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Abstract

We address the problem of finding deformation be-
tween two images for the purpose of recognizing objects.
The challenge is that discriminative features are often
transformation-variant (e.g. histogram of oriented gradi-
ents, texture), while transformation-invariant features (e.g.
intensity, color) are often not discriminative. We intro-
duce the concept of attribute flow which explicitly mod-
els how image attributes vary with its deformation. We
develop a non-parametric method to approximate this us-
ing histogram matching, which can be solved efficiently us-
ing linear programming. Our method produces dense cor-
respondence between images, and utilizes discriminative,
transformation-variant features for simultaneous detection
and alignment. Experiments on ETHZ shape categories
dataset show that we can accurately recognize highly de-
formable objects with few training examples.

1. Introduction
Consider two images I and J , we are interested in find-

ing deformation and correspondence between them for the
purpose of recognition. In particular, we consider image I
to be a single model of certain object category. Our goal is
to detect the object from the same category in image J , and
align the object model to the detection. Both detection and
alignment are done in a one-shot fashion.

The key concept we propose is to model image deforma-
tion as a flow of image attributes, shown in Figure 1 & 2.
Instead of modeling 2D spatial transformation of pixels or
feature points, we model attribute transformation on image
features, such as edge orientation or histogram of oriented
image gradient, in a higher dimensional space.

Our formulation has the advantages that it can use a
broad set of image features that leads to more robust and
faster alignment. For example, when an elongated object
rotates, its edge orientation histogram shifts in the angular
bins. Computing this shift is much easier for such objects
than searching over all possible rotations of the object.
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Figure 1. Flow in attribute space leads to image matching under
deformation. (a) uses flow in color histogram for matching rotated
images. (b) uses flow in orientation of image gradient for matching
objects with different pose. (c) uses flow in oriented edge shape
context for matching object instances in the same category.

To compute a attribute transformation there are three
questions to be resolved:

1. how to constraint attribute transformation such that it
finds a solution that has a valid 2D spatial transfor-
mation? In general, attribute transformation has more
degrees of freedom than spatial transformation. In
our example, the two adjacent angular bins can shift
in opposite directions, leading to an inconsistent spa-
tial transformation. To prevent such case, we need to
map constraints in the spatial transformation space into
constraints on the attribute transformation. This is a
key part of our algorithm, we derive its solution in de-
tail in sections below.

2. how to compute attribute transformation efficiently?
As in our example, we will use histogram to represent
the continuous attribute in a discrete non-parametric
form. Finding a flow in the histogram space amounts
to computing an optimal bipartite graph matching.
This can be solved efficiently using linear program-
ming. Again, we need to ensure that the geometrical
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Figure 2. Work flow of attribute flow computation. Given an input of a model image I and a test image J , we seek an optimal spatial
transformation (T) for alignment. We first extract oriented edge attribute (arrows) of both I and J in the “Extract Attribute” step. The
color and orientation of the arrows represent the edge normal orientation. In the “Attribute Histogram” step, we quantize spatial location
and edge orientation into histogram bins. We visualize attribute histogram space as a 3D volume, where an image is divided into a spatial
grid, and each grid cell carries a stack of bins representing edge orientation histogram at that location. The color of each bin indicates
its edge orientation. In “Attribute Histogram Flow” step we compute the optimal histogram flow (F ) (blue lines) to match the attribute
histogram of I and J . Red grids and colored bars show the histogram counts in image space and “flattened” histogram of oriented edge
respectively. We impose “Geometrical Constraints” when solving F . For affine transformation, given transformation on anchor points,
transformation on another point is constrained by preserving the barycentric coordinate. In the “Interpolation and Marginalization” step,
we compute attribute flow (M) from F , and compute spatial transformation T by marginalizing M over spatially overlapped attributes.

constraints on the attribute transformation are passed
down to the computation of the histogram flow. Once
we computed flow in the histogram space, we interpo-
late to obtain the continuous attribute transformation.

3. how to map a attribute transformation in the feature
space back to a spatial transformation? In our exam-
ple, once we have computed how the histogram bins
are shifted, multiplying the shift (in bins) by the angu-
lar bin width gives the angular rotation. We will show
how to combine the attribute transformation with the
attribute features to compute the spatial transforma-
tion through a process of marginalization.

We formulate the attribute transformation as Attribute
Flow, addressing the three questions above. Figure 2 shows
the key steps of computing attribute flow.

