
Multi-hypothesis Motion Planning for Visual Object Tracking

Haifeng Gong†, Jack Sim†, Maxim Likhachev‡, Jianbo Shi†
† GRASP Lab, University of Pennsylvania

‡ Robotics Institute, Carnegie Mellon University
hfgong@seas.upenn.edu, {jiwoong, jshi}@cis.upenn.edu, maxim@cs.cmu.edu

Abstract
In this paper, we propose a long-term motion model for

visual object tracking. In crowded street scenes, persistent
occlusions are a frequent challenge for tracking algorithm
and a robust, long-term motion model could help in these
situations. Motivated by progresses in robot motion plan-
ning, we propose to construct a set of ‘plausible’ plans for
each person, which are composed of multiple long-term mo-
tion prediction hypotheses that do not include redundan-
cies, unnecessary loops or collisions with other objects.
Constructing plausible plan is the key step in utilizing mo-
tion planning in object tracking, which has not been fully
investigate in robot motion planning. We propose a novel
method of efficiently constructing disjoint plans in different
homotopy classes, based on winding numbers and winding
angles of planned paths around all obstacles. As the goals
can be specified by winding numbers and winding angles,
we can avoid redundant plans in the same homotopy class
and multiple whirls or loops around a single obstacle.

We test our algorithm on a challenging, real-world
dataset, and compare our algorithm with Linear Trajectory
Avoidance and a simplified linear planning model. We find
that our algorithm outperforms both algorithms in most se-
quences.

1. Introduction
In crowded street scenes, frequent occlusions, combined

with appearance changes, lead to ambiguous data associ-
ation or ‘drifting’ in tracking. Many of these occlusions
could be dealt with using a long-term motion model. Mo-
tivated by progresses in robot motion planning, we pro-
pose to construct a set of ‘plausible’ plans for each person,
which are composed of multi-hypotheses for motion predic-
tion without redundancies, unnecessary loops or collisions
with other objects. Constructing ‘plausible’ plans is the key
property desired by visual object tracking but has not been
fully investigated in robot motion planning, which focuses
on figuring out the most efficient path. We introduce a novel
method of efficiently constructing disjoint plans in different

homotopy classes, based on winding numbers and winding
angles of planned paths around all obstacles. As the goals
can be specified by winding numbers and winding angles,
we avoid redundant plans in the same homotopy class or
multiple whirls and loops around a single obstacle, even
with obstacles of varying different sizes and shapes.

There are two key factors distinguishing our motion
model from traditional motion models. First, we explic-
itly model pedestrian trajectories as goal-directed obstacle-
avoiding paths using multiple hypotheses. Second, we
create more flexible and realistic hypotheses for possible
pedestrian trajectories than others; simpler models of dy-
namic social behavior [10] are limited in expressive power
because they use single hypotheses and short-term predic-
tions.

For each person, our planner maintains multiple hy-
potheses for future paths as they move in the environment,
creating a ‘virtual simulation’ of intended pedestrian mo-
tion. When a person is visible, we track them, and use their
trajectory to narrow down the set of plausible goals/planned
paths. When a person becomes occluded, we create multi-
ple hypotheses that predict their re-appearance based on the
plausible set of goals/planned paths provided by the plan-
ner. Figure 1 illustrates this process.

We apply our motion model on batch-mode tracklets as-
sociation, where we model, in the tracklet matching cost,
agreement between goal-oriented motion plans. We test our
method on data collected from a car mounted with a stereo
camera pair driven across an urban city.

2. Related Work
When multiple objects have a similar appearance, or

when occlusion happens and appearance features are cor-
rupted, better motion model can improve tracking. Re-
cently, object-interaction based motion models have at-
tracted much attention. The most similar approaches to our
method are those of [6] and [9, 10]. Helbing et al[6] intro-
duced a dynamic social behavior model for simulating peo-
ple behavior. They model the velocities and accelerations
of people in crowds using three terms: 1) a term describing

Figure 1. Tracking by planning. We endow each tracked person with a planning agent for tracking under occlusion and ambiguity. The
person in the bold red bounding box, at t = 12, crosses the road during a red-light. She zig-zags to avoid coming cars, and is occluded by
the person with similar appearance at t = 37. By estimating obstacle avoiding path, we succeed in tracking her.

