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Abstract

Resolvinglocal ambiguitiesis an important issuefor
shapefromshading(SFS).Pixel ambiguitiesof SFScanbe
eliminatedbypropagationapproaches.However, patch am-
biguitiesstill exist. Weposesolvingtheseambiguitiesasthe
global disambiguationproblem.Intuitively, it canbeinter-
pretedas �ipping patchesand adjustingheightssuch that
theresultsurfacehasno kinks. Theproblemis intractable
becauseexponentiallymanypossiblecon�gurationsneedto
bechecked. Alternatively, wesolvetheintegrability testing
problemcloselyrelatedto theoriginal one. It canbeviewed
as �nding a surfacewhich satis�estheglobal integrability
constraint. To encodetheconstraints,weintroducea graph
formulationcalledcon�gurationgraph.Searchingthesolu-
tion onthisgraphcanbereducedto a Max-cutproblemand
its solutionis computableusingsemide�niteprogramming
(SDP) relaxation. Testscarried out on syntheticand real
imagesshowthat theglobal disambiguationworkswell for
complex shapes.

1. Intr oduction

Resolvinglocalambiguitiesis importantfor accurate3D
shapereconstruction.In shapefrom shading(SFS)prob-
lem, eachpixel hasa family (cone)of surfacenormalssat-
isfying the image-irradianceequation[4]. Surfacenormals
areuniquelydeterminedonly at pointswherethesurfaceis
frontal to theilluminationdirection.Thesepointsarecalled
singularpoints.

Shapesaround singular points can be computedex-
actly (without using smoothnessconstraint)using prop-
agation methods[1, 7, 11, 13]. However, local shapes
are determined up to three types of ambiguity con-
vex/concave/saddle[2, 10].

Oncethe label of convex/concave/saddleis determined
at a singularpoint, the shapearoundit can be computed
without any ambiguity. In this paperwe point out that the
image-irradianceequationaloneis not enoughfor SFS:as-
signmentof convex/concave/saddlehasa fundamentalef-
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Figure 1. Venus' face. (a) 3D shapeobtainedby changingfour
labelsof patcheswith singularpointsmarked by blue squaresin
(d). (d) shows there-renderedimage,which is almostthesameas
the input imageof (f). (b) and(e) shows thecasewherewe have
fewer(two) incorrectpatches.(c) is the3D shapereconstructedby
ouralgorithm.

fect on the overall reconstructedshape. In Figure 1, we
show several incorrectlabelsof singularpointscanleadto
wrong shapeswhosere-renderedimageslook identical to
theshadingimages.Theonly noticeabledifferencesaretiny
white lines dueto kinks wherelocal estimationshave dis-
crepancieson surfacenormals. Therefore,resolvinglocal
ambiguitiesboilsdown to checkingkink-freecondition:
(P1) Global disambiguation problem. Assignthe con-
vex/concave/saddlelabels and heightsto singular points
such that local patchesreconstructedaroundthemform a
smoothsurfacewithoutkinks.

In orderto stitch local patchesto form thewholeshape,
onewill have to answerthefollowing two questions:

² Convexity. Whichsingularpointsareconvex? Wewill
constructtheshapeby travelling monotonouslydown-
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(a)Convexity: convex vsconcave (b) Range: shortvs long (c) Dir ection: upwardvsdownward
Figure2. Local choicesin problem(P1)and(P2).Singularpointsaremarkedin green(shaded).

wardfrom thepeaks.
² Range.How farshouldeachlocalpropagationtravel?

The propagation terminateswhen it meetsthe fron-
tiers of propagation from other peaksat the same
height. Therefore,rangesof propagationsdependon
the heightsof peaks. The questionis how we deter-
mine the rangesor the heightssuchthat thereareno
kinks.

Thebruteforcesolutionfor (P1) is to checkall thepos-
sibilities by �ipping the label andadjustingthe heighton
eachsingularpoint. Becausecombinationsof all thelabels
areexponentiallymany, searchingfor thecorrectcon�gura-
tion is hard.