We further extend this formulation by also allowing for
reasoning over which image regions contribute to the at-
tribute feature space. For example, when detecting object
in cluttered environment, it is important to only allow image
contours that are actually part of the true object boundary to
participate in the matching, an idea first introduced by Zhu
et al. ([14]).

The paper is organized as following. We show in Sec. 2
how attribute flow is formulated, and how affine constraints
on spatial transformations are mapped into attribute flow.

We show in Sec. 3 how efficient computation of attribute
flow is achieved using histogram flow formulation, and how
constraints are passed from attribute flow to histogram flow.
In Sec. 4, we show how to select the correct image regions
for matching under clutter. In Sec. 6 we demonstrate our
method on the ETHZ Shape Classes Dataset [1].

2. Image alignment through Attribute Flow

2.1. Attribute Flow

We define attribute of image I using a vector-valued
function AI : R2 → Rn, which maps each image loca-
tion x to an n-dimensional attribute vectorAI(x) computed
from its surrounding information. The attributes of the en-
tire image I form a vector field. AJ denotes the attribute
function of image J .

Let T : R2 → R2 be the optical flow that represents
the image deformation. Under desired T between two im-
ages, we expect the attribute AJ (T(x)) of deformed im-
age J , and attribute AI(x) of image I to be similar. This
amounts to finding T that minimizes the attribute dissimi-
larities at corresponding locations, as defined in the follow-
ing Attributed Optical Flow problem:

min
T

∫
R2

||AI(x)−AJ (T(x))||pdx (1)
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Optimizing over T in the above equation requires syn-
thesizing the transformed image attributes for different hy-
potheses of T. The process of extracting attributes from a
transformed image can be highly non-linear, making direct
optimization of (Eq.1) difficult.

Instead, we seek an explicit explanation of how attributes
are mapped across two images. We define generalized im-
age attribute A+

I (x) = (x,AI(x)) ∈ Rn+2 in the (general-
ized) attribute space Rn+2.

Let attribute flow be the mappingM : Rn+2 → Rn+2

between attribute spaces of image I and image J . The
mappingM(A+

I (x)) = (M1(x),M2(A+
I (x))) is defined

such that M1(x) = T(x) is the optical flow. We seek an
Attribute FlowM that minimizes:

min
M

∫
Rn+2

|δ(y −M(A+
I ))− δ(y −A+

J )|1dy (2)

where δ(y) is Dirac delta function in attribute space Rn+2.
An attribute flow needs to have a meaningful geometric

interpretation. In this paper, we show how to impose affine
transformation constraint on the attribute flow, when image
attributes are orientations of edges or image gradients.

2.2. Affine Constraint on Spatial Transformation T

Three non-collinear points and their optical flow
uniquely determine an affine transformation. We call these
three points anchor points and denote as x1, x2, x3. We can
represent any other point xp using the affine combination

of them: xp =

3∑
i=1

αpi xi, where (αp1, α
p
2, α

p
3) is also known

as the barycentric coordinate. Barycentric coordinate stays
invariant under affine transformation:

T(xp) =

3∑
i=1

αpiT(xi) (3)

For oriented features, when the image rotates, their ori-
entations should change accordingly. We want to link the
orientation change with the anchor points transformation.
For any point xp with orientation θp, let (βp1 , β

p
2 , β

p
3) be

the barycentric coordinate of an imaginary points x′p =
xp + r(θp), where r(θp) is the unit vector along direction
θp:

r(θp) = [cos(θp), sin(θp)]
T ∈ R2

Since the barycentric coordinates of both xp and x′p stay
invariant under affine transformation, we have

r(T(xp, θp)) ∼
3∑
i=1

(βpi − α
p
i )T(xi) (4)

where, with a slight abuse of notation, T(xp, θp) rep-
resents the transformed orientation of θp at location xp.

r(T(xp, θp)) is the unit vector along direction T(xp, θp).
The symbol ∼ represents vector similarity up to a scale dif-
ference.

