, it’s

the crux of Synquid.

1.3.3 Myth

Myth is a programming language which uses types and examples to learn programs [20]. Types,

like in Synquid, let you annotate programs by their behavior. But Myth doesn’t use re�nement

types, its types aren’t as expressive. Let’s see how Myth constrains learning without re�nement

types.

I’m going to teach you a program. But all I’ll say is that its of type nat→nat . Frustrated, you

point out that you have several programs in mind, and can’t discern which is correct from my

teaching…

f (x ) = x , f (x ) = x + 1, f (x ) = x + 2, f (x ) = x + · · ·

Your frustration compels me to o�er an example of how I want the program to work. When given

1, the program should return 2: f (1) = 2. Frustrations se�le and you rightly suspect the correct

program to compute f (x ) = x + 1.

Instead of deferring to richer types, Myth o�ers examples to constrain learning. Examples are

nice because they’re o�en convenient to provide, and at times easier to provide than richer types.

�ink of the di�erence between teaching chess by explaining all its principles, versus teaching

chess by playing. In practice, a mix of both tends to do the trick. Formally specifying the rules,

but also le�ing example play guide learning as when my uncle taught me.
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1.4 Why are we better?

1.4.1 Programmer assistants, not programmers

Rose�e, Synquid, and Myth are state of the art. Yet they each only learn small fractions of the

programs that we learn. For example, I’m most interestered in computers which learn not only

programs, but programming languages from examples.

To learn a programming language is to learn its compiler or interpreter. Compilers and inter-

preters are themselves nothing more than programs. But it’s impossible to learn compilers from

examples using a language like Myth. At best, Myth lets you learn simple interpreters for lan-

guages which let you do basic arithmetic, e.g. “2+1” evaluates to “3”. And even then, only with

lots of help from the data.

Across the board, computers mostly learn simple programs. �ey are more programmer as-

sistants than full-�edged programmers. �ey manage simple tasks, le�ing programmers focus on

the heavy li�ing of programming. Is this all they’ll ever be?

1.4.2 Seemingly, an impasse

At �rst glance, computability theory appears to se�le the debate [25]. Computers will never pro-

gram like us.

�eorem 1.4.1 (Rice’s Theorem).

For Turing-complete languages, all non-trivial semantic properties of programs are undecidable.

Semantic properties are about a program’s behavior. Does it halt? Does f (1) = 2? And non-

trivial properties are those which aren’t true of every program, or false of every program.

Recall when I taught you the program which computes f (x ) = x + 1 from examples. Given

1 the program should return 2: f (1) = 2. Checking that any program satis�es even this simple

example is undecidable. Similar issues arise if you try to avoid examples, and go the route of more

precise types like Synquid. �ere’s no way around it if a computer programs in a Turing-complete

language. Learning all programs is undecidable.

But I program in OCaml, a Turing-complete language. Recently, I learned how to write a

compiler in it. Something’s o�. If my brain is a computer, then Rice’s theorem applies. Learning
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all OCaml programs is undecidable.

1.4.3 A sensible sacrifice

Rice’s theorem forces the hand. �e brain isn’t solving undecidable problems. So then how did I

learn to write a compiler in OCaml? A way forward is through a sensible sacri�ce.

Learning all OCaml programs is undecidable. But I only ever learn a subset of programs in

Turing-complete languages. In fact, I can only claim to have learned a subset—same as anyone

else. Maybe my brain uses a programming language which isn’t Turing-complete, but which can

learn useful subsets of Turing-complete languages. A sensible sacri�ce.

�e sacri�ce lets us design languages for which Rice’s �eorem doesn’t hold. Non-trivial se-

mantic properties can be decided. And I can learn to write compilers in OCaml. �is is possible in

System F.
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Chapter 2

System F

So we are led to endless improvement, in order to be able to
consider, besides the booleans, the integers, lists, trees, etc. Of
course, all this is done to the detriment of conceptual simplicity
and modularity.

Jean-Yves Girard
Proofs and Types (1989)

2.1 System T, then F

In the Dialectica interpretation, Kurt Gödel constructs System T. With it, he proves the consistency

of Heyting arithmetic: a logical framework for reasoning about natural numbers [2]. �at is, the

axioms for Heyting arithmetic do not lead to contradictions about natural numbers.

Despite success, logicians like Girard expressed misgivings about System T. In order to reason

over natural numbers, System T explicitly introduces machinery for reasoning over things like

booleans and pairs. Because they aren’t inherently representable in System T, you end up with the

endless improvements Girard mentions in the epigraph. To do something new in System T, you

add something new. What results is a language which quickly loses “conceptual simplicity and

modularity.”

To amend these misgivings, Girard constructs System F [9]. It’s powerful enough to repre-

sent all machinery for the Dialectica interpretation, whilst preserving conceptual simplicity and

modularity.
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Similar misgivings about languages which learn programs led my retreat to System F. To learn

something new, you add something new. Very quickly, these languages get complex. �e key

contribution of this work shows that not only does System F provide all machinery for the Dialec-

tica interpretation, but also for learning from examples. To do something new in System F, I add

nothing new.

�e remainder of the chapter presents System F, with notation near identical to its presenta-

tion in [21]. My presentation is terse, in order to provide intuitions for readers unfamiliar with

lambda calculi. �ese intuitions ground the work developed herea�er. For comprehensive cover-

age, I defer to [21].

Syntax

e ::= terms:
x variable
e1e2 application
λx :τ .e abstraction
e dτ e type application
Λα .e type abstraction

v ::= values:
λx :τ .e abstraction
Λα .e type abstraction

τ ::= types:
τ1 → τ2 function type
∀α .τ polymorphic type
α type variable

Γ ::= contexts:
· empty
x :τ , Γ variable
α , Γ type variable

Figure 2.1: Syntax in System F

2.2 Syntax

A convenience of System F is its minimal syntax. It’s only marginally more complex than the

simplest typed languages. Figure 2.1 presents its grammar in Backus-Naur form [21]. Beyond

aesthetics, the minimalism is a mathematical convenience. Proofs about System F’s behavior need

only worry about a handful of language constructs.

To ease presentation, we use encodings for natural numbers from the start. �ese encodings

are standard, and are shown in [9].
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2.2.1 Types

Types describe the behavior of programs.

a) nat is the type for natural numbers. A program of this type is a natural number.

b) nat→nat is the function type from nat to nat . A program of this type has an input of type

nat and an output of type nat .

c) nat → nat → nat is the function type from nat and nat to nat . A program of this type has

two inputs of type nat and an output of type nat .

d) ∀α .α → α → α is the polymorphic function type from α and α to α . A program of this

type has two inputs of the same type and an output of that type. Polymorphic abstraction,

denoted by ∀α , lets the function work for any type represented by α .

e) ∀α .α→ α→nat is the polymorphic function type from α and α to nat . A program of this

type has two inputs of the same type and an output which is always type nat .

2.2.2 Terms

Terms are programs.

a) λx :nat .x is a program which takes a natural number x as input, and returns it. �e variable

which comes a�er λ in a term denotes the input. What comes a�er is the term’s body, where

its input is used for computation.

b) (λx :nat .x )1 applies the previous program to 1.

c) Λα .λx :α .x is a program which takes an x of any type, and returns it. It’s a polymorphic, or

generic, version of the �rst program.

d) (Λα .λx :α .x )dnate applies the previous program to type nat .

e) λ f :nat → nat .λx :nat . f x is a program which takes a function f of type nat → nat and a

natural number x as input. It returns the application of f to x .
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2.2.3 Values

Values are programs which have �nished computing.

a) (λx :nat .x )1 is not a value. �e program is an application, which can’t be a value. Appli-

cations means there’s computing le� to do, namely the application of the program to its

argument.

b) (λx :nat ) is a value. �e program is applied to no arguments. �ere’s no computing le� to

do.

c) 1 is a value.

2.2.4 Contexts

Contexts carry type information about variables.

a) x :nat ,y:nat is a valid context. It says x and y have type nat .

b) α is a valid context. It says α is a type variable.

c) · is a valid context. It says nothing. At times, when other information is present in the

context, we omit ·—which technically, is always present in the context.

2.3 Evaluating, a relation

System F’s syntax tells us what programs look like. But doesn’t say anything about how they run,

how they compute. Suppose I have the program (λx :nat .x )1. It applies a program which returns

its input to the number 1. It should return 1. But how exactly? We want a relation which gives us

the following behavior.

