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Abstract

We introduce a novel action conditioned image synthesis
task and a method to solve it in the context of a basketball
activity. Given a target action category, which encodes an
egocentric motion trajectory of a current player, our model
synthesizes a visual signal of an opposing player that would
possibly cause the current player to perform that action.

Our action conditioned image synthesis model consists
of 1) a variational autoencoder (VAE), which generates
masks of an opposing player, and 2) an ensemble of dis-
criminative Action CNNs, which predict the next action of a
current player. Initially, we train these two components of
our system separately. Afterwards, we attach each Action
CNN to the last layer of the VAE, and freeze the parame-
ters of all the networks. During inference, given a target
action category, we maximize its prediction probability at
each Action CNN by backpropagating the gradients to the
latent code of the VAE. Doing so iteratively, forces VAE to
synthesize images that have high probability of a target ac-
tion category. We show that our model generates realistic
images that are associated with specific action categories,
and it outperforms standard baselines by a large margin.

1. Introduction
Our behavior is inherently connected to the ability of per-

ceiving visual information around us: what we see affects
what we are going to do, and conversely what we do affects
what we see. Consider a basketball player whose goal is to
outmaneuver his/her defender and score a basket (see Fig-
ure 1 for an illustrative example). To accomplish this goal,
he/she needs to carefully examine the stance of a defender,
the position of a defender’s feet, a defender’s torso orienta-
tion, and many other factors about a defender. All this infor-
mation is delivered via a player’s visual perception system,
which then allows a player to decide what to do next.

Unfortunately, understanding how humans leverage vi-
sual information in their decision making process is often
challenging. For instance, in the context of basketball, most
sub-second level decisions are made subconsciously by a

Egocentric Visual Signal    
 of an Opposing Player

Egocentric Motion Trajectory  
      on a Basketball Court

Observed Human Behavior in Basketball

Action Conditioned Image Synthesis

?
What visual signal would    
      trigger this action?

Action

Figure 1: In a one-on-one basketball game, a player needs
to outmaneuver his/her defender and score. Doing so re-
quires assessing the stance of a defender, a defender’s torso
orientation, and many other factors. A player uses these vi-
sual cues about his/her defender to decide what action to
perform next (i.e. how to move). This can be formulated as
a problem of mapping a visual signal to an action. In this
work, we aim to solve an inverse of this problem, which we
refer to as an action conditioned image synthesis. Given a
target action, we synthesize an image of an opposing player,
which would likely trigger the player to perform that action.

player. Being able to explain why a skilled player chose one
action over the other could be highly beneficial for develop-
ing tools that improve players’ decision making ability.

Consider an augmented reality device in a form of
glasses that could project an artificial image of an oppos-
ing player on its lenses. Suppose that such a device could
synthesize and project a visual stimulus, which would cause
the player who is wearing the glasses to perform a certain
action. Why would this be useful? The players would bene-
fit from practicing good decision making skills in a realistic,
yet controlled environment with possibilities of simulating
many diverse scenarios and getting real-time feedback after
each of such scenarios.

1
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Figure 2: A figure illustrating all 10 of our discretized action categories, which are obtained via a K-means clustering. Each
action category is visualized as an egocentric motion trajectory projected on a 2D ground plane of a basketball court. With
each action category, we also include 4 images of an opposing player, which triggered those actions.

In order to build such a device we would first need a
model that generates action triggering visual stimuli. We
refer to this problem as action conditioned image synthesis.
Given a target action in the form of an egocentric basketball
motion sequence, we aim to generate an image of the op-
posing player that would likely trigger the current player to
perform such an action (see Figure 1). We do so via our pro-
posed action conditioned image synthesis model, which is
composed of a variational autoencoder (VAE) [15] and an
ensemble of discriminative convolutional neural networks
(CNNs). During training, the VAE part of the system is
trained to generate person-part masks of the opposing play-
ers. In parallel, we also train an ensemble of discriminative
Action CNNs that take a person-part mask of an opposing
player as input, and predict a discretized action category
that encodes a player’s future action (i.e. a discretized ego-
motion trajectory). During inference, each discriminative
Action CNN is attached to the last layer of our trained VAE,
and the parameters of all networks are frozen. Given a target
action class, we compute the gradients that maximize the
prediction of that action category, and backpropagate them
all the way to the noise code, which is used by the VAE to
generate the person-part mask of an opposing player. We
use the computed gradients to iteratively adjust the noise
code until the VAE generated mask produces maximum tar-
get action probabilitiy at each Action CNN.