2.3. Affine Spatial Transform Constraint on At-
tribute FlowM

Considering orientation as the image attribute, the at-
tribute flow M is defined on each image location xp and
its orientation θp:

M(xp, θp) = (T(xp),T(xp, θp))

To recover the image transformation fromM we index
the location attribute as T(xp) =M1(xp). To get the trans-
formed orientation at each location, we index both loca-
tion and orientation attributes as T(xp, θp) =M2(xp, θp).
Adapting affine constraints on optical flow T, we have the
Constrained Attribute Flow problem as:

min
M

∫
x,θ

|δ([x, θ]−M(A+
I ))− δ([x, θ]−A+

J )|1dxdθ

s.t. ∀p, M1(xp) =

3∑
i=1

αpiM1(xi)

r(M2(xp, θp)) ∼
3∑
i=1

(βpi − α
p
i )M1(xi)

(5)
We seek an efficient optimization ofM in (Eq. 5) in the

following section using histogram.

3. Histogram Flow F

We represent the attributesA+ in a non-parametric form
using an attributed histogram function H : Rn+2 → Zm.
This function maps the image attributes to a set of counts for
m different histogram bins. H(A+

I ) andH(A+
J ) denote the

attribute histogram of image I and image J respectively.
Recall the first component of A+ is spatial location and

the second component is orientation. If we quantize loca-
tion into mx cells and orientation into mθ bins, we have
total of m = mx × mθ attribute bins. We can visualize
these bins as a 3D bin space with a stack of mθ bins on
each of mx quantized 2D spatial locations.

Each bin k = 1, . . . ,m has associated with it an instanti-
ation of the attribute: (xk, θk), where xk represents the spa-
tial center location of bin k and θk represents the dominant
orientation of bin k. The histogram value in each bin in-
dicates how many image pixels/edges (could be fractional)
are mapped into the quantized bin attribute.

Between the histogram bins in the two images, we de-
fine the normalized histogram flow: F ∈ Rm×m, where
Fk,l measures the normalized volume of the contents flow-
ing from bin k in image I to bin l in image J .

The normalized flow should obey conservation con-
straint: the outflow of each bin k must sum up to 1. As
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Figure 3. Estimate local translation using color histogram: (a) shows two images containing translated red square in blue background
superimposed by image grids (dashed square). (b) shows color histograms on image grids and normalized histogram flow F between
them. Each grid location (dashed square) has two color histogram bins (solid circle) indexed by the superscript of the bin labels. The areas
of color dots in each bin represents the histogram counts. (c) calculates the expected local translation of xk by marginalizing (weighted
by model feature) over color histogram bins at the same grid location. Estimate local translation and rotation using oriented edge
histogram: (d) shows edge map of two images containing translated and rotated square superimposed by image grids (dashed square).
(e) shows orientated edge histogram on image grids and normalized histogram flow F . Each grid location (dashed square) has four edge
orientation bins (solid circle) indexed by the superscript of the bin labels. The direction and length of arrow inside each bin represent the
edge orientation and oriented edge counts respectively. (f) calculates the expected local translation of xk (top), and expected local rotation
of bin k2 (bottom). Again we need to marginalize over spatially overlapping bins to calculate local translation.

a non-parametric estimate of attribute flow, we expect At-
tribute Histogram Flow to minimize the following cost
function:

min
F

|FTH(A+
I )−H(A+

J )|1
s.t. F1 = 1 F ≥ 0

(6)

We can visualize histogram flow as moving histogram
mass across the two histogram space. Image often contains
salient structures in the histogram space (e.g. object with
a dominate edge orientation, or a unique color histogram),
which facilitates the matching between attribute histograms.

We do not want histogram mass to move independently
across the bins, as it might lead to inconsistent geometrical
transformation. In the following, we show how to impose
affine spatial transformation constraint on the attribute his-
togram flow computation.

3.1. Spatial Transformation from Histogram Flow

Normalized histogram flow F can also be viewed as a
probability encoding of the quantized attribute flow M:
if Fk,l is large, then we expect that the attribute flow M
should more likely map attribute (xk, θk) to (xl, θl).

When normalized histogram flow Fk,l = 1, we can use
T(xk) = Fk,lxl = xl to encode xk in image I has moved
to xl in image J . In general, given Fk,l for all possible
l, we estimate the expected spatial translation EF (T(xk))
under this probability as

EF (T(xk)) =
∑
l

Fk,lxl (7)

When there are spatially overlapping bins, we can ob-
tain the expected translation T(xk) by further marginaliz-
ing over associated bins.