(λx :nat .x )1→β x[1/x]→β 1

First, 1 is bound to the input x of λx :nat .x . �en 1 substitutes x , resulting in 1. �e notation x[1/x]

denotes 1 replacing x in the program x . A relation of this behavior is de�ned in Figure 2.2.

(E-App1) says that if a program e1 evaluates to e ′1, then e1e2 evaluates to e ′1e2. For example:
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Evaluating e →β e ′

e1 →β e ′1
(E-App1)

e1e2 →β e ′1e2

e →β e ′

(E-TApp)
e dτ e →β e ′dτ e

e2 →β e ′2
(E-App2)

e1e2 →β e1e
′
2

(Λα .λx :α .e )dτ e →β (λx :α .e )[τ/α] (E-TSub)

(λx :τ .e )v →β e[v/x] (E-Sub)

Figure 2.2: Evaluating in System F

(λx :nat→nat .x ) (λy:nat .y) →β (λy:nat .y)
(E-App1)

((λx :nat→nat .x ) (λy:nat .y))1→β (λy:nat .y)1

(E-App2) says that if a program e2 evaluates to e ′2, then e1e2 evaluates to e1e
′
2. For example:

(λx :nat .x )1→β 1
(E-App2)

(λx :nat .x ) ((λx :nat .x )1) →β (λx :nat .x )1

(E-Sub) says that if a program λx :τ .e is applied to value v , then replace all instances of x in e

with v . For example:

(λx :nat .x )1→β x[1/x] (E-Sub)

(E-TApp) says that if a program e evaluates to e ′, then e dτ e evaluates to e ′dτ e. For example:

Λα .(λx :α→α .x ) (λx :α .x ) →β Λα .λx :α .x
(E-TApp)

(Λα .(λx :α→α .x ) (λx :α .x ))dnate →β (Λα .λx :α .x )dnate

(E-TSub) says that if a program Λα .λx :α .e is applied to type τ , then replace all instances of α

in λx :α .e with τ . For example:

(Λα .λx :α .x )dnate →β (λx :α .x )[nat/α] (E-TSub)

�e evaluating relation comes in many forms. Here, we use what’s referred to as a call-by-

value evaluation strategy [23]. More exist, and each impact how programs evaluate in System F,

e.g. call-by-name and call-by-need [23, 1]. �ese alternatives aren’t discussed, but we do consider

the re�exive, symmetric, transitive closure of the de�ned evaluating relation, =β . It denotes pro-

gram equality. Because this evaluating relation has the normalization property, deciding program

equality is decidable. In upcoming chapters, we’ll see how program equality is used to learn from

examples.
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2.4 Typing, a relation

With syntax, we saw what programs look like. With evaluation, we saw how programs execute.

So then why do we need typing? Without typing, we can write the following program in System

F. �e grammar in Figure 2.1 permits it.

(λx :nat .x ) (λy:nat .y)

But this program is nonsense. �e le�-hand side of the application is a program which returns

its argument x , which must be of type nat . �e right-hand side is the same program. If we were

to naively evaluate this program, it would substitute λx :nat .x for the argument x on the le�-hand

side. Yet the argument wouldn’t be of type nat . λx :nat .x is the function type nat→nat . �e types

don’t align for evaluation, to do computation.

To actually do something, the le�-hand side needs an argument of the correct type.

(λx :nat→nat .x ) (λy:nat .y)

�is is why we need typing. It lets us build programs which make sense, for which types align

to do computation. Like evaluation, we de�ne typing as a relation.

Typing Γ ` e : τ

x : τ ∈ Γ (T-Var)
Γ ` x : τ

Γ,α ` e : τ
(T-TAbs)

Γ ` Λα .e : ∀α .τ

Γ,x :τ1 ` e2 : τ2 (T-Abs)
Γ ` λx :τ1.e2 : τ1 → τ2

Γ ` e : ∀α .τ1 (T-TApp)
Γ ` e dτ2e : [τ2/α]τ1

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1 (T-App)
Γ ` e1e2 : τ2

Figure 2.3: Typing in System F

(T-Var) says that if x is bound to type τ in the context Γ, then the program x is of type τ .

x :nat ∈ x :nat (T-Var)
x :nat ` x : nat

13



(T-Abs) says that if x is bound to type τ1 in the context Γ and that a program e2 is of type τ2,

then the program λx :τ1.e2 is of type τ1→τ2 and x is removed from the context.

Γ,x :nat ` λy:nat .y : nat→nat
(T-Abs)

Γ ` λx :nat .λy:nat .y : nat→nat→nat

(T-App) says that if a program e1 is of type τ1→τ2 and a program e2 is of type τ1, then e1e2 is

of type τ2.

Γ ` λx :nat .x : nat→nat Γ ` 1 : nat (T-App)
Γ ` (λx :nat .x )1 : nat

(T-TAbs) says that if α is in the context, and a program e is of type τ , then the program Λα .e

is of type ∀α .τ and α is removed from the context.

Γ,α ` λx :nat .x : α→α
(T-TAbs)

Γ ` Λα .λx :α .x : ∀α .α→α

(T-TApp) says that if a program e is of type ∀α .τ1, then the program e dτ2e is of type [τ2/α]τ1.

Γ ` Λα .λx :α .x : ∀α .α→α (T-Abs)
Γ ` (Λα .λx :α .x )dnate : nat→nat

As with evaluating, there are many ways to construct typing relations on System F. Each o�ers

their own take on what constitutes a well-typed program in System F, e.g. System F extended with

subtyping [4]. �e behavior of the typing relation is especially important for learning, as learning

will depend on key properties of the typing relation: namely progress and preservation.

2.5 Metatheory

Well-typed terms can be thought of as theorems constructed through the typing relation, whose

proof are sound proof trees. Hence, statements about these theorems, or the typing relation in

general, are metatheoretic statements. I brie�y review key metatheoretic properties of System F

essential for learning. Proofs ommi�ed, but easily found in [9].

2.5.1 Programs don’t get stuck

�eorem 2.5.1 (Progress in Typing).

If e is a closed, well-typed program, then either e is a value or else there is some program e ′ such that

e →β e ′.
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Programs shouldn’t get stuck in the middle of computation. We want well-typed programs

to always have something to do, even if they don’t ever stop. Progress ensures this. And with

preservation, it lets us prove typing is sound, that we can prove all true theorems implied by the

typing relation.

2.5.2 Programs don’t change types

�eorem 2.5.2 (Preservation in Typing).

If Γ ` e : τ and e →β e ′, then Γ ` e ′ : τ .

Programs shouldn’t suddenly switch types in the middle of computation. Remember, the point

of the type is to let us know kind of computation to expect from a program. If the type switches

during computation, we’re losing that information. With progress, preservation lets us prove

typing is sound. By extension, they are essential to prove learning sound.

2.5.3 Programs always halt

�eorem 2.5.3 (Normalization in Evaluation).

Well-typed programs in System F always evaluate to a value, to a normal form.

Progress doesn’t guarantee programs ever stop computing. �ey could get stuck in in�nite

loops. Under certain type systems it’s impossible to guarantee programs ever stop, e.g. recursive

types [21]. But in System F we know all programs halt, or stop. For learning from examples, intro-

duced in subsequent chapters, this property is essential. With normalization, program equivalence

becomes decidable—a key part of the learning procedure.
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Chapter 3

Learning from types

�e fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point.

Claude Shannon
The Mathematical Theory of Communication (1948)

3.1 Types aid communication

Programs communicate. �ey speak to machines, what we tell them to. For machines, the com-

munication is simple. Programs have all they need to communicate intent. But the programmer

bears the burden of thought. In order to say something, the programmer must be precise—every

instruction a meticulous curation.

Humans communicate far di�erently. At times, communication can feel meticulous. But o�en

it is simple. �e things we say aren’t precise formal speci�cations of what we mean to say, but

are rather just precise enough to convey useful ideas. �e burden of thought is balanced between

speaker and listener. For example,

A glork smashed my car.

You don’t know what a glork is, but you at least know it smashed my car. I’m precise enough

to say something useful, that glorks smash things. But imprecise enough that the listener must

guess what a glork is. Note however, that you can’t just guess anything. A glork isn’t likely a
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worm, unless you know of worms which smash cars. If we think of glorks as having a type, it’s

type might be “smasher”, which heavily constrains the kinds of things a listener can plug in for

the meaning of glork. Maybe it’s an elephant, maybe it’s a hurricane.