the acceleration towards the desired velocity of motion; 2)
a term reflecting that a pedestrian keeps a certain distance
from other pedestrians and borders; and 3) a term model-
ing attractive effects of groups of people. Luber et al[9]
introduced the social force model proposed by Helbing et al
into visual object tracking by combining it with a Kalman
filter, resulting in a more realistic prediction model. Pel-
legrini et al[10] proposed a goal-directed short-term obsta-
cle avoidance model, called Linear Trajectory Avoidance
(LTA). They used an energy function consist of two terms:
the first encourages a large distance from obstacles over
time, and the second encourages walking toward a manu-
ally specified goal with a given speed. Our method differs
from the above mentioned ones in two aspects, 1) we give
multiple hypotheses explicitly, which is more likely to cover
all possible trajectories over long occlusions; 2) we predict
entire paths rather than just short-term velocities.

Multiple people and multiple hypothesis tracking is an
active research area since the work of [11]. For example,
[3] prunes an exponentially growing tree of Kalman filters
by determining the k-best hypotheses in polynomial time;
[7] relaxes the association in object tracking as a multi-path
search problem. Our work is different from these methods
in that we discard the Markov assumption that is adopted in
the traditional literature.

Though there also have been large body of work in mo-
tion planning in robotics [8], for visual object tracking, tra-
ditional robotics planning is insufficient. Most planning al-
gorithms find the optimal solution for reaching a goal with
minimal cost. However, it is difficult to model such a cost
for each person in a complex real life setting. Instead, it
is more important to construct multi-hypothesis planning
to cover all ‘plausible’ plans. Research on path planning
with multiple hypotheses has been paid less attention. In
robotics multi-hypothesis planning has been explored un-
der the name of ‘homotopy constrained planning’ [5][2].

A homotopy class of trajectories [2] is defined by the set
of trajectories joining same start and end points which can
be smoothly deformed into one another without intersect-
ing obstacles. Homotopy class-constrained planning finds
the best solution in certain allowed homotopy classes. That
is, although they split the solution space into homotopy
classes, they still focus on finding best solutions in one or
more given homotopy classes for a robot to follow. This is a
little different from our problem. We want a set of paths to
best cover as many as possible object trajectories. Our prob-
lem involves enumerating the most likely homotopy classes
efficiently as well as finding the best solution in the speci-
fied homotopy classes. Although the latter has been solved
in [2], we propose a more efficient solution. The former
remains unexplored, and we solve it by indexing the homo-
topy classes with winding numbers around obstacles.

3. Multi-hypothesis Planning
3.1. Homotopy Class of Planning by L-value

For multi-hypothesis planning, we want to find multiple
non-redundant paths. To be precise, if two paths joining
same start and end points can be smoothly deformed into
one another without intersecting obstacles, they are redun-
dant (see Figure 2). This set of redundant paths is called a
homotopy class [2]. In [2], the authors studied the problem
of finding least-cost paths restricted to, or excluded from, a
specific homotopy class. They represent the environment of
the robot as a complex plane and make use of the Cauchy
Integral Theorem to define a complex index for each homo-
topy class.

In this subsection, we give a brief summary of the
method of [2], on which our algorithm is based. Let z
be a point in the complex plane, zb be the start point and
zg be the goal. A path γ(s) is a complex function of arc
length parameter s ∈ [0, T], with constraints γ(0) = zb and
γ(T) = zg .

(a) Good plans

zb

zg

O1

O2

γ
1

γ 2

γ 3

(b) Redundant plans

zb

zg

O1

O2

γ4

γ5

γ 6

γ 7

(c) Looped plan

zb

zg

O1

O2

γ 8

Figure 2. Examples of plausible plans and bad plans. O1 and O2

are two obstacles. γi are possible paths. zb and zg are the start
point and goal respectively. (a) A set of good plans in different
homotopy classes that have no unnecessary loops. (b) Two groups
of redundant plans: γ4 and γ5 belong to the same homotopy class,
as do γ6 and γ7. (c) A path makes an unnecessary loop around
obstacle O1. [2] can efficiently avoid bad plans like (b) by us-
ing homotopy classes, but it cannot avoid the bad plans like (c)
because it uses a simple complex number to index the homotopy
classes, which contains no information about loops. [2] enumer-
ates all plans in all homotopy classes in the order of path costs.
Assume that plain arc length is used as the cost, γ3 is the first to
be found, then γ2. Because γ8 is shorter than γ1, it is found next.
[2] will make a couple of loops before reaching the next plausible
plan γ1.