In our experimental section, we show that given a target
action class, our model successfully generates visual sig-
nals associated with that action category. Furthermore, we
demonstrate that the gradients computed during action con-
ditioned image synthesis procedure can be used to localize,
which parts of an image are used most heavily to generate
images for each action category. Finally, we show that our
synthesized RGB images are quite similar to the ones that a
player would see in a real basketball game.

2. Related Work

Computer Vision for Behavior Analysis. Developing
models that analyze human behavior has been a fundamen-
tal problem in both computer vision and robotics. Recent
work in [23, 31] leverages videos of humans performing
daily tasks to teach robots the same behavior. The work
in [40] develops a method that reminds humans of actions
that they forgot to perform. The methods in [29, 24] develop
techniques that predict walking trajectories for each person
in the scene. Additionally, the works in [12, 25, 3, 2] lever-
age visual data for predicting pedestrian behavior.

Egocentric Vision. Many egocentric methods have re-
cently been used to analyze human behavior. Most of these
methods focused on active object detection [20, 8, 32, 10, 6]
or activity recognition [16, 36, 35, 30, 21, 26, 9]. In addi-
tion to this work, the authors in [38] propose a model for
detecting the camera wearer’s engagement, while the work
in [33] applies an inverse reinforcement learning technique
to infer the goals of the camera wearer during daily tasks.
Furthermore, the work in [28] introduces a model that gen-
erates walking trajectories from first-person RGBD data.

Behavior Analysis in Sports. In the past, there have
been many attempts to use computer vision techniques for
behavior understanding in sports. The method in [19], pro-
poses a Markov-decision based technique to predict fu-
ture trajectories of wide receivers in football. The work
in [18] learns to predict motion trajectories of soccer play-
ers whereas the method in [42] leverages tracking data [1]
and hierarchical CNNs for players’ motion trajectory esti-
mation in basketball. Finally, the work in [5] introduces
a model to assess basketball skill from first-person videos,
while the authors in [37, 4] leverage egocentric cameras to
predict future motion trajectories of basketball players.

Our Contribution. In comparison to this prior work, we

2
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Fixed Action  
   CNN #K
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   CNN #1
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Target Action

c) Action Conditioned Image Synthesis
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Backprop
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         Decoder

Figure 3: The figure illustrating each component of our action conditioned image synthesis model: a) a variational autoen-
coder (VAE), which is trained to generate person-part masks of an opposing player from a latent code z; b) Action CNN,
which takes a person-part mask of an opposing player as its input, and predicts a current player’s future action in a form of
discretized egomotion trajectory projected on a 2D ground plane of a basketball court; c) a unified action conditioned image
synthesis architecture obtained by attaching an ensemble of trained Action CNNs to the last layer of our trained VAE net-
work, and freezing all the parameters. Given a target action category, the new person-part mask is synthesized by iteratively
updating the latent code z such that the action probability in each Action CNN is maximized. Since our entire architecture is
fully differentiable, the optimization problem can be solved using a standard backpropagation algorithm.

propose a novel action conditioned image synthesis task,
and a new model for solving this task in the context of a
basketball activity. We show that our model can synthesize
images associated with particular action classes, and that it
significantly outperforms standard baselines for this task.

3. Preliminaries
In this section, we discuss the reasons for using a one-

on-one basketball setting for our action conditioned image
synthesis task, and provide more details on the dataset that
we use. Furthermore, we explain how we represent action
space, and how we pre-process our input images.