We can harness types to build languages which allow for this sort of productive, yet imprecise

kind of communication. We provide a type, and let the computer learn what we mean.

3.2 Learning, a relation

Learning Γ ` τ  e

x : τ ∈ Γ (L-Var)
Γ ` τ  x

Γ,α ` τ  e
(G-TAbs)

Γ ` ∀α .τ  λα .e

Γ,x :τ1 ` τ2  e2 (L-Abs)
Γ ` τ1 → τ2  λx :τ1.e2

Γ ` ∀α .τ1  e
(L-TApp)

Γ ` [τ2/α]τ1  e dτ2e

Γ ` τ1 → τ2  e1 Γ ` τ1  e2 (L-App)
Γ ` τ2  e1e2

Figure 3.1: Learning from types in System F

As with typing and evaluation, I describe learning as a relation:

Γ ` τ  e

Given a context Γ and type τ , I can learn program e .

�is relation is actually equivalent to the typing relation. �e only real di�erence is one of

notation. For instance, note the symmetries between Figure 3.1 and Figure 2.3. When discussing

metatheory, we prove the equivalence. Despite this, the learning relation is not redundant. �e

new notation forms the core of an extended learning relation de�ned in the next chapter, to learn

from examples. Additionally, it shows how to exploit the typing relation to yield the core of a

learning relation, learning from types.

(L-Var) says that if x is bound to type τ in the context Γ, then you can learn the program x of

type τ .
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x :nat ∈ x :nat (L-Var)
x :nat ` nat  x

(L-Abs) says that if x is bound to type τ1 in the context Γ and you can learn a program e2 from

type τ2, then you can learn the program λx :τ1.e2 from type τ1 → τ2 and x is removed from the

context.

Γ,x :nat ` nat→nat  λy:nat .y
(L-Abs)

Γ ` nat→nat→nat  λx :nat .λy:nat .y

(L-App) says that if you can learn a program e1 from type τ1→τ2 and a program e2 from type

τ1, then you can learn e1e2 from type τ2.

Γ ` nat→nat  λx :nat .x Γ ` nat  1 (L-App)
Γ ` nat  (λx :nat .x )1

(L-TAbs) says that if α is in the context, and you can learn a program e from type τ , then you

can learn a program Λα .e from type ∀α .τ and α is removed from the context.

Γ,α ` α→α  λx :nat .x
(L-TAbs)

Γ ` ∀α .α→α  Λα .λx :α .x

(T-TApp) says that if you can learn a program e from type∀α .τ1, then you can learn the program

e dτ2e from type [τ2/α]τ1.

Γ ` ∀α .α→α  Λα .λx :α .x (T-Abs)
Γ ` nat→nat  (Λα .λx :α .x )dnate

�e examples are symmetric to those shown for typing. We now show, beyond aesthetic sym-

metries, that learning from types and typing are equivalent.

3.3 Metatheory

3.3.1 Typing and Learning are eqivalent

Learning should obey progress, preservation, and normalization. By proving equivalence between

typing and learning, we show that learning does obey these properties.

Lemma 3.3.1 (Completeness of Learning).

If Γ ` e : τ then Γ ` τ  e

Proof. Induction on the typing rules. �

18



Lemma 3.3.2 (Soundness of Learning).

If Γ ` τ  e then Γ ` e : τ

Proof. Induction on the learning rules. �

�eorem 3.3.3 (Eqivalence of Typing and Learning).

If and only if Γ ` τ  e then Γ ` e : τ

Proof. Directly from Lemmas 3.3.1 and 3.3.2. �

Because we can only learn a program if and only if it is well typed, it follows that learned

programs obey progress, preservation, and normalization. Each proof invokes the equivalence

theorem between typing and learning, and then the respective progress, preservation, and nor-

malization theorems for typing.

3.3.2 Learned programs don’t get stuck

Corollary 3.3.4 (Progress in Learning).

If e is a closed, learned program, then either e is a value or else there is some program e ′ such that

e →β e ′.

Proof. Directly from �eorems 3.3.3 and 2.5.1. �

We shouldn’t be able to learn programs which get stuck during evaluation, same as with typing.

If I learn a program, either its a value or it can be evaluated to another program.

3.3.3 Learned programs don’t change type

Corollary 3.3.5 (Preservation in Learning).

If Γ ` τ  e and e →β e ′, then Γ ` τ  e ′.

Proof. Directly from �eorems 3.3.3 and 2.5.2. �

We shouldn’t be able to learn programs of a di�erent type than the one provided. If I learn

a program, and it evaluates to another program, then I should be able to learn that new program

from the same type.
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3.3.4 Learned programs always halt

Corollary 3.3.6 (Normalization in Evaluation).

Learned programs in System F always evaluate to a value, to a normal form.

Proof. Directly from �eorems 3.3.3 and 2.5.3. �

We shouldn’t be able to learn programs which never �nish computing. �ey must halt. �is

means we take a hit on the expressivity of programs we can learn. But for this sensible sacri�ce,

we can learn from examples in a decidable way. And despite the sacri�ce in expressivity, there is

still many useful programs you can learn from types. �e next section shows that within System

F you can learn the encodings for lists, products, and sum types. �ese encodings then let you

learn many of the programs that programmers are interested in, e.g. operations on lists, tuples,

and pa�ern matching.

3.4 Learning lists, products, and sums

System F can learn the encodings for lists, products, and sums. In subsequent sections I prove

these encodings are learnable. �is has two aims. First, to illustrate how I go about proving that

programs are learnable. Second, because the encodings for lists, products, and sums are used in

the de�nition of learning from examples, the extended learning relation presented next chapter.

All encodings shown come from those in [9].

3.4.1 Learning the list encoding

�e type List τ is a list of type τ , a �nite sequence [x1, . . . ,xn] where each element is type τ . We

want programs like this to be learnable in System F:

Γ ` List nat  [1, 2, 3]

To show this, System F must be able to learn the list constructors. �ese are Nil andCons . For

lists of type τ , Nil denotes the empty list of type τ . Cons is an operation which takes an element

of type τ and appends it to the head of a list of type τ . To learn the list [1, 2, 3], you need to learn

Cons (1, (Cons (2,Cons (3,Nil )))).
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Let the following be encodings for lists of type τ and the constructors Nil and Cons:

List τ ≡ ∀α .α→ (τ→α→α )→α

Nil ≡ Λα .λx :α .λy:(τ→α→α ).x

Cons h t ≡ Λα .λx :α .λy:(τ→α→α ).yh(tαxy)

Lemma 3.4.1 (Nil is learnable).

· ` List τ  Nil

Proof.

x :α ∈ α ,x :α ,y:(τ→α→α )
(L-Var)

α ,x :α ,y:(τ→α→α ) ` α  x
(L-Abs)

α ,x :α ` (τ→α→α )→α  λy:(τ→α→α ).x
(L-Abs)

α ` α→ (τ→α→α )→α  λx :α .λy:(τ→α→α ).x
(L-TAbs)

· ` ∀α .α→ (τ→α→α )→α  Λα .λx :α .λy:(τ→α→α ).x

�

Lemma 3.4.2 (Cons is learnable).

h:τ , t :List τ ` List τ  Cons h t

Proof.