To distinguish different homotopy classes, a complex ob-
stacle marker function is defined as

F (z) =
f0(z)

(z − ζ1)(z − ζ2) · · · (z − ζN)
(1)

where f0(z) is a complex Holomorphic function and ζi is
a point in the area covered by obstacle i in the complex
plane. Using the Cauchy Integral Theorem, they showed
that two trajectories γ1(s) and γ2(s) connecting the same
pair of points lie in the same holotopy class if and only if∫

γ1

F (z)dz =

∫
γ2

F (z)dz (2)

given the assumption that f0(z) meets certain conditions.
Therefore they use the L-value, defined as

L(γ) =

∫
γ

F (z)dz (3)

to index homotopy classes. Note that although the L-value
is a continuous complex number, it only has discrete num-
ber of possible values, given start point and goal.

Starting from a standard graph based planning config-
uration, each vertex is augmented with multiple L-values,
and becomes multiple vertices to form an augmented graph.
Goals of different homotopy classes are different nodes in
this graph. The edges of the original graph are augmented
similarly with the increments of L-values. As such, stan-
dard graph search algorithm can be used to find the shortest
path from the start point to the goal in a specified homotopy
class.

However, one cannot directly apply [2] for person track-
ing:

1. When obstacles differ greatly in size, [2] performs poorly
in enumerating all the homotopy classes of plans. Their al-
gorithm will focus on finding shortest paths with multiple
loops around small obstacles before finding a path around the
other side of a larger obstacle. This occurs because although
their L-value can distinguish one homotopy class from other
ones, it cannot carry other necessary information such as how
many loops a homotopy class contains. The authors suggest
discarding smaller obstacles to overcome this problem. This
suggestion is not acceptable in street scene tracking, where
people and cars are dynamic obstacles and have different
sizes. We cannot discard all people and consider only cars
as obstacles. Figure 2 shows details about this point.

2. Obstacle marker function (1) must be carefully chosen for
numeric stability of L-values in real-world applications.

3. Their representation of state space is an infinite augmented
graph. This occurs because that the L-value does not record
number of loops around the obstacle, and so has to allow infi-
nite number of them. However, in real-world visual tracking,
it is better to keep the search space finite.

We propose replacing L-value with a more informative
index, that incorporates the number of loops around obsta-
cles. This allow us to screen out any paths with many loops,
which are unlikely to be the paths that people actually take.

3.2. From L-value to winding numbers

Following [2], we use the complex plane to describe the
configuration space, i.e., ground and obstacles. Let us con-
sider the L-value of a plan γ with respect to a single obsta-
cle,

L =

∫
γ

f(z)

z − z0
dz (4)

where z0 is a point on the obstacle and f(z) can be any
complex holomorphic function such that f(z0) 6= 0. L-
values for a single obstacle must be in the discrete set of

{k ∗ 2πif(z0) + L0 : k ∈ Z}, (5)

where L0 is the L-value of the path from start point to goal
at right side with no loop. Thus we can use k to distinguish
homotopy classes with respect to one obstacle which we call
winding number. For a plausible path, the values of k will
likely be 0 or −1, meaning ‘go-right’ or ‘go-left’ around
the obstacle. When k > 0, it indicates a path to the right of
the obstacle that includes k loops around it. Similarly k <
−1 indicates a path to the left of the obstacle that includes
−k− 1 loops around it. In most cases, a plausible path will
have k ∈ {−1, 0}. Though for an obstacle or environment
with irregular shape, the plausible path may has k < −1 or
k > 0, in street scenes, we can hardly meet this situation.
Therefore, we only consider k ∈ {−1, 0} as plausible in
implementation.