The kink-free constraintis very important in addition
to image-irradianceequation. Normally we do not expect
kinks on theobjectsurface.We usethetermkink-freecon-
straint to avoid confusionwith the traditional smoothness
constraint[3, 8, 19,20]. Unlike smoothnessconstraint,the
kink-free constraintin (P1) doesnot �atten the surface,it
only requiresthe turning points (from going up to going
down) to besmooth.Onthecontrary, smoothnessconstraint
regularizestheshapeby penalizingthesecondderivativeof
surfaceheights.Henceit forcesthesurfaceto be�at. Extra
smoothnessconstraintintroducesunnecessarydistortionsof
theshapeandoftenproducesover-smoothsurfaces[3, 8].

Thispaperis organizedasfollows. In Section2, weout-
line a computationalsolutionof (P1)usinga simpli�ed re-
formulation. In Section3, we explain how local shapecan
be computed.We presentthe detailsof our computational
solutionin Section4. We demonstrateour resultson syn-
thetic dataas well as real data in Section5. Finally we
providediscussionsin Section6, followedby conclusion.

2. Problemreformulation

Since searchingdirectly for the solution of (P1) is a
formidabletask,we simplify the problemasfollows. Lo-
cal propagation from one singular point produceheight
differencesto all the other points. In particular, local
propagations give height differenceestimationsbetween
neighboringsingular points as long as heights decrease
monotonouslyfrom oneto theother. Supposetheseneigh-
bor pairs of singular points are known, we can check
whetherthe heightdifferencesarecorrect. This becomes
thefollowing problem:
(P2) Integrability testing problem. Given A) the lo-
cal propagation resultsaroundsingular pointsand B) the

neighboringpairs, assignheightson singular pointssuch
that theheightdifferencesof all theneighborpairsarecon-
sistentwith thosefromthelocal propagations.

Onealternativewayto see(P2)is thatwehaveto choose
+/- signsof heightdifferenceson the neighborpairs. The
absolutevaluesof height differencesare given by local
propagations,butwedonotknow thedir ections(seeFigure
2(c)). Thesechoicesmustbe consistentin orderto assure
heightassignmentsto exist. To bespeci�c, thechoicessat-
isfy theglobal integrability constraint: If we traversesome
neighborpairsin a loop,heightdifferencesmustsumup to
zero, meaningthat we return to the sameheight. This is
dueto the fact that surfacesareassumedto be continuous
without suddenjumpsin theheights.

Both two questionsraisedin (P1)areansweredby solv-
ing (P2). The direction choicesdeterminethe convexity.
Thelocal patchis convex if thesingularpoint is thehigher
onein all the neighborpairscontainingit. The heightas-
signmentsdeterminethevalid rangesof localpropagations.

Weonlyconsiderthecasewherethereisauniquesurface
satisfying(P1). If therearenonoises,solutionof (P2)satis-
�es (P1).Furthermore,if thesolutionof (P2)is unique,it is
exactly thedesiredsurface.Whennoisespresent,the inte-
grability testingproblemamountsto �nding theheightas-
signmentsleastviolating theconstraintsinducedby neigh-
borpairs.

Problem(P2) hasa computablesolution. We will con-
structacon®gurationgraphwhosenodesaresingularpoints
andedgesareneighborpairsof singularpoints. Using the
con�gurationgraphformulationwecanencodeglobalinte-
grability constraintby computingheighton eachnodeand
determiningdirectionon eachedge. We demonstratethis
amountsto aMax-cutproblemandthesolutioncanbecom-
putedusinganSDPrelaxation.

3. Local propagation

The local propagation estimatesthe local shapearound
a referencepoint up to convex/concave ambiguity. Singu-
lar points are good referencepoints becausetheir surface
normalsare�x edin their orientations.

De�nition. Point p is a singularpoint iff n(p) = § `.

Localpropagationmethodscomputesthelocalshapeac-
cordingto imageintensitiesin thefollowing way:

² Input. ImageintensitiesI (­) of a region ­ . Thepo-
sition (x; y) of asingularpointp 2 ­ .