(i) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` τ→α→α  y

y:(τ→α→α ) ∈ h:τ , t :List τ ,α ,x :α ,y:(τ→α→α )
(L-Var)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` (τ→α→α ) y
(L-TApp)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` τ→α→α  y

(ii) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α→α  yh

(i)

h:τ ∈ h:τ , t :List τ ,α ,x :α ,y:(τ→α→α )
(L-Var)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` τ  h
(L-TApp)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α→α  yh

(iii) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` ∀α .α→ (τ→α→α )→α  t
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t :List τ ∈ h:τ , t :List τ ,α ,x :α ,y:(τ→α→α )
(L-Var)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` ∀α .α→ (τ→α→α )→α  t

(iv) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α→ (τ→α→α )→α  t dαe

(iii) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  α
(L-TApp)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α→ (τ→α→α )→α  t dαe

(v) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` (τ→α→α )→α  t dαex

(iv)

x :α ∈ h:τ , t :List τ ,α ,x :α ,y:(τ→α→α )
(L-Var)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  x
(L-App)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` (τ→α→α )→α  t dαex

(vi) h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  t dαexy

(v)

y:(τ→α→α ) ∈ h:τ , t :List τ ,α ,x :α ,y:(τ→α→α )
(L-Var)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  y
(L-App)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  t dαexy

(vii) h:τ , t :List τ ` List τ  Cons h t

(ii) (vi)
(L-App)

h:τ , t :List τ ,α ,x :α ,y:(τ→α→α ) ` α  yh(t dαexy)
(L-Abs)

h:τ , t :List τ ,α ,x :α ` (τ→α→α )→α  λy:(τ→α→α ).yh(t dαexy)
(L-Abs)

h:τ , t :List τ ,α ` α→ (τ→α→α )→α  λx :α .λy:(τ→α→α ).yh(t dαexy)
(L-TAbs)

h:τ , t :List τ ` ∀α .α→ (τ→α→α )→α  Λα .λx :α .λy:(τ→α→α ).yh(t dαexy)

�

Using this encoding, it’s possible to construct the list [1, 2, 3] by constructing the program

Cons (1, (Cons (2,Cons (3,Nil )))). We omit the proof of useful, yet tertiary list operations like Fold ,

Map, and Reduce—the sort o�en used in functional programming languages. �ese are learnable

in System F, but not strictly necessary for presenting learning from examples.
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3.4.2 Learning the product encoding

�e type τa×τb is a tuple 〈a,b〉 where a is type τa and b is type τb . Tuples, unlike lists, can have

elements of di�erent types. We want programs like this to be learnable in System F:

Γ ` nat×nat  〈1, 2〉

To show this, System F must be able to learn the product constructor 〈a,b〉. Its an operation

which takes an elementa of type τa and joins it in a tuple with an elementb of type τb . Additionally,

I show that System F can learn the projection functions, π1t and π2t . Each take as input a tuple

and project the �rst and second element respectively. For instance, π1〈1, 2〉 →β 1.

Let the following be encodings for tuples of type τa×τb and the projections :

τa×τb ≡ ∀α .(τa→τb→α )→α

〈a,b〉 ≡ Λα .λx :(τa→τb→α ).xab

π1t ≡ t dτae (λx :τa .λy:τb .x )

π2t ≡ t dτbe (λx :τa .λy:τb .y)

Lemma 3.4.3 (Products are learnable).

a:τa ,b:τb ` τa×τb  〈a,b〉

Proof.

(i) a:τa ,b:τb ,α ,x :(τa→τb→α ) ` (τa→τb→α ) x

x :(τa→τb→α ) ∈ a:τa ,b:τb ,α ,x :(τa→τb→α ) ` τa  a
(L-Var)

a:τa ,b:τb ,α ,x :(τa→τb→α ) ` (τa→τb→α ) x

(ii) a:τa ,b:τb ,α ,x :(τa→τb→α ) ` τb→α  xa

(i)

a:τa ∈ a:τa ,b:τb ,α ,x :(τa→τb→α )
(L-Var)

a:τa ,b:τb ,α ,x :(τa→τb→α ) ` τa  a
(L-App)

a:τa ,b:τb ,α ,x :(τa→τb→α ) ` τb→α  xa

(iii) a:τa ,b:τb ` τa×τb  〈a,b〉
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(ii)

b:τb ∈ a:τa ,b:τb ,α ,x :(τa→τb→α )
(L-Var)

a:τa ,b:τb ,α ,x :(τa→τb→α ) ` τb  b
(L-App)

a:τa ,b:τb ,α ,x :(τa→τb→α ) ` α  xab
(L-Abs)

a:τa ,b:τb ,α ` (τa→τb→α )→α  λx :(τa→τb→α ).xab
(L-TAbs)

a:τa ,b:τb ` ∀α .(τa→τb→α )→α  Λα .λx :(τa→τb→α ).xab

�

Lemma 3.4.4 (First projection is learnable).

t :τa×τb ` τa  π1t

Proof.

(i) t :τa×τb ` τa×τb  t

t :τa×τb ∈ t :τa×τb (L-Var)
t :τa×τb ` τa×τb  t

(ii) t :τa×τb ` τa  t dτae (λx :τa .λy:τb .x )

(i) t :τa×τb ` τa  τa

t :τa×τb ` (τa→τb→τa )→τa  t dτae

x :τa ∈ t :τa×τb ,x :τa ,y:τb
(L-Var)

t :τa×τb ,x :τa ,y:τb ` τa  x
(L-Abs)

t :τa×τb ,x :τa ` τb→τa  λy:τb .x
(L-Abs)

t :τa×τb ` τa→τb→τa  λx :τa .λy:τb .x
(L-App)

t :τa×τb ` τa  t dτae (λx :τa .λy:τb .x )

�

Lemma 3.4.5 (Second projection is learnable).

t :τa×τb ` τa  π2t

Proof.

(i) t :τa×τb ` τa×τb  t

t :τa×τb ∈ t :τa×τb (L-Var)
t :τa×τb ` τa×τb  t

(ii) t :τa×τb ` τb  t dτbe (λx :τa .λy:τb .x )
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(i) t :τa×τb ` τb  τb

t :τa×τb ` (τa→τb→τb )→τb  t dτbe

y:τb ∈ t :τa×τb ,x :τa ,y:τb
(L-Var)

t :τa×τb ,x :τa ,y:τb ` τb  y
(L-Abs)

t :τa×τb ,x :τa ` τb→τb  λy:τb .y
(L-Abs)

t :τa×τb ` τa→τb→τb  λx :τa .λy:τb .y
(L-App)

t :τa×τb ` τb  t dτbe (λx :τa .λy:τb .y)

�

Using this encoding, it’s possible to construct the tuple 〈1, 2〉 and project its �rst and second

element.

3.4.3 Learning the sum encoding

�e type τa+τb is a sum of types τa and τb . Many types can naturally be framed as sums. Consider

booleans, which are always either true or f alse . �eir encodings in System F are Λα .λx :α .λy:α .x

and Λα .λx :α .λy:α .y respectively, each of type bool ≡ ∀α .α→α→α . Sums are useful because they

let us do case analysis. If we treat true and f alse as comprising as sum type bool+bool then we

can construct programs which do di�erent things depending on whether its input is true or f alse .

We want programs like this to be learnable in System F:

Γ ` bool+bool  case (e ) o f ι1 (true ) 7→ f alse | ι2 ( f alse ) 7→ true

�is program is not , which takes a boolean and inverts it. It does a case analysis on its input

e . If it’s true wrapped by the injector ι1, it returns f alse . If it’s f alse wrapped by the injector ι2, it

returns true . �e injectors construct sum types. Typically, true is of type bool . But wrapped with

an injector, it’s type becomes bool +bool , permi�ing us to do case analysis. To learn this program,

we must show System F can learn the encodings for case analysis and injectors.

Let the following be encodings for sums of type τa+τb :

τa+τb ≡ ∀α .(τa→α )→ (τb→α )→α

ι1 (e ) ≡ Λα .λ f :τa→α .λд:τb→α . f e

ι2 (e ) ≡ Λα .λ f :τa→α .λд:τb→α .дe

case (e ) o f ι1 (x ) 7→ z1 | ι2 (y) 7→ z2 ≡ e dτc e (λx :τa .z1) (λy:τb .z2)
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Lemma 3.4.6 (First injector is learnable).

e:τa ` τa+τb  ι1 (e )

Proof.

f :τa→α ∈ e:τa ,α , f :τa→α ,д:τb→α

e:τa ,α , f :τa→α ,д:τb→α ` τa→α  f

e:τa ∈ e:τa ,α , f :τa→α ,д:τb→α
(L-Var)

e:τa ,α , f :τa→α ,д:τb→α ` τa  e
(L-App)

e:τa ,α , f :τa→α ,д:τb→α ` α  f e
(L-Abs)

e:τa ,α , f :τa→α ` (τb→α )→α  λд:τb→α . f e
(L-Abs)

e:τa ,α ` (τa→α )→ (τb→α )→α  λ f :τa→α .λд:τb→α . f e
(L-TAbs)

e:τa ` ∀α .(τa→α )→ (τb→α )→α  Λα .λ f :τa→α .λд:τb→α . f e

�

Lemma 3.4.7 (Second injector is learnable).

e:τb ` τa+τb  ι2 (e )

Proof.