3.1. Why Basketball?

Most prior computer vision research on human behavior
analysis is done by studying daily activities such as cook-
ing [20, 8, 32, 10, 6] or walking [28, 12, 25, 3, 2, 29, 24].
While these daily activities are well suited for tasks such
as activity recognition, gaze prediction or motion trajectory
estimation, they are not ideal for action conditioned image
synthesis. We identify several key characteristics why a
one-on-one basketball game is well suited for our task.

A one-on-one basketball game is advantageous because
each player has the same goal (i.e. score a basket), but
he/she can achieve this goal in numerous different ways
(i.e. by using different motion trajectories to outmaneuver
his/her defender). In contrast most daily activities such as
cooking [7] or walking [28] are unscripted, which means
that most people have different goals while they are per-
forming those activities. We note that an action conditioned

image synthesis task requires understanding a person’s in-
tention (i.e. how a person will use visual information to de-
cide what action to perform), and thus, these daily activities
are poorly suited for this task.

Furthermore, we believe that an adversarial component
in a one-on-one basketball game (i.e. a competition against
another player) is critical for our action conditioned im-
age synthesis task. Consider a cooking activity and a par-
ticular action of ”picking up a tomato”. In this case, the
tomato cannot move or change its appearance such that a
person would perform a different action as a result of those
changes. Thus, a person’s actions in this case, are most
heavily influenced by a person’s intent, which is often un-
known (due to the unscripted nature of these tasks). In con-
trast, in a one-on-one basketball game, every change in a
defender’s body can significantly alter the decision where a
player will move next, which is perfect for our task.

Finally, we point out that using a one-on-one basketball
setting is beneficial because action labels (i.e. motion tra-
jectories) can be obtained without any manual annotations
using Structure from Motion as in [37, 4]. In contrast, activ-
ities such as cooking require manual labeling of each action,
which can be costly and time consuming [7].

3.2. Representing Action Space

For our experiments, we use an Egocentric One-on-
One Basketball dataset from [4], which consists of 988
sequences from one-on-one basketball games. To select
image-action pairs, we pick the first image from each se-
quence (before the player performs any action), and then

3
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Figure 4: A figure illustrating the confusion matrix for the
future action prediction task.

retrieve that player’s motion trajectory for the next 2 sec-
onds [4]. Through our experiments, we observed that pre-
dicting a concatenated (x, y) vector representation with lim-
ited amounts of training data is challenging. It is also dif-
ficult to interpret such representation since L2 or Hausdorff
distance errors are not as intuitive as a classification error
metric. Thus, to address these challenges, we discretize the
entire action space into 10 action categories. To do this, we
run a K-means clustering algorithm on the original (x, y)
motion trajectories with 10 clusters. This allows us to rep-
resent each motion trajectory as one of the action clusters.
We found that using such a discretized action representa-
tion makes it easier to train a classifier, and also allows us
to interpret the experimental results easier. In Figure 2, we
visualize these actions, as motion trajectories projected on
a 2D basketball court in a top-view format. For each action
category, we also include 4 images of an opposing player
that triggered those actions.

3.3. Extracting Person-Part Masks

Instead of using raw RGB images of an opposing player
as our input, we extract person-part masks that segment six
body parts: head, torso, left arm, right arm, left leg, right
leg [22]. We then use these person-part masks as input to
the VAE, which learns to generate such masks from a latent
code. We also use these masks as inputs to our action CNN,
which predicts a player’s future action from a given mask.

Operating on such person-part masks reduces the vari-
ance of factors such as players’ clothing, players’ appear-
ance, etc. Considering that we have a limited amount of
training data, this step allows us to prevent overfitting.

4. Model
We aim to synthesize images that are associated with a

particular action of a basketball player. Our model has two
main components: (1) a variational autoencoder (VAE) [15]

that generates person-part masks of an opposing player, and
(2) an ensemble of discriminative Action CNNs that pre-
dict the future action of a player from a given person-part
mask. During training, the VAE and the discriminative Ac-
tion CNNs are trained separately. Afterwards, during the
image synthesis procedure, we attach each Action CNN to
the last layer of the VAE, and freeze all the parameters (in
both VAE and Action CNNs). Finally, given a target action,
we maximize its predicted probability at each Action CNN
by iteratively adjusting random noise code z, which is used
as input to our trained VAE.