² Output. Height differencesD(p;q) = z(p) ¡ z(q)
betweenthesingularpointp andany otherpointq.

To understandhow shapecan be estimatedlocally by
propagation,let us®rst considertheformationof theshad-
ing image. Supposethe light sourcedirection is ` =
(l1; l2; l3)T with l2

1 + l2
2 + l2

3 = 1 and the surfacenor-
mal of a point at p is n(p) = (n1; n2; n3)T . Given the
albedo½at p andassumingthe surfaceis Lambertian,the
intensity I (p) at p satis®esthe image-irradianceequation
I (p) = ½` ¢n(p).

SFStriesto recover thedifferentiableheight®eldz(p) :
R2 7! R. Let zx = @z

@x , zy = @z
@y . Thenz is relatedto the

intensityI by

I (p) =
½(l1zx + l2zy + l3)

q
z2

x + z2
y + 1

(1)

Withoutlossof generality, wecanassumethatthealbedo
½´ 1. For thesimplecasewhere` = (0; 0; 1)T , (1) degen-
eratesto

jjr zjj =
q

z2
x + z2

y =

r
1
I 2 ¡ 1 (2)

Now SFScanbeformulatedassolvingaPDE(2) known
astheEikonalequation[2, 7]. However, thereis no simple
PDEsolutionto it. Becausetheboundaryconditionis un-
known, it doesnothaveauniquesolutionin general.There-
fore, generalPDE solutionsdo not guaranteethe desired
result.

To estimatelocal shape,we usea fastandaccurateSFS
propagation methodcalledfastmarching[6, 7, 15]. It re-
constructsthesurfaceby aDijkstrastylepropagationonthe
grid. Fastmarchingworksin themonotonousneighborhood
arounda singularpoint, which is locally thehighestor the
lowest. A monotonousneighborhoodmeanswhenmoving
furtheraway from theextremalpoint,heightsz decreaseor
increasemonotonously. Rouy andTourin [14] proved that
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Figure 3. Local shapeestimationfrom singularpoint p via fast
marching:frontierof shortestpathproducesequalheightcontours.
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(a) (b)
Figure4. Local propagationwith obliquelight source.(a) Trans-
formation of the coordinatesfrom camerato illumination. (b)
Shapepropagation in the new coordinates(illumination) starting
from singularpointsmarkedin green(shaded).

theresultsurfaceof fastmarchingis a viscositysolutionto
theEikonalequation(2) in thisneighborhood.

Conceptually, fastmarchingcomputesthe lengthof the
shortestpathD(p;q) from the local highestpoint p to ev-
ery otherpoint q, asanestimationof theheightdifference
z(p) ¡ z(q). The lengthis computedasthe integrationof
theweightson thepointsp's,de®nedas

p
(1=I (p))2 ¡ 1.

D (p;q) = inf
l 2 L

f d(p;q) =
Z

l

p
(1=I (s))2 ¡ 1dsg (3)

whereL containsall the pathsfrom p to q. Notice r z is
the fastestdescentdirectionin theheight®eld. Due to the
monotonicity, thereexist a fastestdescentpathl¤ from p to
q. d(p;q) = z(p) ¡ z(q) along this path. For any small
segmentr to r + ¢ s, jjr z(r )jj givesanupperboundof the
heightdescent,i.e. z(r )¡ z(r + ¢ s) · ¢ sjjr z(r )jj . There-
fore anotherweightedpath can not have a shorterlength
than the fastestdescentpath. The lengthof the weighted
shortestpathis exactly theheightdifference.

Thenatureof fastmarchingis local propagation. It can
beviewedasfrontier propagationsimilar to thecharacter-
istic strip expansionin [5]. If we trace the propagation
frontierswhencomputingtheshortestpath,they arein fact
the equalheight contoursof the height ®eld. The short-
estpathcomputationextendsthesecontoursstartingfrom
the singular point. Under the view of frontier propaga-
tion, fastmarchingcanbegeneralizedto thecaseof oblique
light source,by performingfrontierpropagationin thelight
sourcecoordinates[7, 9] (seeFigure4).