д:τb→α ∈ e:τb ,α , f :τa→α ,д:τb→α

e:τb ,α , f :τa→α ,д:τb→α ` τb→α  д

e:τb ∈ e:τb ,α , f :τa→α ,д:τb→α
(L-Var)

e:τb ,α , f :τa→α ,д:τb→α ` τb  e
(L-App)

e:τb ,α , f :τa→α ,д:τb→α ` α  дe
(L-Abs)

e:τb ,α , f :τa→α ` (τb→α )→α  λд:τb→α .дe
(L-Abs)

e:τb ,α ` (τa→α )→ (τb→α )→α  λ f :τa→α .λд:τb→α .дe
(L-TAbs)

e:τb ` ∀α .(τa→α )→ (τb→α )→α  Λα .λ f :τa→α .λд:τb→α .дe

�

Lemma 3.4.8 (Case analysis is learnable).

e:τa+τb ,x :τa ,y:τb ` τc  case (e ) o f ι1 (x ) 7→ z1 | ι2 (y) 7→ z2

Proof.

(i) e:τa+τb , z1:τc , z2:τc ` (τa→τc )→ (τb→τc )→τc  e dτc e

e:τa+τb ∈ e:τa+τb , z1:τc , z2:τc
(L-Var)

e:τa+τb , z1:τc , z2:τc ` τa+τb  e e:τa+τb , z1:τc , z2:τc ` τc  τc
(L-App)

e:τa+τb , z1:τc , z2:τc ` (τa→τc )→ (τb→τc )→τc  e dτc e
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(ii) e:τa+τb , z1:τc , z2:τc ` (τb→τc )→τc  e dτc e (λx :τa .z1)

(ii)

z1:τc ∈ e:τa+τb ,x :τas, z1:τc , z2:τc
(L-Var)

e:τa+τb ,x :τa , z1:τc , z2:τc ` τa→τc  z1
(L-Abs)

e:τa+τb , z1:τc , z2:τc ` τa→τc  λx :τa .z1
(L-App)

e:τa+τb , z1:τc , z2:τc ` (τb→τc )→τc  e dτc e (λx :τa .z1)

(iii) e:τa+τb , z1:τc , z2:τc ` τc  e dτc e (λx :τa .z1) (λy:τb .z2)

(iii)

z2:τc ∈ e:τa+τb ,y:τb , z1:τc , z2:τc
(L-Var)

e:τa+τb ,y:τb , z1:τc , z2:τc ` τc  z2
(L-Abs)

e:τa+τb , z1:τc , z2:τc ` τb→τc  λy:τb .z2
(L-App)

e:τa+τb , z1:τc , z2:τc ` τc  e dτc e (λx :τa .z1) (λy:τb .z2)

�

Using this encoding, it’s possible to construct the program described earlier, case (e ) o f ι1 (true ) 7→

f alse | ι2 ( f alse ) 7→ true . You can construct and deconstruct sums with this encoding.
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Chapter 4

Learning from examples

Now the learning process may be regarded as a search for a form
of behaviour which will satisfy the teacher…

Alan Turing
Computing Machinery and Intelligence (1950)

4.1 Examples aid communication

Remember, programs communicate. But the burden lay entirely on the human. �ey must be

precise to say something—every instruction a meticulous curation. Last chapter we saw how types

helped shi� the burden. Instead of writing out a full program, we can just state a type and let the

machine learn a program that �ts the type. We’re closer to a language which permits this sort of

imprecise yet productive use:

A glork smashed my car.

�is sentence has useful information, even if you don’t know what a glork is. But what if you

wanted to know? Surely you can’t avoid glorks if you don’t even know what they are. Maybe

glorks are elephants. Maybe they’re hurricanes.

Enter examples. �ey aid communication. For teachers they’re a weapon of choice, of neces-

sity. Types combined with examples o�er precision.

A glork smashed my car. �is morning it was �ne.
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But now there’s a dent in the shape of a humungous footprint.

With the help of an example (of what happened), it’s clearer what a glork is. It’s likely not a

hurricane, but an elephant or some other animal with huge feet. So we still don’t get complete

precision, but we o�en get enough from just a few examples.

We can harness examples to build languages which allow for this sort of productive and precise

enough kind of communication. We provide a type and examples, then let the machine learn what

we mean.

4.2 Learning, a relation

As before, I describe learning as a relation. �is relation extends the presentation of learning from

last chapter, now with support for examples.

Γ ` τ B [χ1, . . . , χn] e

Given a context Γ , type τ , and examples [χ1, . . . , χn], I can learn program e .

�e main di�erence is that types can now be further speci�ed by examples—think when I de-

scribed a glork by its type “smasher” and what it did to my car. Importantly, examples [χ1, . . . , χn]

are not a new syntactic form in System F. It’s only a notational convenience. In actuality, examples

are tuples of inputs and outputs, e.g. examples for the identity function on natural numbers could

be 〈1, 1〉. And last chapter, we saw that tuples are learnable in System F.

4.2.1 What are examples?

Examples [χ1, . . . , χn] are lists of tuples, containing the inputs and output to a program. For in-

stance [〈1, 1〉] describes an example whose input is 1 and output is 1. If I want to specify more

than one example, I can package examples χ into the list: [〈1, 1〉, 〈2, 2〉]. Here I have two examples,

each with one input and one output. In general, examples take the form

χ ::= 〈e, χ〉 | 〈e,Nil〉

where e is an arbitrary program in System F and χ is an example. �is syntax for examples

lets us construct examples with arbitrary numbers of inputs, e.g. 〈10, 10, 20〉 ≡ 〈10, 〈10, 〈20,Nil〉〉〉.

Note that when examples have multiple inputs I use the short-hand notation for describing an

29



n−tuple, 〈10, 10, 20〉 in lieu of full notation 〈10, 〈10, 〈20,Nil〉〉〉. Likewise when an example is

merely 〈e,Nil〉, I use the short-hand 〈e〉—as Nil can be interpreted as the empty element.

For an example χ ≡ 〈e1, . . . , en〉, an ordered list of inputs is given by e1, . . . , en−1. �e last

index always denotes an output. An example satis�es or describes a program, if when the ordered

list of inputs e1, . . . , en−1 is applied to a program e , it is equivalent to the output en . �at is,

(((e e1)e2) . . . en−1) =β en

For instance, χ ≡ 〈1, 1〉 satis�es the identity program λx :nat .x because

(λx :nat .x )1 =β 1

Similarly, a list of examples [χ1, . . . , χn] satis�es some program if each example in the list

satis�es the program. Note that with this notion of satisfaction, we can construct examples which

satisfy any program e , that is 〈e〉. It’s an example with no input, and whose output is e . Because

no inputs can be applied, and that e =β e , 〈e〉 satis�es e .

4.2.2 Learning, informally

With the learning relation, we can ask whether identity is learnable given a context, type, and

examples. identity is a program which takes a natural number and returns it.

· ` nat→nat B 〈〈1, 1〉, 〈2, 2〉〉 �

Examples are stored as tuples. �ey describe possible worlds, one where our program’s input

is 1 and the other where our program’s input is 2. �roughout learning we need a way to keep

track of these distinct worlds. So our �rst step is always to duplicate �, so that there is one per

example.

· ` list nat→nat B 〈〈1, 1〉, 〈2, 2〉〉 [�,�]

Let’s re�ne these worlds, by applying them to their respective inputs. We extract the inputs

from each example tuple.

1:nat , 2:nat ` list nat B 〈〈1〉, 〈2〉〉 [(�)1, (�)2]

Because � is applied to an argument, we know it must be an abstraction. Hence, we can also

claim:
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1:nat , 2:nat ` list nat B 〈〈1〉, 〈2〉〉 [(λx :nat .�)1, (λx :nat .�)2]

Now that we’ve ran out of inputs in our examples, the problem becomes how to generate a

program which satisfy the outputs le� in the example tuples:

1:nat , 2:nat ` list nat  [(λx :nat .�)1, (λx :nat .�)2]

(λx :nat .�)1 =β 1 ∧ (λx :nat .�)2 =β 2

Given the constraints on well-typed terms, it’s easy to �nd x to �ll the body of the abstraction.

�is will become clear in the formal proof to follow.

1:nat , 2:nat ` list nat  [(λx :nat .x )1, (λx :nat .x )2]

(λx :nat .x )1 =β 1 ∧ (λx :nat .x )2 =β 2

Having satis�ed the outputs from our examples, we’ve informally shown identity ≡ λx :nat .x

is learnable in System F. And all the machinery comes from types and operators we can encode in

System F: list and product types along with their constructors and deconstructors.