By letting ki be the k-value associated with the i-th ob-
stacle, we can denote a homotopy class with respect to all

L = L0 − 4πif(z0) L = L0 − 2πif(z0) L = L0 L = L0 + 2πif(z0)
k = −2 k = −1 k = 0 k = 1

∆θ = −3π ∆θ = −1π ∆θ = π ∆θ = 3π

1 1 1 1

1 1 1 1

Figure 3. Winding numbers and winding angles for one obstacle.
First row, L-values. Second row, k-values. Third row, winding
angles. Fourth row, example plans. Fifth row, more example plans.
One can see that k > 0 or k < −1 indicates that there are loops
around obstacles.

obstacles as an integer vector (vector of winding numbers,
or k-vector)

k = (k1, k2, · · · , kN)T . (6)

Theorem 1. Two trajectories γ1 and γ2 with k-vectors k1

and k2 connecting the same points lie in the same homotopy
class if and only if k1 = k2.

Proof. if-clause: If k1 = k2, then L-values for all obstacles
are same, which means no obstacle is enclosed by the closed
contour formed by γ1 and γ2, following Theorem 1 in [2].
Therefore, they lie in the same homotopy class. only-if-
clause: If they lie in the same homotopy class, then they
enclose no obstacle, and therefore have same value in each
entry of their k-vectors.

Given a start point, a goal, and a set of obstacles, a one-
to-one map can be established between the set of all homo-
topy classes and the set of vectors of winding numbers. The
theorem above states that vectors of winding numbers give a
complete description of the topology of feasible trajectories
given an environment, a starting location, and goal.

3.3. From winding numbers to winding angles

In Eq. (4), we simply choose f(z) = 1 to be a constant.
Given a path γ, if we write it in parametric form,

γ(s) = z0 + r(s) exp[iθ(s)] (7)

where s ∈ [0, T] is arc length parameter, Eq. (4) can be
computed in closed form as

L = log r(T)− log r(0) + i[θ(T)− θ(0)], (8)

where the real part is constant for all possible paths γ with
given start point and goal since r(0) = ‖z0 − zb‖ and
r(T) = ‖z0 − zg‖. The imaginary part

∆θ = θ(T)− θ(0) = ∆θ0 + 2kπ (9)

may differ by 2kπ, where k is also a winding number. We
call ∆θ the winding angle of γ with respect to obstacle z0.
Each path has a vector of winding angles with respect to
all obstacles, ∆Θ = (∆θ1,∆θ2, · · · ,∆θN)T . Now, we can
build our algorithm using winding angles directly, and do
not need to consider L any more. See Figure 3 for examples
of winding numbers and winding angles.

3.4. Augmented Graph

Like [2], we use a graph based search algorithm. We
begin with neighborhood graph G, in which each grid point
on ground not occupied by an obstacle is a vertex, and each
pair of neighboring points are connected by an edge. Edge
weights are the costs of moving from one vertex to another.
If we simply use path length as the cost, the shortest path
on this graph is the shortest path in the configuration space
subject to no collisions. Each vertex in G is represented by
its coordinate on ground z.

We augment this graph with winding angle to create an
augmented graph Ḡ. That is, we equip both vertices with
winding angles and edges with increments of winding an-
gles. We can choose a set of possible vectors of wind-
ing numbers K = {ki : i = 1, · · · , |K|}, in which |K|
is the number of elements in K. If we choose 3 obsta-
cles, we have |K| = 23 = 8, because for each obsta-
cles, we have 2 choices of k ∈ {−1, 0}. Then, for each
vertex z in G, we have a set of vectors of winding angles
Az = {∆Θi

z : i = 1, · · · , |K|}, each of which corresponds
to a winding number vector in K through Eq. (9). A vertex
of the augmented graph Ḡ is represented by (z,∆Θi

z), that
is, the pair of each z and each of its winding angle vector
∆Θi

z . If the number of vertices ofG is |G|, then the number
of vertices in Ḡ is |K| × |G|. Let e be the edge connecting
two vertices z and z′ in the original graphG. The edge has a
fixed winding angle vector, ∆Θe. For the vertices (z,∆Θi

z)
and (z′,∆Θi′

z′), we connect them if ∆Θi′

z′ = ∆Θi
z + ∆Θe.