4. Proposedapproach

Ourapproachworksasfollows. Supposewecanidentify
thesingularpointsfrom theshadingimage. Thesearethe
brightestpointsin the image. The local heightestimations
D(p;q) arecomputedby fastmarchingin (3) w.r.t. singular
points. Furthermore,if we candeterminethe subsetP of



(a) (b) (c) (d) (e)
Figure5. Resultof MatlabPEAKS.(a) Input image.(b) Con®guration graphon singularpoints:nodeshave uncertaintiesof their heights
h andedgeshaveuncertaintiesof upanddown directionsencodedby d = § 1. Incorrectcon®gurationd violating integrability constraint
leadsto incorrectshapeshown in (e). Our resultshown in (d) correctlydeterminesthepeaks,andtheoverall shapematcheswell with the
groundtruth in (c).

singularpointswhich arepeakpointsandtheir heightval-
ues,thentheheightsfor all pointscanberecoveredas:

z(q) = max
p2P

f z(p) ¡ D (p;q)g (4)

We employ a graphto representthe directionalchoicesin
(P2). Checkingtheglobal integrability constraintamounts
to agraphcombinatorialsearch.

4.1.Con�guration graph formulation andnotations

A con®guration graphG = (V ; E; W ) is a graphrep-
resentingtheglobalcon®gurationof theshape.Figure5(b)
shows oneexampleof the graph. The verticesV include
all thesingularpoints,i.e. peaks,valleys andsaddlepoints
in the light sourcedirection. Thesepointscanbe viewed
as the representativesof the local patches.E consistsall
theneighborpairsin (P2). WeightsW (E) on theseedges
aresimplytheabsolutevaluesof heightdifferencesbetween
vertices,computedby fastmarching. Let us setn = jV j,
m = jEj.

Let height �eld h = (h1; h2; :::; hn )T bea vectorof the
heightsatall thevertices.Assigningdifferentheightsonthe
verticescanbethoughtasmoving thepatchesatthevertices
verticallyandstitchingthemtogether.

Edge con�gurations canbe capturedformally by d =
(d1; d2; :::; dm )T with d i = § 1(i = 1; 2; :::; m), encoding
thedirectionsof heightdifferences1.

di = +1 i® ei = (vk ; vl ) and hk ¸ hl (5)

Valuesof § 1ondi 'sgivethechoicesof upwardordown-
ward direction in (P2). The optimal choiceof the height
®eldh andedgecon®gurationd answersthetwo questions
of (P1):

² Convexity. Classifythenodesto bepeaksor valleys,
by checkingthesignsof di 's on theincidentedges.

² Range.Starttravelling from thepeaksandkeepgoing
downwardmonotonously.

Therefore®ndingtheglobalconsistentshapeamountsto
®ndingtheheight®eldh andedgecon®gurationd.

1Wede®nethevertex orderon theedgesasei = (vk ; vl ) with k < l .

4.2.Constraints on the graph

The height®eldh andthe edgecon®gurationd arere-
latedto eachotherthroughthefollowing quantities.

De®nevertex-edgeincidencematrixA 2 Rm £ n as

A ij =

8
<

:

+1 ei = (vk ; vl ) for j = k
¡ 1 ei = (vk ; vl ) for j = l
0 otherwise

(6)

De®nethegraphweightson theedgesW 2 Rm £ m as

W = diag(w1; w2; :::; wm ) (7)

wherewi 'saretheabsolutevaluesof heightdifferencesbe-
tweenthenodeson edgeei . We placewi 's on thediagonal
becausethis is convenientfor laterdiscussion.