We illustrate each component of our proposed architec-
ture in Figure 3, and describe all the details below.

4.1. Variational Autoencoder

For the VAE component of our model, we use a standard
encoder-decoder network. Initially, the encoder fE takes a
person-part mask x ∈ R256×256, and encodes it into a 32
dimensional latent representation z ∈ R1×32. Then, the
decoder fD uses this latent space representation z to recon-
struct the original person-part mask as x̂ ∈ R256×256.

As is standard, we assume that the marginal distribution
of the latent space z is a Gaussian with zero mean and iden-
tity covariance, i.e., p(z) = N (0, I). Under these assump-
tion, the VAE maximizes the following quantity:∑

i

Ez∼fE [log fD(xi|z)]−DKL(fE(z|xi)||p(z)) (1)

The first term in the equation denotes expectation over
distribution fE , which is intuitively used to measure the ac-
curacy of the decoder fD for the distribution produced by
the encoder fE . The second term denotes Kullback-Leibler
(KL) divergence, which penalizes fE if it deviates too much
from the desired distribution p(z). In other words, the sec-
ond term of the equation forces the latent space distribution
z to follow a Gaussian distribution N (0, I). As a result,
during inference we can generate a novel person-part mask
x̂i by sampling zi ∼ N (0, I) and feeding it through the de-
coder fD(zi) thus, effectively eliminating the encoder fE .
We refer the reader to the work in [15] for more details on
variational autoencoders.

Inspired by the success of image-to-image translation
networks [13], we model our encoder, and decoder as a con-
volutional neural network (CNN) composed of 6 convolu-
tional layers, and 6 deconvolutional layers. Furthermore, as
is done in [17], we follow a generalized Bernoulli distribu-
tion to model fD(xi|z).

4.2. Ensemble of Action CNNs

Given a person-part mask x ∈ R256×256, the action CNN
φ predicts a discrete action category φ(x) ∈ R1×M that en-
codes one of M plausible future egocentric motion trajec-
tories of a player. We implement φ using a popular ResNet-
101 [11] architecture. The network is trained to predict

4
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Figure 5: A figure illustrating the person-part masks generated via our action conditioned image synthesis procedure. Column
1 depicts masks that are generated during the first iteration from the initial latent code z. Other columns illustrate how the
person-part masks for each action category diverge by the end of our optimization. These results suggest that our model
generates substantially different outputs for each action category even when starting from the same latent code z.

ground truth action categories in a supervised fashion us-
ing a standard softmax loss function.

We aim to use our discriminative Action CNN φ as a
supervisory signal for an action conditioned image synthe-
sis procedure. Since a single Action CNN can be noisy,
we instead train K independent Action CNNs φk where
k = 1...K. Each of these Action CNNs are then used dur-
ing our action conditioned image synthesis procedure, the
details of which we describe below.

4.3. Action Conditioned Image Synthesis

We are now ready to put all the pieces of our model
together and show how to synthesize images conditioned
on a player’s actions. Consider the two problems that
we discussed previously: (1) action-agnostic person-part
mask synthesis, and (2) a player’s future action prediction.
Our key insight is that by considering these two problems
jointly, we can produce a model that generates images asso-
ciated with a particular future action of a player.