Since each histogram bin k can index into unique loca-
tion and rotation, we use T(θk) instead of T(xk, θk) to rep-
resent the transformed orientation of bin k. Its expectation
can be written as follows:

EF (T(θk)) =
∑
l

Fk,lθl (8)

Figure 3 illustrates the process of computing expected
local translation and rotation of histogram bins using color
histogram and oriented edge histogram. To get the continu-
ous attribute flowM, we can do interpolation using the dis-
crete expected local translations and rotations on histogram
bins.

3.2. Affine Spatial Transformation Constraints in
Histogram Flow

Affine constraints for the attribute flow M needs to be
passed onto the computation of histogram flow F . Given
three non-collinear anchoring bins k1, k2, k3, ideally we

have EF (T(xk)) =

3∑
i=1

αkiEF (T(xki)) for arbitrary bin

k, where αki is the barycentric coordinate of the bin spatial
attribute xk. Due to the quantization error introduced by
histogram function, we can instead express this as a penalty
for two quantities being different, which we call

AffConx(F, k) : |EF (T(xk))−
3∑
i=1

αkiEF (T(xki))|1 (9)
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For the orientation attribute θk of bin k, we adapt the fol-
lowing constraint from (Eq.4) for transformed orientation:

r(EF (T(θk))) ∼
3∑
i=1

(βki − αki )EF (T(xki))

Because the relationship is only proportionality and not
equality, the method of encoding an equality constraint
softly by computing the distance between the two quanti-
ties does not apply. Instead, we must introduce a scaling
factor s that compensates for the proportional relationships
between the two. We define this error function as following:

min
s
|s·r(EF (T(θk)))−

3∑
i=1

(βki −αki )EF (T(xki))|1 (10)

Instead of minimizing the function over s, we introduce
augmented histogram flows Gc and Gs, which encode both
histogram flow F and quantized scaling factors. For each
entry Fk,l of original flow F , there are several copies in
the augmented flows Gc, Gs. Each copy, denoted as Gck,l,q
(Gsk,l,q), defines the flow between histograms on quantized
cos (sin) value of orientation θk and θl, with quantized
scale change sq . Thus above affine constraint can be ap-
proximated by the following linear cost function with the
marginalized constraint of Gc and Gs, which we call

AffConθ(F, k) :

min
G

|[EGc(sqT(θk)), EGs(sqT(θk))]
T−

3∑
i=1

(βki − αki )EF (T(xki))|1

s.t. ∀k, l,
∑
q

Gsk,l,q = Fk,l,
∑
q

Gck,l,q = Fk,l

(11)
We define a combined affine cost

AffCon(F, k) = AffConx(F, k) + AffConθ(F, k) (12)

and include this in the overall objective for the histogram
flow optimization.

Up to now we have described attributed optical flow, at-
tribute flow and attribute histogram flow with their respec-
tive affine transformation constraints. The relationship be-
tween three problems is summarized in Figure 4.

3.3. Ground Distance in Histogram Flow

Attribute flow matching could have multiple valid so-
lutions of transformation. For example a circle can be
matched to itself under any rotation. We introduce a bias
to pick one such transformation using the principle of least
action. We borrow the idea from Earth Mover’s Distance
(EMD) [8], which minimizes the cost of histogram flow
transportation subject to constraints on preservation of flow.
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Figure 4. Given affine constraints on spatial transformation T,
equivalent constraints on the attribute flow M is formed and fur-
ther passed on to the histogram flow F . We solve for the optimal
histogram flow F under these affine constraints, and then recover
the spatial transformation T.

The cost of flow transportation is parametrized by ground
distance dk,l ≥ 0 for each flow Fk,l. The cost of the flow
from histogramH(A+

I ) to histogramH(A+
J ) is defined as:

GD(F ) =

m∑
k,l=1

Fk,ldk,l (13)

In our experiments, we use L2 Euclidean distance be-
tween histogram bin locations as the the ground distance.

4. Matching with Selected Regions

In our problem of object recognition, image J will have
a large image background. It is often possible to cherry
pick (selectively choose) the ‘good’ image attributes in J ’s
background so that they can be matched to the model. Since
we allow image deformation, the risk of picking back-
ground attributes is even greater.

Our observation is that on J , the image attributes are
correlated through underlying image grouping structure
(e.g. salient contours grouped by edges, large segments
grouped by pixels). These structures tend to be foreground
or background as a whole.

To take advantage of the grouped image components,
we actively select the image contours to be used in the de-
formable correspondence. Once a contour is selected, all
attributes it carries will be used for matching. This reduces
the risk of ‘cherry picking’ significantly.