In the augmented graph, a goal is split into multiple vertices
according to winding angle vector. See Figure 4 for more
explanation.

The graph weights are defined in the following way.
Given an environment with static and dynamic obstacles,
we compute distance transformations of both a static obsta-
cle map and a dynamic obstacle map. Let Dst and Ddyn

be the two distance transformations. We define a vertex
weight map as W (z) = α0 + α1Dst(z) + α2Ddyn(z),
where αj are weights that provide a trade-off between the
three terms. The weight of an edge e connecting z and
z′ is defined as the average of the weights of the ver-
tices it connects, multiplied by the distance between them,
W (e) = 1

2{W (z) +W (z′)}‖z − z′‖.
We use Dijkstra’s algorithm to search the augmented

graph. If too many obstacles are present, we select key
obstacles by first finding the shortest path in the original

a b c

def

O 1 O 2

a b c

def

O 1 O 2

α1 α2

α3

α4α5

α
2
:4

2
π

−
α
1
:5

a b c

def

a b c

def

a b c

def

a b c

def

k = (0, 0)

k = (0,−1)

k = (−1, 0)

k = (−1,−1)

b of (0, 1)a of (1, 1)

f of (−1,−2) e of (0,−2)

a of (1, 0)

f of (−2,−1)

b of (−1, 1)a of (0, 1)

f of (−2,−2) e of (−1,−2)

Figure 4. An example of augmented graph. Top box left, an exam-
ple graph, with 6 nodes and 2 obstacles. a is the start point and d is
the goal. Top box right, the winding angles on edges. Bottom box,
the augmented graph, with four k vectors. Each k correspond to a
layer with 6 nodes marked by a shaded panel, that is, each node is
split into 4 in the augmented graph. From a in the first layer, there
is a shortest path to d in each of the layers. The shortest paths from
a in k = (0, 0) to d in k = (0, 0) and k = (−1, 0) are shown in
bold blue.

neighborhood graph G, then keeping the obstacles close to
the shortest path as key obstacles. Only the key obstacles
are considered for computing winding numbers.

4. Tracking by Planning
We test our motion model in a batchmode tracking by

detection framework. During tracking, when a person is
partially or fully occluded, we estimate his position by plan-
ning. Tracking a person in the visible state leads to a short
trajectory that we call a tracklet. A conservative threshold
is used to terminate the trajectory when the tracking score
becomes too low. After termination, the same person may
be picked up again by the detection algorithm, and tracked
to produce associated tracklets. After tracklets are obtained,
we can link them using both appearance and planning con-
sistency.

4.1. Criteria for tracklets linking by planning

We defer the discussion of person detection and initial
tracking until Section 4.3. For now, we assume that we have
a set of tracklets T = {F1, · · · , FNTr

}, where Fi is the i-
th tracklet, and NTr is the total number of tracklets. Each
tracklet is described by Fi = (ti0, t

i
1,x

i
ti0
, · · · ,xi

ti1
), where

ti0 is the start time of Fi, ti1 is the end time of Fi and xit is the
object position at time t. Note that xit is defined in a fixed

3D world coordinate system defined by the initial camera.
We first measure the people’s positions in the stereo image
frame, and map it to a fixed 3D world frame using the ego-
motion estimation of the camera.

We then link and extend these tracklets, T , into complete
trajectories, using the ‘estimated’ partial/full occlusion po-
sition to explain away the ‘gap’ formed by the tracklets. Let
Li,j be the indicator of linking i-th and j-th tracklet:

Li,j =

{
1 Fi → Fj
0 otherwise . (10)

To link tracklets into plausible goal-directed obstacle-
avoiding paths, we design the following criterion for track-
ing:

max
L

ε(L) =
∑

i,j:Li,j=1

[SApp(i, j) + αSPlan(i, j)]− β|L|

(11)
where SApp(i, j) measures appearance similarity between
tracklets Fi and Fj , SPlan(i, j) measures 1) how consis-
tent Fi and Fj are with a plausible goal directed path;
and 2) how partial occlusion in the gap can be explained
by appearance of Fi and Fj . We introduce α to trade
off the two scores and β 6= 0 to prevent aggressive link-
ing. The criterion (11) is subject to the following con-
straints: Li,j ∈ {0, 1},

∑
i Li,j 6 1,

∑
j Li,j 6 1, and

Li,j = 0,∀(i, j) ∈ InvalidSet, where InvalidSet is used to
exclude those links that indicates impossibly large speeds,
too long gaps or time back-tracking. We seek an approxi-
mate solution using Linear Programming.