4.2.3 Learning, formally

�e informal process of learning described can be made formal via the relation presented in Figure

4.1.

(L-Wrld) says that if you can learn a list of programs [e1, . . . , en], where e1, . . . , en are equiv-

alent, then you can learn the program e1. �is rule is used to create n worlds for n examples at the

start of learning.

Γ ` list nat→nat B [〈1, 1〉, 〈2, 2〉] [λx :nat .x , λx :nat .x]
(L-Wrld)

Γ ` nat→nat B [〈1, 1〉, 〈2, 2〉] λx :nat .x

(L-Base) says that if you can learn a list of programs from its type and each ei is equivalent to

some χi for 0 ≤ i ≤ n, then we can use each χi as an example output. For instance, (λx :nat .x )1 =β

1. �is means we can use 1 as an example output for (λx :nat .x ). When learning, this rule is the

“base” case. A�er exhausting the example information, this rule turns the learning process into

learning from types.

Γ, 1:nat ` list nat  [(λx :nat .x )1] (λx :nat .x )1 =β 1
(L-Base)

Γ ` list nat B [〈1〉] [(λx :nat .x )1]
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Learning Γ ` τ B χ  e

Γ ` list τ B [χ1, . . . , χn] [e1, . . . , en]
∧n

i=1 ei =β en
(L-Wrld)

Γ ` τ B [χ1, . . . , χn] e

Γ,
⋃n

i=1 χi :τ ` list τ  [e1, . . . , en]
∧n

i=1 ei =β χi
(L-Base)

Γ ` list τ B [χ1, . . . , χn] [e1, . . . , en]

Γ,
⋃n

i=1 π1 (χi ):τa ` list τb B [π2 (χ1), . . . ,π2 (χn )] [e1π1 (χ1), . . . , enπ1 (χn )]
(L-EAbs)

Γ ` list τa→τb B [χ1, . . . , χn] [e1, . . . , en]

Γ,α ` list τ B [χ1, . . . , χn] [e1dαe, . . . , en dαe]
(L-ETAbs)

Γ ` list ∀α .τ B [Λα .χ1, . . . ,Λα .χn] [e1, . . . , en]

Γ ` list τa→τc B [χ1, . . . , χj ] [e1, . . . , ej ]
Γ ` list τb→τc B [χ1, . . . , χk ] [e1, . . . , ek ]

(L-Sum)
Γ ` list (τa+τb )→τc B [χ1, . . . , χn] [e1, . . . , en]

Figure 4.1: Learning from examples in System F

(L-EAbs) says that if you can learn a list of applications [e1π1 (χ1), . . . , enπ1 (χn )], then you can

learn a list of abstractions [e1, . . . , en] from examples where each π1χi are inputs for 0 ≤ i ≤ n.

Note that π1 is the �rst projection of an example tuple.

Γ, 1:nat , 2:nat ` list nat B [〈1〉, 〈2〉] [(λx :nat .x )1, (λx :nat .x )2]
(L-EAbs)

Γ ` list nat→nat B [〈1, 1〉, 〈2, 2〉] [λx :nat .x , λx :nat .x]
(L-ETAbs) says that if you can learn a list of applications [e1dαe, . . . , en dαe], then you can

learn a list of polymorphic abstractions [e1, . . . , en] from examples where each Λα .χi are inputs

for 0 ≤ i ≤ n.

Γ,α ` list α→α B [〈z, z〉] [(Λα .λx :α .x )dαe]
(L-TAbs)

Γ ` list ∀α .α→α B [Λα .〈z, z〉] [Λα .λx :α .x]
(L-Sum) says that if you can learn a list of programs whose input is type τa and another list of

programs whose input is type τb , then you can learn a list of program whose input is the sum type

τa+τb and whose examples contain inputs of both type τa and type τb . During learning, this rule is

perhaps the most useful. It lets you distribute examples when encountering sum types as inputs,

which ends up creating two sub-problems, each of which dealing with a smaller set of examples,

which are easier to satisfy. In the example, let e ≡ case (b) o f ι1 (true ) 7→ f alse | ι2 ( f alse ) 7→ true
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Γ ` list bool→bool B [〈true, f alse〉] [λx :bool . f alse]
Γ ` list bool→bool B [〈f alse, true〉] [λy:bool .true]

(L-Sum)
Γ ` list (bool+bool )→bool B [〈true, f alse〉, 〈f alse, true〉] [e, e]

�is new relation extends learning from types. Now System F can learn from examples too.

So far, our presentation of learning is both sound and complete. You can learn every program in

System F from types. We now show that these results hold when learning from examples too.

4.3 Metatheory

Because our aim is to show every program in System F is learnable from examples, we want to show

that learning is still equivalent to typing. As with learning from types, we show both completeness

and soundness of learning with respect to typing—giving us the equivalence. �ese proofs entail

a bit more work, but are far simpler than similar presentations of metatheory for languages which

permit learning from examples, e.g. Myth [20]. �e mathematical convenience is a�orded by not

introducing any machinery into System F for learning.

4.3.1 Typing and Learning are still eqivalent

To show completeness, we need to show that for any program in System F there exists a list of

examples from which it can be learned. �is turns out to be trivial. Hence, a stronger statement

we want is that we can learn any program which is satis�ed by a list of examples. It would be

problematic if we could learn any program in System F, but only from a particular subset of the

examples which describe that program. Showing both of these gives strong guarantees on learning.

If a list of examples describes a program, you can learn that program—and this list exists for every

program in System F.

Lemma 4.3.1 (Completenessa of Learning).

If Γ ` e : τ then there exist some [χ1, . . . , χn] such that Γ ` τ B [χ1, . . . , χn] e

Proof. For an arbitrary program e of type τ , let [〈e〉] constitute its example list. �is example

list has no input, only an ouput e . Hence the statemement Γ ` τ B [〈e〉] e asks whether we can

learn a program e of type τ whose output is e .
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Now, note that for any program e =β e by de�nition of the re�exive, transitive, and symmetric

evaluation relation. Additionally, for any program e of type τ , a list [e] can be learned from type

list τ . Because learning from types is complete, this works for any program.

Knowing this, we can apply the following learning rules:

Γ,x :τ ` list τ  [e] e =β e
(L-Base)

Γ ` list τ B [〈e〉] [e] e =β e
(L-Wrld)

Γ ` τ B [〈e〉] e

Hence for any program e in System F, it can be learned from examples when the example is

[〈e〉]. �

�is is nice, but the less interesting completeness result. We want to make sure that a list of

examples which describes a program can be used to learn it. An example list satis�es (or describes)

a program, where if the program is applied to the inputs, the corresponding outputs are equivalent.

Lemma 4.3.2 (Completenessb of Learning).

If Γ ` e : τ and there exist some [χ1, . . . , χn] which satis�es e , then Γ ` τ B [χ1, . . . , χn] e .

Proof. �ere are two general cases to prove, when e has inputs and when e has no inputs.

For programs without input, see previous lemma. For programs with input let Γ ` e : τ , where

[χ1, . . . , χn] are examples which satisfy e . Because of �eorem 3.3.3, we also know Γ ` τ  e .

Because lists are learnable, we also know Γ ` list τ  [e1, . . . , en], where
∧n

i=1 ei =β en .

Now let’s deconstruct each χi into its input and output components: 〈χ ini , χ
out
i 〉. Since each

χi satis�es e , it must be that
∧n

i=1 ei χ
in
i =β χouti . Due to satisfaction, ei χ ini is guaranteed to be

well-typed. Hence Γ,
⋃n

i=1 χ
out
i :τ out ,

⋃n
i=1 χ

in
i :τ in ` list τ out  [e1χ

in
i , . . . , en χ

in
n ]. With this, we

can apply the following rules:

Γ,
⋃n

i=1 χ
out
i :τ out ,

⋃n
i=1 χ

in
i :τ in ` list τ out  [e1χ

in
i , . . . , en χ

in
n ]

∧n
i=1 ei χ

in
i =β χouti (L-Base)

Γ,
⋃n

i=1 χ
in
i :τ in ` list τ out B [〈χout1 〉, . . . , 〈χoutn 〉] [e1χ

in
i , . . . , en χ

in
n ]

(L-EAbs)
Γ ` list τ B [〈χ in1 , χ

out
1 〉, . . . , 〈χ inn , χ

out
n 〉] [e1, . . . , en]

Remembering that χi ≡ 〈χ ini , χ
out
i 〉 and that

∧n
i=1 ei =β en , we �nally prove the necessary result.