With the above notionsand formulations,we will ex-
plorehow theglobalintegrability constraintactsonthecon-
®gurationgraph. d andh, representingthelocalpatchcon-
®gurations,arerelatedthroughA , W . If wemadeawrong
assignmenton oneof theedgecon®gurationdi , contradict-
ing to the height®eldh, thenany loop traversingsingular
pointspassingthroughdi will not returnto thesameheight.
A wrongassignmentof d will violatetheintegrability con-
straint.This intuition is capturedby thefollowing claim:

Claim 1. Theassignmentof height®eldh andedgecon®g-
urationd satis®estheintegrability constraint, if

Ah = Wd (8)

Proof. The heightdifferencesf = (f 1; f 2; :::; f m )T on all
theedgescanbecomputedas

f = Ah (9)

It is not dif®cult to see,in idealcase,elementsoff areac-
tually thediagonalentriesof W , exceptfor thepossibilities
of +/- signs.Sof canberepresentedas:

f = Wd (10)

with d encodingthe +/- ambiguity. If a con®gurationis
correct,theremustbeaheight®eldh suchthat(9) and(10)
holdsimultaneously. This justi®es(8).



Noticethatwhentheheightsareshiftedby a constanta:
h (2) = h (1) + a, westill have

Ah (2) = Ah (1) = Wd (11)

Sofor a®xedd, wehavea family of correspondingh.
In orderto obtaina uniquesolutionof h, an additional

row is addedto A . A 0 =
µ

A
b

¶
with b = (1; 1; :::; 1). Ac-

cordinglywe have h0 =
µ

h
0

¶
, W 0 =

µ
W 0
0 0

¶
andd0 =

µ
d
0

¶
. Then(8) remainsin the sameform A 0h0 = W 0d0.

We replaceA 0; h0; W 0; d0 by A ; h; W ; d in later para-
graphs.

Our goal is to searchover all possibleh andd suchthat
they satisfy (8). As we will show next, this reducesto a
Max-cutproblem.

4.3.Max­cut Problem

In the caseof noisy imagemeasurements,(8) doesnot
hold strictly. The appropriated andh satisfyingthe inte-
grability constraint(8) canbecomputedas

(dopt ; hopt ) = argmin
d ; h

jjAh ¡ Wd jj2 (12)

Claim 2. dopt , hopt optimizing(12) canbecomputedby
a Max-cutproblemas

dopt = argmaxd
P

di dj = ¡ 1 E ij (13)

hopt = A yWd opt (14)

with E = W T (AA y ¡ I )T (AA y ¡ I )W .

Proof. First it is easy to see hopt is related to dopt

through hopt = A yWd opt , where A y is the pseudoin-
verseof A , i.e. A y = [A T A ]¡ 1A T . Our searchtask re-
ducesto optimization over d only, i.e. (dopt ; hopt ) =
argmind ;h jjAh ¡ Wd jj2 is equivalentto

dopt = argmin
d

jjAA yWd ¡ Wd jj2
2 (15)

= argmin
d

dT Ed (16)

Minimizing dT Ed , with E asa positive semi-de®nitema-
trix anddi = § 1(i = 1; 2; :::; m) is a combinatorialsearch
problemover the2m discretechoicesof d.

Usingthefactdi dj = § 1, wecanrewrite it as

dT Ed = 2
X

E ij ¡
X

di dj = ¡ 1

E ij (17)

argmin
d

dT Ed = argmax
d

X

di dj = ¡ 1

E ij (18)

If we separatedi = 1 from di = ¡ 1 and regard E ij as
theedgesconnectingtwo parts,theabove equationgivesa
max-cutof di 's.

Finding solution for integrability test problem (P2) is
now computationallyreducedto solving a Max-cut. Note
we areperformingour searchon a limited numberof sin-
gularpointsinsteadof all theimagepixels. Thecon®gura-
tion graphactuallycompressestheinformationinto limited
nodes.Thesearethe placeswherewe have to make deci-
sions,with elsewheredeterminedby thefastmarchingalgo-
rithm. Thechoicesof d andh have to bemadein a global
view.