Let C be a set of contours. We want to simultaneous se-
lect foreground image contours and solve image deforma-
tion via histogram flow computation. We introduce contour
selection indicator xsel ∈ {0, 1}|C|, where xsel

i = 1 iff con-
tour Ci is selected to be foreground.

With contour selection, the attribute histogram of J is a
function of the selected image contours: H(A+

J ,x
sel). As

recognized by [14], this quantity can be defined via per-
contour histogram matrixHJ ∈ Rm×|C| :

H(A+
J ,x

sel) = HJxsel (14)
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Figure 5. Illustration of solving constrained attribute histogram flow. The input are (a):test images and contours and (d): model and
histograms. (b) illustrates the contour selection by adding up histogram over selected image contours. (c) illustrates the constrained
attribute histogram flow. Each term in cost function is visualized via the region highlighted with the corresponding color. Colored arrows
shows the correspondence between optical flow (top right), histogram flow (bottom right) and affine constraint (top left).

The i-th column of HJ corresponds to a histogram over
the oriented image edges of image contour Ci.

5. Constrained Histogram Flow
Incorporating affine constraint costs, ground distance

and foreground contour selection into histogram flow in
(Eq. 6), as shown in Figure 5, we define the Constrained
Histogram Flow problem:

min
F,xsel

GD(F ) + λ

m∑
k=1

AffCon(F, k)

+γ|FTH(A+
I )−HJxsel|1

s.t. F1 = 1, F ≥ 0, xsel ∈ [0, 1]|C|

(15)

The contour selection indicator vector xsel is relaxed to
be continuous in [0, 1]|C|. Both objective and constraints can
be encoded in a single linear programming, which can be
efficiently solved with off-the-shelf linear program solvers.

The variable size is dominated by the dimension of flow
variables. Although there can be m2 possible flows with m
histogram bins, we can prune flow between far away bins,
considering only limited translation. Parameters γ, λ bal-
ance the ground distance, affine cost and histogram differ-
ence. We use γ = 0.3, λ = 0.1 throughout our experiment.

6. Object Alignment and Detection
We test our method on the ETHZ Shape Classes Dataset

[2] with five categories: Applelogos, Bottles, Giraffes,
Mugs and Swans. We first use the method of Srinivasan
et al. [10] to generate a shortlist of detection in each im-
age for each object category. We initialize the model lo-
cation from detection bounding box and solve constrained
histogram flow with contour selection.

Structural Distance Preserving:
During the detection we only consider a subset of all

possible affine transformations. We disallow large scale
changes, which we encode using a constraint that limits L1

distance between transformed model points. We also re-
strict the rotation by at most ±π/2, which we encode using
a constraint that preserves the sign of horizontal coordinate
differences between transformed model points. Both con-
straints can be expressed linearly via the expected transfor-
mation EF (T(x)).

Learning in Canonical Model Space:
After solving constrained histogram flow F to estimate

T, we deform the test image to align with the model shape.
We train a discriminative classifier to perform a final veri-
fication in the canonical model space. Since pose variation
have been eliminated with the alignment step, we can learn
from fewer training examples. Furthermore, the learning al-
gorithm can pick up smaller but distinctive features which
are often hard to pick up due to misalignment between the
training examples.

Implementation Details and Results:
We implemented our method in MATLAB using the

MOSEK linear programming solver. Bottom-up contours
are extracted in each image using the method of [13]. Dur-
ing detection, we use the contour model learned in [10] to
generate detection candidates and solve the constrained his-
togram flow to estimate the deformation.

We quantize 2D space into 5x5 pixels grid, and edge ori-
entation into 8 angular bins. We consider a global affine
transformation for each model class. We select three an-
choring bins with non-zero count that enclose the largest
triangle area. Each candidate alignment takes about 2s to
solve.

To score each detection, we warp all the contours in-
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side the bounding box back to model space, instead of just
the selected ones in constrained histogram flow to allow for
richer feature for discrimination.

We solve joint selection on warped contours using the
learned histogram bin weights to get the final detection
score. We use the feature consists of the absolute value of
the bin count differences between the model histogram, and
the image histogram for a particular selection of warped im-
age contours. More details about joint selection and weight
learning are described in [10].