4.2. Planning score

The planning score is given by finding the best planned
path to fill the gap between tracklet i and j. The best path
is compatible with tracklet i and tracklet j geometrically,
and allows possible partial matches by appearance during
occlusions. We use the following score: SPlan(i, j) =
maxr∈paths−Dist(r, Fi)−Dist(r, Fj) + SOccl(Fi, Fj , r),
where Dist(r, Fi) is the distance between path r and track-
let Fi and SOccl(Fi, Fj , r) is the score for picking up the
partial occlusions along the gap. To reduce computation,
we prune paths whose costs are higher than the minimal
one above a threshold.

We compute the distance between a tracklet and planned
path as follows. First, we shorten the tracklet by keeping
only the last M frames of Fi and first M frames of Fj ,
giving the shortened tracklets F ′i and F ′j . Let x1, · · · , xM
be the tracked positions in F ′i or F ′j , and let l be the arc
length of the shortened tracklet. Let p be the point on the
path r which is nearest to the start point of F ′i or F ′j . Using
p as start point, we can obtain an arc on the path r with
length l, which results in a shortened path r′. Finally, we
divide r′ into M − 1 segments uniformly, to obtain M end

points: r′1, · · · , r′M . We compute the distance Dist(r, Fi) =∑
m ‖xm − r′m‖2.
We find possible partial matches (by appearance) during

occlusions, to compute SOccl(Fi, Fj , r), which is defined
by the score of two appearance models applied to the hallu-
cinated trajectory bridging the gap. Given the path r, which
does not connect Fi and Fj perfectly, we first compute the
hallucinated trajectory connecting Fi and Fj by a diffusion
equation and project it to both cameras to pick up possible
partial matches during occlusions. The diffusion equation
uses the ends of Fi and Fj as boundary conditions, and the
differences of the adjacent points on the planned paths as
guided gradients.

4.3. Appearance Feature

Adaptive appearance model. For a pedestrian, we di-
vide his image patch into three parts: head, torso and legs.
Using a part based representation allows us to reason un-
der partial occlusion. For each part k at time t, we col-
lect the color histogram using 8 × 8 × 8 bins, denoted by
pt(k), and we also collect the histogram of surrounding
background, denoted by qt(k). We use simple color fea-
ture instead of more advanced shape features for simplicity
and computation efficiency. The histograms are collected
using subsampling. We maintain running means of the his-
tograms as an object model: ft = (1 − α) ∗ ft−1 + α ∗ pt,
bt = (1 − α) ∗ bt−1 + α ∗ qt. Denote Modelt = (ft,bt)
the object appearance model.

Tracklet creation. We use a detector based on [4] to
detect peoples and cars in the current frame. To track a
person in frame t + 1 given the models of previous frame,
Modelt, we measure two scores — Consistent Score (S1) to
ensure that it is similar to foreground appearance model ft
and different from bt, and Contrast Score (S2) to ensure that
the foreground is different from its surroundings in current
frame. They are defined as follows; S1(Modelt,pt+1) =
1
2

∑
k

∑
bin pt+1(k) log ft(k)

bt(k)
+ 1

2

∑
ft(k) log pt+1(k)

bt+1(k)
, and

S2(Modelt,pt+1) =
∑
k KL{pt+1(k)‖qt+1(k)} =∑

k

∑
bin pt+1(k) log pt+1(k)

qt+1(k)
.

Appearance score. The appearance score in Eq. (11)
is obtained by testing the appearance model of tracklet i on
model of tracklet j and vice-versa.