To do so, we first attach each Action CNN to the last
layer of our trained VAE (see Figure 3), and freeze all the
parameters of such a joint model. Then, given an action
a ∈ R1×M , represented as a one-hot vector (am = 1, and
am′ = 0 for m′ 6= m) we aim to find a latent code z ∈
R1×32 such that φm(fD(z)) ∈ R1×M is maximized, We
formulate an action conditioned synthesis problem as the
following maximization problem:

z∗ = argmax
z

K∑
k=1

− log (φkm(fD(z)) (2)

where φk is each of K discriminative Action CNNs, m
depicts an index of a target action category, and fD is a
VAE decoder that takes a latent code z and generates a
person-part mask x̂ ∈ R256×256. Note that because each
step of our unified architecture is differentiable, the follow-
ing optimization problem can be easily solved using a stan-
dard backpropagation algorithm. During the maximization,
all the parameters are frozen, and we only adjust the la-
tent code z, which is initialized to a random sample from
N (0, I). Once we discover the z∗ that maximizes the objec-
tive above, we can generate a person-part mask by feeding it
through the VAE decoder as fD(z∗). Finally, by feeding our
synthesized person-part masks through an image-to-image
translation network [17], we obtain RGB representation of
our generated outputs.

4.4. Implementation Details

Our VAE was trained on 256 × 256 resolution im-
ages for 50 epochs using a batch size of 30, a learn-
ing rate of 0.0002 and Adam optimizer [14]. The en-
coder of the VAE consisted of six 4 × 4 convolutional lay-
ers with 64, 128, 256, 512, 512, 512 output channels respec-
tively, each layer followed by a leaky ReLU, and batch nor-
malization. The decoder of the VAE consisted of six 4 × 4
deconvolution layers with 512, 512, 512, 256, 128, 64 out-
put channels respectively, each layer followed by a ReLU
and batch normalization. The final output of the VAE was a
6×256×256 person-part mask encoding six distinct human
body parts: head, torso, both arms, and both legs.
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Method Accuracy ↑ Mean F-score ↑
Random 0.124 0.090

Action CNN 0.377 0.340

Table 1: Future action prediction results according to the
standard accuracy and the mean per-class F-score metrics.
Our Action CNN significantly outperforms a random base-
line according to both metrics, suggesting that it learned to
associate visual inputs to a player’s future actions reason-
ably well.

Each Action CNN was based on a ResNet-101 [11] de-
sign and was trained for 40K iterations, with a learning rate
of 0.00025, 0.9 momentum, a weight decay of 0.0005, and
10 samples per batch using SGD optimizer. We trained 7 in-
dependent Action CNNs, and used 6 of them for our action
conditioned synthesis procedure, and one of them for evalu-
ation purposes. During action conditioned image synthesis
procedure, we adjusted the latent code z using backprop-
agation with a learning rate of 0.05 until the loss at each
Action CNN became less than 0.3 or until the optimization
exceeded 150 iterations. To generate RGB images from the
synthesized person-to-part masks we adopted an image-to-
image translation network from [17], which we trained and
tested exactly as was done in the original paper.

5. Experimental Results

To the best of our knowledge, we are the first to tackle the
problem of action conditioned image synthesis. Therefore,
there are no previously established baselines to assess the
performance of our model. As noted in [13], automatic eval-
uation of synthesized images is still an open and a challeng-
ing problem. In the context of our action conditioned image
synthesis task, the evaluation becomes even more challeng-
ing because unlike for tasks such as image generation, or
object detection, the solution to our problem is not obvious.
Predicting what a player will do in the future is highly un-
certain, which also makes it difficult to assess whether our
synthesized images align well with a particular target action
category. Finally, the evaluation problem is exacerbated by
the fact that our task requires a domain specific (i.e. basket-
ball) expertise, which takes years of training to obtain.

To address these shortcomings, we propose to evaluate
action conditioned image synthesis task automatically using
a held-out Action CNN that has not been previously used
for image synthesis. In order for this evaluation scheme to
be valid, we must first show that Action CNN learns to re-
liably associate input images to a player’s future actions.
Once we verify that our trained Action CNN learned reli-
able image-action associations, we can feed our generated
images through a previously unseen Action CNN, and com-
pute the loss of that image for a given action category.