Γ ` list τ B [χ1, . . . , χn] [e1, . . . , en]
∧n

i=1 ei =β en
(L-Wrld)

Γ ` τ B [χ1, . . . , χn] e
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Note that if there are n inputs to the examples which satisfy e , then (L-EAbs) must be applied

n times to fully reconstruct the examples. �

Lemma 4.3.3 (Soundness of Learning).

If Γ ` τ B [χ1, . . . , χn] e then Γ ` e : τ

Proof. Case analysis on learning rules.

Case 1: (L-Wrld)

We know that we can learn from examples a list of length n where each entry is e .

Γ ` list τ B [χ1, . . . , χn] [e1, . . . , en]
∧n

i=1 ei =β en
(L-Wrld)

Γ ` τ B [χ1, . . . , χn] e

A�er applying (L-EAbs) and (L-Base) it must be that Γ ` list τ ′  [e1χ
in
1 , . . . , en χ

in
n ]. �e list

is only learnable if each element is learnable, hence Γ ` τ ′  ei χ
in
i . And an application is only

learnable if each side of the application is learnable, hence Γ ` τ  e (noting ei =β e). Because of

the equivalence of learning from types and typing, we have Γ ` e : τ .

Case 2: (L-Base)

We know we can learn learn from types a list of length n where each entry is e .

Γ,
⋃n

i=1 χi :τ ` list τ  [e1, . . . , en]
∧n

i=1 ei =β χi
(L-Base)

Γ ` list τ B [χ1, . . . , χn] [e1, . . . , en]

�e list is only learnable if each element is learnable, hence Γ ` τ  e . Because of the

equivalence of learning from types and typing, we have Γ ` e : τ .

Case 3: (L-EAbs)

We know we can learn learn from types a list of length n and type τb where each entry is eπ1 (χi ).

Γ,
⋃n

i=1 π1 (χi ):τa ` list τb B [π2 (χ1), . . . ,π2 (χn )] [e1π1 (χ1), . . . , enπ1 (χn )]
(L-EAbs)

Γ ` list τa→τb B [χ1, . . . , χn] [e1, . . . , en]

A�er applying (L-Base) it must be that Γ,
⋃n

i=1 π1 (χi ):τa ` list τb  [e1π1 (χ1), . . . , enπ1 (χn )].

�e list is only learnable if each element is learnable, hence Γ,
⋃n

i=1 π1 (χi ):τa ` τb  e1π1 (χ1).

And an application is only learnable if each side of the application is learnable, hence Γ ` τa →

τb  e (noting ei =β e). Because of the equivalence of learning from types and typing, we have

Γ ` e : τa→τb .
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Case 4: (L-ETAbs)

Same strategy as Case 3, except using type application.

Case 5: (L-Sum)

A�er assuming (L-Sum), reduces to proof of Case 3. �

�eorem 4.3.4 (Eqivalence of Typing and Learning).

If and only if Γ ` τ B [χ1, . . . , χn] e , then Γ ` e : τ and [χ1, . . . , χn] satis�es e .

Proof. Directly from Lemmas 4.3.1, 4.3.2 and 4.3.3. �

Because we can only learn a program if and only if it is well typed, it follows that learned

programs obey progress, preservation, and normalization. Each proof invokes the equivalence

theorem between typing and learning, and then the respective progress, preservation, and nor-

malization theorems for typing.

4.3.2 Learned programs still don’t get stuck

Corollary 4.3.5 (Progress in Learning).

If e is a learned program, then either e is a value or else there is some program e ′ such that e →β e ′.

Proof. Directly from �eorems 4.3.4 and 2.5.1. �

We shouldn’t be able to learn programs which get stuck during evaluation, same as with typing.

If I learn a program, either its a value or it can be evaluated to another program. When learning

from examples, learning still obeys progress.

4.3.3 Learned programs still don’t change type

Corollary 4.3.6 (Preservation in Learning).

If Γ ` τ B [χ1, . . . , χn] e and e →β e ′, then Γ ` τ B [χ1, . . . , χn] e ′.

Proof. Directly from �eorems 4.3.4 and 2.5.2. �

We shouldn’t be able to learn programs of a di�erent type than the one provided. If I learn

a program, and it evaluates to another program, then I should be able to learn that new program

from the same type. When learning from examples, learning still obeys preservation.
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4.3.4 Learned programs still always halt

Corollary 4.3.7 (Normalization in Evaluation).

Learned programs in System F always evaluate to a value, to a normal form.

Proof. Directly from �eorems 4.3.4 and 2.5.3. �

We shouldn’t be able to learn programs which never �nish computing. �ey must halt. As

with learning from types, learning from examples only lets you learn halting programs.

4.4 Learning identity, not, and successor

For examples, any program in System F can serve as input or output. �ere are no restrictions. In

similar works which allow learning from examples, like Myth [20], there are restrictions on what

examples can look like. Namely, functions cannot appear as output in an example. �is makes

it impossible to learn many higher-order programs. In fact, the motivation for this work started

from observing this limitation in Myth. It made it impossible to learn compilers, higher-order

programs which specify programming languages.

Here we show how to learn several programs from examples before discussing further the

prospect of learning not only programs, but programming languages.

4.4.1 Learning polymorphic identity

Lemma 4.4.1 (Polymorphic identity is learnable).

· ` ∀α .α→α B [Λα .〈z, z〉] Λα .λx :α .x

Proof.

(i) α , z:α ` α→α  (Λα .λx :α .x )dαe

x :nat ∈ α , z:α ,x :α
(L-Var)

α , z:α ,x :α ` α  x
(L-Abs)

α , z:α ` α→α  λx :α .x
(L-TAbs)

α , z:α ` ∀α .α→α  Λα .λx :α .x α , z:α ` α  α
(L-App)

α , z:α ` α→α  (Λα .λx :α .x )dαe
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(ii) α , z:α ` α  (Λα .λx :α .x )dαez

(i)

α , z:α ` α→α  (Λα .λx :α .x )dαe
z:α ∈ α , z:α

(L-Var)
α , z:α ` α  z

(L-App)
α , z:α ` α  (Λα .λx :α .x )dαez

(iii) α , z:α ` list α  [(Λα .λx :α .x )dαez]

(ii)

α , z:α ` α  (Λα .λx :α .x )dαez α , z:α ` list α  [ ]
(L-Cons)

α , z:α ` list α  [(Λα .λx :α .x )dαez]

(iv) · ` ∀α .α→α B [Λα .〈z, z〉] Λα .λx :α .x

(iii)

α , z:α ` list α  [(Λα .λx :α .x )dαez] (Λα .λx :α .x )dαez =β z
(L-Base)

α , z:α ` list α B [〈z〉] [(Λα .λx :α .x )dαez]
(L-EAbs)

α ` list α→α B [〈z, z〉] [(Λα .λx :α .x )dαe]
(L-ETAbs)

· ` list ∀α .α→α B [Λα .〈z, z〉] [Λα .λx :α .x]
(L-Wrld)

· ` ∀α .α→α B [Λα .〈z, z〉] Λα .λx :α .x

�

4.4.2 Learning boolean not

Lemma 4.4.2 (Not is learnable).
· ` (bool+bool )→bool B [〈true, f alse〉, 〈f alse, true〉] e

Note: e ≡ case (b) o f ι1 (true ) 7→ f alse | ι2 ( f alse ) 7→ true . Additionally, that true and f alse
are learnable from any context.

Proof.