Applelogos Bottles Giraffes Mugs Swans Mean
Attribute Flow 0.930 0.977 0.783 0.895 0.972 0.911
Ma et al. [6] 0.881 0.920 0.756 0.868 0.959 0.877
Srini. et al. [10] 0.845 0.916 0.787 0.888 0.922 0.872
Maji et al. [7] 0.869 0.724 0.742 0.806 0.716 0.771
Lu et al. [5] 0.844 0.641 0.617 0.643 0.798 0.709

Toshev et al.§ [12] 0.983 0.936 0.713 0.718 0.973 0.865
Table 1. Comparison of interpolated average precision (AP) on
the ETHZ shape categories dataset. Our method has the highest
mean AP across categories. § uses a different train-test split.

We compare out results against the reported ones in [10],
[7], [5], [6] with the same train/test split, and with [12] with
a different one. For each category, during training we use
the first half of the images from that category as positive
examples and sample the same number of negative exam-
ples from remaining categories equally. The rest images
are all for testing. [12] split half of the entire dataset for
training, which leaves fewer test images than us. We use
0.5 overlap score threshold during the comparison. Table
1 shows the interpolated average precision. We outperform
in mean performance compared the previous state-of-the-art
result [10], [6]. We shown the precison/recall (PR) curves
compared with [10], [7], [5] in Figure 6 as well as the false
positives per images (take log as x axis). Figure 7 shows the
segmented result and the model correspondence.

7. Related Work
Our work is related to 1) optical flow methods which

compute a dense correspondence between two images, and
2) feature-based methods that compute sparse correspon-
dences. In contrast to optical flow approaches we allow
highly discriminative features (e.g. edge orientation, his-
togram of gradient ) which are sensitive to transformation.

Sparse feature correspondence is typically formulated as
a graph matching problem [9, 8, 11], with the graph match-
ing cost consisting of unary terms measuring local appear-
ance similarity and pairwise terms measure the geometrical
consistency of two different matchings.

Typical pairwise constraints preserve distances and an-
gles between feature points. As such they only allow rigid
transformations between the two images. Li et al. [3] de-
scribed a method for encoding local affine transformation

constraints on the graph matching space. Similarly, Jiang
and Yu [4] introduced a method for encoding a global simi-
larity transform constraint on the graph matching space.

Figure 7. Some detection and model alignment results on
ETHZ shape categories dataset. Detections and estimated model
deformation are shown side by side. On the left we show the
selected objects contours (black) and predicted bounding box
(green). On the right we show the input rigid object model (green
dots) and deformed model(red dots) estimated from attribute flow
(blue lines).

While the global constraints on the transformation that
explain the local feature matching improve the matching re-
sult in many cases (particularly for planar objects that un-
dergo out-of-plane rotation), none of these previous graph
matching works address the fact that the features them-
selves must undergo deformation, changing with different
hypotheses for the affine transformation relating the two im-
ages. One of the key contributions of our work is encoding
exactly this property in our image features (attributes) and
our matching between the sets of image features.

Our computational solution with histogram has some
similarity to the EMD [8]. The EMD allows many-to-
many correspondence of histogram bins, thereby allowing
us to compute dense correspondences. However, traditional
EMD has no geometric constraints on the flow, and hence
no guarantee that the resulting transformation computed
from the flow has a valid spatial interpretation.

Another important issue of image matching is avoiding
accidental alignments of the object model to background
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Figure 6. Precision vs. recall (PR: top row) and false positives per image vs. detection rate (FPPI/DR: bottom row) curves for each
method. Our methods is labelled “ATRFlow”. We take the log of false positive image to strength the high precision region.

clutter. Our approach builds on the bottom-up, many-to-one
matching of Zhu et al. [14], which allows us to select fore-
ground bottom-up structures such as image contours to par-
ticipate in the matching, while removing background clut-
ter contours that can cause accidental alignments. We show
that this can be done in one step with a single, unified cost
function, yielding highly accurate object detection that fires
rarely in background clutter.

8. Conclusion
Deformable object recognition is a challenging problem

in vision. Current methods model all possible deforma-
tion of the object explicitly, because they lack understand-
ing how discriminative but transformation variant image at-
tributes varies under transformation. By formulating the
image deformation as an attributes flow, we are able to
explain the attribute variation without explicit image de-
formation. We are able to achieve this by imposing con-
straints on the attribute flow to ensure it has a valid geome-
try interpretation. We approximate the attribute flow using
non-parametric histogram flow, which can be solved effi-
ciently using linear programming. We verify our methods
on ETHZ shape classes dataset.
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