We point out that the evaluation techniques relying on

Method Test Loss ↓
Action Agnostic VAE 9.851
Action Specific VAE 6.347

Ours w/ Single Action CNN 4.028
Ours w/ Ensemble of Action CNNs 1.296

Table 2: Our action conditioned image synthesis results
evaluated using a loss of a previously unseen Action CNN
(the lower the better). As our first baseline, we include a
standard VAE trained to generate person-part masks of op-
posing players in an action agnostic fashion. Our second
baseline involves training a separate VAE for each action
category. We also include two variations of our own model:
one that uses a single Action CNN during an action con-
ditioned image synthesis procedure, and a stronger model
that uses an ensemble of 6 Action CNNs for the same pur-
pose. We show that our strongest model outperforms these
baselines by a large margin.

pre-trained CNNs have been widely used by prior meth-
ods [13, 34, 39, 41, 27]. We also note that to complement
our quantitative results, we include a wide array of qualita-
tive results.

5.1. Quantitative Results

Future Action Prediction. We first want to verify that
our trained Action CNN can reliably predict a player’s fu-
ture action from a given person-part mask. To maximize
the amount of training data, we train our Action CNN using
a leave-one-out cross validation with 8 splits. We also aug-
ment our dataset by horizontally mirroring input images and
the corresponding ground truth motion trajectories. This
leads to about 1,700 image-action pairs per split. We then
evaluate our results according to two metrics: (1) total ac-
curacy, and (2) mean per-class F-score, which is a more re-
liable metric to deal with class imbalance.

In Table 1, we report action prediction accuracy averaged
over 8 splits. Our trained Action CNN achieves a 37.7% to-
tal accuracy and a 0.34 mean per-class F-score, significantly
outperforming a random baseline, which yields 12.4% total
accuracy and a 0.09 mean per-class F-score. In Figure 4,
we also visualize the confusion matrix illustrating the per-
formance for each of 10 action classes.

Considering the difficulty of this task, we think that these
results are solid. We would also like to point out that our
goal in this paper is not to build the most accurate action
prediction model. We simply want to design an action pre-
diction model that is good enough for the purposes of an
action conditioned image synthesis task (and its evaluation).

Action Conditioned Image Synthesis. To evaluate ac-
tion conditioned image synthesis task, we generate 1, 000
images for each cross validation split1 (100 per each action

1We maintain the original cross validation splits from the action pre-
diction task by making sure that the ensemble of Action CNNs used for
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Init Mask Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9 Action 10

Figure 6: To understand what visual cues our model deems most important for each action category, we visualize the gradients
that are used to modify the initial person-part masks during our action conditioned image synthesis procedure. Column 1
illustrates the person-part masks that are generated from the initial latent code z. Other columns illustrate the gradients that
are used to adjust the initial mask for each action category. From these visualizations, we observe that different body parts
are considered relevant for different action categories.

class). We then feed each synthesized image x̂i(m) with
an action category m, to a previously unseen Action CNN
φtest, and compute its loss as:

Ltest =
1

N

N∑
i

− log (φtestm (x̂i(m)) (3)

We computeLtest for each cross validation split and then
average these values across all splits. The final loss values
are reported in Table 2, where we compare our model with
a few other relevant baselines. As one of our baselines, we
include a standard VAE. which learns to generate person-
part masks that are action agnostic. As our second baseline,
we include a model where we train a separate VAE for each
action category (10 separate VAEs in this case). Such a
baseline is very costly, but we still include it to demonstrate
that our model outperforms it by a large margin. Finally, we
include two variations of our model: 1) when only a single
Action CNN is used for action conditioned image synthesis,
and 2) when we use an ensemble of Action CNNs.

Based on these results, we observe that our best model
yields a loss of 1.296, which is significantly lower than the
loss values produced by two standard baselines (9.851 and
6.347). Furthermore, we notice that using an ensemble of

image synthesis have been trained on the appropriate split.

Action CNNs during an action conditioned image synthesis
procedure improves our performance from 4.028 to 1.296,
which is a substantial boost. We used 6 Action CNNs– a
maximum number that could fit in a 12GB GPU machine.