(i) true:bool ` bool  (λx :bool . f alse )true

true:bool ,x :bool ` bool  f alse
(L-Abs)

true:bool ` bool  λx :bool . f alse
true:bool ∈ true:bool (L-Var)

true:bool ` bool  true
(L-App)

true:bool ` bool  (λx :bool . f alse )true
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(ii) · ` list bool→bool B [〈true, f alse〉] [λx :bool . f alse]

(i) true:bool ` list bool  []
(L-Cons)

true:bool ` list bool  [(λx :bool . f alse )true] (λx :bool . f alse )true =β f alse
(L-Sum)

true:bool ` listbool B [〈f alse〉] [(λx :bool . f alse )true]
(L-EAbs)

Γ ` list bool→bool B [〈true, f alse〉] [λx :bool . f alse]

(iii) f alse:bool ` list bool  (λy:bool .true ) f alse

f alse:bool ,y:bool ` bool  true
(L-Abs)

f alse:bool ` bool  λy:bool .true

f alse:bool ∈ f alse:bool
(L-Var)

f alse:bool ` bool  f alse
(L-App)

f alse:bool ` bool  (λy:bool .true ) f alse

(iv) · ` list bool→bool B [〈f alse, true〉] [λy:bool .true]

(iii) f alse:bool ` list bool  []
(L-Cons)

f alse:bool ` list bool  [(λy:bool .true ) f alse] (λy:bool .true ) f alse =β true
(L-Sum)

f alse:bool ` listbool B [〈true〉] [(λy:bool .true ) f alse]
(L-EAbs)

· ` list bool→bool B [〈f alse, true〉] [λy:bool .true]

(v) · ` (bool+bool )→bool B [〈true, f alse〉, 〈f alse, true〉] e

(ii) (iii)
(L-Sum)

· ` list (bool+bool )→bool B [〈true, f alse〉, 〈f alse, true〉] [e, e]
(L-Wrld)

· ` (bool+bool )→bool B [〈true, f alse〉, 〈f alse, true〉] e

�

4.4.3 Learning church successor

Lemma 4.4.3 (Successor is learnable).
Let church ≡ ∀α .(α → α ) → α → α , 0̄ ≡ Λα .λ f :α → α .λx :α .x , 1̄ ≡ Λα .λ f :α → α .λx :α . f x , and
succ ≡ λn:church.Λα .λ f :α → α .λx :α . f (ndαe f x ). And assume that 0̄, 1̄, and succ can be learned
from any context.

Show · ` church→church B [〈0̄, 1̄〉] succ .

Proof.
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(i) 0̄:church ` church→church succ

Note: Can be learned from any context.

(ii) · ` church→church B [〈0̄, 1̄〉] succ

(i)

0̄:church ∈ 0̄:church
0̄:church ` church 0̄

0̄:church ` church (succ )0̄ 0̄:church ` list church []

0̄:church ` list church [(succ )0̄] (succ )0̄ =β 1̄
(L-Base)

· ` list church B [〈1̄〉] [(succ )0̄]
(L-EAbs)

· ` list church→church B [〈0̄, 1̄〉] [succ]
(L-Wrld)

· ` church→church B [〈0̄, 1̄〉] succ

�
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Chapter 5

To learn a language

If you don’t understand interpreters, you can still write programs;
you can even be a competent programmer. But you can’t be a
master.

Hal Abelson
Foreword to Essentials of Programming Languages (2008)

5.1 Languages are learnable

Can a machine learn a programming language?

�e question which started this thesis. And to which there’s been essentially no work. Despite

a surging interest in machines which learn programs [11], interest escapes machines which learn

programming languages.

A programming language is itself, just another program. Either it’s an interpreter, or it’s a com-

piler. Interpreters take programs in a language and interpret them, give them a value or meaning.

Compilers take programs in a language and translate them to another, where they are then in-

terpreted, given a value or meaning. If machines can learn programs, why not interpreters or

compilers? Because of completeness of learning in System F, you can.
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5.1.1 Language, the ultimate abstraction

Programs are beholden to the designer of the language they are wri�en in. If the designer decides

that you must a�end to memory allocation, you must. Or if the designer decides that all statements

must be wrapped in curly brackets, then {they must}.

But it’s impossible for these decisions to suit everyone’s needs. It’s why we constantly see the

proliferation of new programming languages. People design languages to include the abstractions

which are helpful for them, and exclude those which aren’t. �ey are the ultimate abstraction.

�ey let us be productive and solve programs e�ectively, which would otherwise be di�cult or

impossible under the design constraints of another language. Because we can’t anticipate all prob-

lems programmers will need to solve, it’s essential we can create the abstractions we need, the

programming languages we need.

Take for instance, the situation faced by me in writing this work. System F, while beauti-

ful in many respects, su�ers when trying to write programs. It’s so minimal that writing simple

programs require good e�ort. And to write more complex programs, it’s nearly prohibitive. For

instance, I originally meant to present a proof of a compiler in System F. But the proof and program

itself would’ve been lengthy and unnecessarily laborious. Instead I defer to the completeness of

learning to show that it’s possible. But had I been using an OCaml-like language [17], with con-

structs de�ned to make programming (and proving) easier, then I would’ve included the compiler

proof.

5.1.2 A promethean gesture

Machines which learn programs do so constrained by the languages we imbue them with. �ey

are beholden to our language decisions. Some work acknowledges this limitation [7]. Yet still,

machines cannot design the languages they need for the problems they try to solve. �e languages

we imbue them with lack this ability.

But they shouldn’t be doomed to our language decisions. We ought to design languages which

give power to the machine, which let them design their own languages, abstractions—those best

�t for the problem from their own perspective. System F does this, at least in principle. Learning

is complete in System F. Any program which can be wri�en in System F can be learned, including
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compilers or interpreters.

5.2 From theory to implementation

Without an implementation of learning it awaits to be seen whether the results of this work are

borne out in practice and not just in theory. �e learning relations described are highly non-

deterministic, and do not themselves constitute learning procedures. �ey do however serve as the

basis for a learning procedure. �ese are the project’s next steps. Here I sketch out the di�culties

to come.

5.2.1 Problems of search

Once learning exhausts the information in examples, learning a program becomes a game of

search. For complex programs, the search space grows prohibitively. Programs like interpreters

and compilers have this issue. In [20], where a simple interpreter is learned, the amount of time

it took was signi�cantly longer than other learned programs—because of the size of the search

space.

In order to tackle the real issues of search, languages need not only develop frameworks for

learning, but also clever algorithms for search. In this work, those issues are cast aside to focus

to formulate learning. �ey are nevertheless, interesting and important problems necessary to

transition theory to implementation.

5.2.2 Problems of data

To learn a program, I’ve shown that there exist examples that can be shown to teach the program.

For many programs, there will be many sets of examples to do the job. But in practice, it may be

that speci�c sets of examples make learning easier or more di�cult. �is, again, is observed in

works like [20]. It’s analagous to the problems faced by teachers. In principle, each student can

learn the material—but what’s the best way to present the data such that the student learns the

right thing.

Similar to search, I elide the real problems of teaching. Nevertheless it’s essential that lan-

guages which can learn programs facilitate practical teaching as well. Otherwise you have a lan-
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guage which can learn any program, but for which many programs teaching is an overwhelming

burden.

5.3 Different typing, different learning

�is work uses System F’s typing relation to yield a learning relation, from types and examples. �e

same strategy could be used towards other typing relations, yielding new learning relations with

their own interesting properties. Just within System F, we saw how sum types τa+τb impose useful

constraints on learning. When learning, and encountering a sum type, you distribute examples

according to whether they’re τa or τb . Other types ought to impose their own useful constraints

on learning. As bountiful the literature on type systems and typing relations, I gesture that the

same expanse of literature could exist for learning systems and learning relations.

5.3.1 Dependent Types

Dependent types are far more expressive than the types in System F [22]. �ey let types depend

on values. For instance, you can de�ne a type Vect : Nat → Type → Type , which describes a

vector whose length varies its type; perhaps for memory considerations. What’s important are

that these types are precise. �ey aid the issues pointed out with problems of data, problems of

teaching. Because we can be more precise in our languages about what we want the machine to

learn, it impacts learning.

5.3.2 Linear Types

Linear types introduce resource-sensitivity to typing. You can have linear variables, which can

only be used once in the typing derivation. Additionally, contexts split throughout the course of a

typing derivation—keeping them smaller than they would be in typical type systems. Problems of

search typically stem from the context growing too large over the course of learning, and this kind

of resource-sensitivity ought to guide learning in a fruitful way. Recent work introducing linear

types to a learning framework akin to Synqid show these interesting behaviors.
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5.3.3 Differential Types

Di�erential linear logic extends linear logic with constructs for di�erentiating proofs, which cor-

respond to programs wri�en in a linear type system. A recent pre-print uses these constructs to

explore learning encodings of Turing machines [6]. To date, these are works mostly explored in

logic—which have not yet made ways into the programming languages writ large. Yet we already

know the great promise of learning through di�erentiation, e.g. the current resurgence and success

of deep neural networks [15]. �e prospects are exciting for a language which combines learning

in di�erentiable and non-di�erentiable ways.
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