5. Experiments
To test our algorithm we have collected a video from a

moving vehicle in an urban city. The stereo images were
collected at 1024 × 768 resolution and 6 FPS. We have a
system for people detection (based on [4]), 3D scene lay-
out/goal estimation, and camera ego-motion computation.
The ground plane at the first frame of each sequences was
calibrated and propagated over time using the ego-motion
transformations. We estimated building planes and ground

Figure 5. Top: tracking with linear linking. It drifts after occlusion.
Middle: tracking with planning. We are able to pick up the entire
trajectory of a pedestrian, despite the long occlusion. Bottom, top
view of tracking with planning. The brown balls are current po-
sitions, the red curves are trajectories, the bold black curve is the
selected plan, the blue curves are other plans, gray squares are
possible goals. Black squares and rectangle are obstacles at plan-
ning time. Note that we plan in advance, therefore, the obstacles
are other objects a few frames ago. Video frames are cropped for
clarity. Better viewed in color.

plane in each frame and intersected them to get street side
lines. The goals are estimated by intersecting the street side
lines, plus infinity points along the street. We only track
people, but detect cars using [4]. When planning for a spec-
ified object, other objects are regarded as obstacles.

We have picked 7 sequences which contains multiple
people, and have interesting interactions and occlusions.
Details of all sequences are shown in Table 1. There are
total of 48 people in all the sequences. Many of these
people cannot be tracked through the entirety of the se-
quence, because of the high occlusion rates. For compar-
ison, we implement two baselines, 1) (LINEAR) tracklet
linking without planning, that is, using a straight line as a
plan to try to link the gaps, and 2) (LTA) Linear Trajectory
Avoidance[10]. In the implementation of 1), we try straight
line connection between all possible tracklet pairs, and pick
the possible partial occlusions in the gaps. In the imple-
mentation of 2), we use LTA to predict a path from the end
of one tracklet to the start of the other, and also pick up the
possible partial occlusions in the gaps. We also compute the
performace of our conservative tracklets (TRLET).

Table 2 shows the performance comparison in CLEAR
Metrics[1]. We use 3 metrics: false alarm rate, miss rate and
number of identity switches. The false alarms are caused
by false alarms in detection and wrong occluded bounding
boxes drifting to background. The misses are caused by
misses in detection and failure to collect occluded bound-
ing boxes. Note that we annotate the bounding boxes of an
object even if it is totally occluded.

We divide the sequences into 3 difficulties, based on the
number of occlusions. Seq #1, #2 and #3 are the most dif-
ficult ones. PLAN outperforms LINEAR and LTA in two
of them and for the extremely difficult Seq #1, the results

of PLAN and LINEAR are similar. Seq #4 and #5 are of
medium difficulty. PLAN outperforms LINEAR and LTA
in #4 and LINEAR performs best in #5. Seq #6 and #7
are of relatively lower difficulty. Here, PLAN outperforms
LINEAR and LTA in #6 and gets the same results as LIN-
EAR in #7. One can see that the planning model helps deal
with many occlusions, and is at least as good as linear pre-
diction at low difficulties. The LTA model performs worst
in all sequences because it cannot deal with long occlusions.
TRLET always has the largest miss rate and almost the low-
est false alarm rate1. Figure 5 and 6 demonstrate some of
these results.

obj # frames # BB #Occl. BB
seq #1 13 169 1139 471
seq #2 12 60 532 130
seq #3 7 35 210 125

seq #4 4 40 148 51
seq #5 5 112 211 46

seq #6 5 41 170 17
seq #7 2 27 54 16

Total 48 484 2464 856
Table 1. Test Videos with 3 difficulty levels according to the num-
ber of occluded bounding boxes. (BB = Bounding boxes.)

miss rate fa rate id switch

se
q

#1

PLAN 0.413 0.089 9
LINEAR 0.442 0.070 8

LTA 0.488 0.214 8
TRLET 0.511 0.089 17

se
q

#2

PLAN 0.259 0.193 0
LINEAR 0.330 0.199 4

LTA 0.366 0.310 6
TRLET 0.407 0.112 6

se
q

#3

PLAN 0.311 0.223 1
LINEAR 0.340 0.200 2

LTA 0.476 0.445 6
TRLET 0.580 0.043 15

se
q

#4

PLAN 0.176 0.000 0
LINEAR 0.176 0.110 0

LTA 0.270 0.212 0
TRLET 0.412 0.074 4

se
q

#5

PLAN 0.137 0.032 0
LINEAR 0.123 0.016 0

LTA 0.189 0.090 0
TRLET 0.193 0.023 0

se
q

#6

PLAN 0.147 0.194 0
LINEAR 0.153 0.152 6

LTA 0.211 0.394 5
TRLET 0.276 0.054 20

se
q

#7

PLAN 0.056 0.000 0
LINEAR 0.056 0.000 0

LTA 0.203 0.157 0
TRLET 0.241 0.000 6

Table 2. Performance evaluation in CLEAR metrics.