5.2. Qualitative Results

Visualizing Generated Person Masks. In Figure 5,
we visualize person-part masks generated by our model for
each action category. Each row of Figure 5, depicts masks
generated from the same initial latent code z. The mask
that is generated by the VAE during the first iteration is il-
lustrated in Column 1 of Figure 5 under the name ”Init”. In
further iterations, the masks for different action categories
diverge as the gradients from Action CNNs are different for
each action category. We observe that even if we start with
the exact same latent code z, the model ends up generat-
ing substantially different outputs for each action category.
This result indicates that our model can differentiate, which
visual cues are more important for each action category.

In fact, to understand what visual cues are most impor-
tant for each action category, we visualize the gradients that
are used to update the masks for each action category dur-
ing action conditioned image synthesis. We present these
visualizations in Figure 6. Images in Column 1 of Figure 6
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head torso left arm right arm left leg right leg
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Figure 7: We average the gradients computed during an ac-
tion conditioned image synthesis procedure across the re-
gions corresponding to each body part. We do this for each
action category across the entire set of our generated im-
ages. These results are then visualized as a 2D table where
the white regions indicate large gradient values, and the
dark regions depict small gradient values. From these visu-
alizations, we observe that the legs, and the torso are much
more informative than the head and the arms, which makes
intuitive sense. Furthermore, we notice that gradients for
action category 6 are lower, which also makes sense since
this action defines a relatively stationary motion trajectory.

depict person-part masks that are synthesized from the ini-
tial latent code z. The remaining columns in the figure illus-
trate the gradients that are used to modify the initial mask
for a particular action category (during a subsequent iter-
ation). Based on these visualizations, we observe that for
each action category, our model chooses to modify the ar-
eas corresponding to different body parts. For instance, the
example in the top row shows that in this particular case,
the gradients around torso are not very important for action
categories 1, 2, 3 and 5. However, for that same example,
the gradient values around torso are pretty large for action
categories 4 and 6.

To generalize these findings, we average the gradient val-
ues in the regions associated with each body part across
the entire set of our synthesized images. We then visu-
alize these values for each action category in Figure 7.
The lighter color means higher gradient values, whereas the
darker color depicts smaller gradient values. These results
provide some interesting insights into what our model had
learned. For instance, we can observe that gradients for ac-
tion category 6 are generally smaller than for all the other
action categories. This makes intuitive sense because ac-
tion category 6 encodes a pretty stationary motion trajec-
tory (See Figure 2), and thus, visual cues become less rele-
vant in that case. Furthermore, we observe that in general,
the most important body parts are legs and torso. This also
makes intuitive sense because visual cues around the oppos-
ing player’s head or arms are not very informative. In con-

Figure 8: A figure illustrating our synthesized RGB bas-
ketball images. First, we use an image-to-image translation
network [17] to generate RGB images from our previously
synthesized person-part masks. Afterwards, we project an
RGB image of an opposing player on an empty egocentric
basketball image of a basketball court with no players in it.
Based on these results, we observe that unless we zoom-in,
these images look quite similar to what a player might see
in a real one-on-one basketball game.

trast, it makes sense that the model ”fires” on pixels around
torso, or legs because these body parts are the most impor-
tant for determining how quickly a defender can move one
way or the other.

Visualizing Generated RGB Images. We use an image-
to-image translation network [17] to transform our synthe-
sized person-part masks to the RGB images of an opposing
player. We then project those images, on an empty ego-
centric basketball image of a basketball court without any
players in it. We visualize this result in Figure 8. Based
on these results, we observe that our generated RGB bas-
ketball images look pretty realistic unless we zoom in to
look at various fine-grained details such as faces or clothing
texture. We believe that this is a promising result allowing
many potential basketball applications in the future.

6. Discussion
In this work, we introduced a novel action conditioned

image synthesis task, and a model to solve it in a basketball
setting. One limitation of our model is the assumption that
given the same visual signal every player will act the same
way. In our case, making this assumption is necessary due
to a limited amount of training data. However, in our future
work, we plan to address this limitation by collecting more
data and exploring models that are personalized for each
player. Furthermore, we note that due to a general design
of our model, we plan to explore action conditioned image
synthesis task in the context of other activities as well, not
just a basketball game.
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