1Postprocessing in PLAN, LINEAR or LTA may furthur remove very
short tracjectories. This postprocessing is not possible in TRLET because
many of its results are very short.

6. Conclusion
We have presented a long-term multi-hypothesis motion

model for visual object tracking based on motion planning.
It was tested on tracking multiple people in a cluttered
scene. Our planner solved the key problems of utilizing mo-
tion planning in visual object tracking, and the experiment
results demonstrate the effectiveness of our motion model.

Acknowledgement
We would like to thank Weiyu Zhang, Ryan Kennedy, Kate-

rina Fragkiadaki and Jeffrey Byrne for proof-reading. This work
is supported by ONR MURI N00014-09-1-1052 and ARL RCTA
W911NF-10-2-0016.

References
[1] K. Bernardin and R. Stiefelhagen. Evaluating multi-

ple object tracking performance: The CLEAR MOT
metrics. EURASIP J. Image and Video Proc., 2008.

[2] S. Bhattacharya, V. Kumar, and M. Likhachev.
Search-based path planning with homotopy class con-
straints. In AAAI, 2010.

[3] I. J. Cox and S. L. Hingorani. An efficient imple-
mentation and evaluation of Reid’s multiple hypoth-
esis tracking algorithm for visual tracking. In ICPR,
1994.

[4] P. Felzenszwalb, D. McAllester, and D. Ramaman. A
discriminatively trained, multiscale, deformable part
model. In CVPR, 2008.

[5] D. Grigoriev and A. Slissenko. Polytime algorithm
for the shortest path in a homotopy class amidst semi-
algebraic obstacles in the plane. In Proc. of Int’l Symp.
on Symbolic and Algebraic Computation, 1998.

[6] D. Helbing and P. Molnár. Social force model for
pedestrian dynamics. Physical Review E, 51(5):4282–
4286, 1995.

[7] H. Jiang, S. Fels, and J. J. Little. A linear program-
ming approach for multiple object tracking. In CVPR,
2009.

[8] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006.

[9] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras.
People tracking with human motion predictions from
social forces. In ICRA, 2010.

[10] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool.
You’ll never walk alone: Modeling social behavior for
multi-target tracking. In ICCV, 2009.

[11] D. Reid. An algorithm for tracking multiple targets.
IEEE Trans. on Automatic Control, 24(6):843–854,
Dec 1979.

Figure 6. Image patches and bounding boxes over time. Each panel shows the bounding boxes of a pedestrian in two parts. The top parts
show the image patches of ground truth (1st row), PLAN results (2nd row) and LINEAR results (3rd row). The number on each box is
the frame number. They are trimmed on left or right for better visual effects. The bottom parts show video frames superimposed with
bounding boxes. The magenta bounding boxes are current objects of interests. Yellow bounding boxes are other objects. The bold green
lines are the planned routes that the objects follow. The thinner green lines are other planned paths (after pruning) that are not followed by
the people. Seq 1 shows subsampled patches from a 154-frame trajectory. A girl in black is first occluded by a pole for about 25 frames
(0∼24), then occluded by a girl in red for 15 frames (38∼53) and finally occluded by a truck for 5 frames (124∼128). PLAN covers almost
the whole trajectories, with some small drifts. LINEAR fails to link the two long occlusion. Seq 2, a woman is occluded for about 10
frames, PLAN catches up after occlusion, and picks up correct partial occlusions; but LINEAR drifts away to a detection false alarm. Seq
3, a man undergoes two short occlusions, is caught up by PLAN, but LINEAR and LTA terminate the trajectory too early. Video frames
are cropped for clarity. Better viewed in color.