4.4.Numerical approaches

Max-cut is NP-hard2. Brute forcesearchis only feasi-
ble for smallgraphsizee.g. lessthan10 nodes.For larger
graphswe computetheMax-cutby semi-de®niteprogram-
ming(SDP)3. Werelaxtheedgecon®gurationd to realval-
ues.Let X = dd T , ourproblemcanberelaxedto

minimize dT Ed = tr (EX )
subjectto X ii = tr (A i X ) = 1, i = 1; 2; :::; m

X 2 Sm
+ , A i = ei eT

i

whichis aSDPproblem4. Dueto theconvexity of thesemi-
de®nitecone,SDPcouldbesolvedfastandreliably by the
state-of-artimplementations[16]. In practice,it worksvery
well in optimizing(16).

4.5.Shapeintegration

Now we have recovered the global con®gurationen-
codedby d andh. Sincedi = § 1 indicateswhich oneof
theneighboringverticesis higher, peaks(convex) areiden-
ti®edby ®ndingthevertex higherthanall of its neighborsin
thegraph.Fromthesepeaksandtheirestimatedheights,lo-
calpropagationsarestitchedtogetheraccordingto (4). How
far eachlocal propagation can travel, in�uential zones, is
determinedby therelativeheightsof thepeaks.

If the graphtopology is incorrect,the resultmight still
have kinks. Therefore,we needto checkwhetherthereare
kinks betweenneighboringpatches.Supposen1(s); n2(s)
aresurfacenormalsestimatedfrom neighboringin¯uential
zones­ 1; ­ 2 respectively. S(B ) measuresthediscrepancy
of surfacenormalon the boundaryB , which indicatesthe
”sharpness”of thekink.

S(B ) = [
Z

B
1 ¡ n1(s) ¢n2(s)ds]=

Z

B
ds (19)

We checkandcorrectthe heightsof the patchesto ensure
thatthevalueof (19) is small,i.e. without kinks.

2However, therearepolynomialalgorithmsfor theMin-cut problem.
3An SDP solves this problem: minimize tr (CX ), subject to

tr (A i X ) = bi , i = 1; 2; :::; p, X 2 Sn
+ . Sn

+ denotethe setof posi-
tivesemi-de®nitematrices.

4ei (i = 1; 2; :::; m) arethecanonicalbasis.



4.6.Algorithm overview

In summary, ouralgorithmcontainsthefollowing steps:

1. Singular points detection Select points with local
maximalintensitiesandabovesomethreshold.

2. Fast marching Estimates the height differences
D(p;q) from eachsingularpoint p to its local neigh-
borhood.

3. Con®guration graph formulation Construct the
graphby connectingneighboringsingularpoints.

4. Disambiguation Use SDP to ®nd dopt optimizing
dT Ed in (16).

5. Shapeintegration Identify peaksfrom dopt . Adjust
the in¯uential zoneswhen necessary. Estimate h at
the peaksby (14). Surfaceheightsare computedby
stitchingequation(4).

5. Results

We testour approachon syntheticandreal imageswith
complex shapesand it outperformsprevious energy mini-
mizationandlocalpropagationmethods.

We ®rst testthealgorithmon theMatlabPEAKSimage
in Figure 5. It consistsof 9 singularpoints, of which 3
arepeaks,3 arevalleysand3 aresaddlepoints.Thissimple
exampleshowsthepowerof ourmethodtosolvelocalshape
ambiguities.As seenin Figure5, we recover correctlythe
convex/concave/saddlelabelling aswell as the overall 3D
shape.

Figure6 shows resultson morecomplex syntheticim-
ages. For the Venusimage,the graphhas94 verticesand
213 edges,of which 3 aredeterminedto be global peaks.
In the caseof the EgyptianqueenNefertiti, the graphhas
65 verticesand 148 edges,of which 3 are determinedto
be global peaks. We seethat local propagation is able to
producedetailedlocal 3D structurewhile integrability con-
straintis ableto determinethe relative heightsof different
partsaswell asthepropagationdirection.For example,the
algorithmmanagesto ®gureout thatpropagationshouldbe
performedfrom the lower to the upperpart on Nefertiti's
headdress,whereotherwisethewholeshapeof thesurface
will bechanged.

Previous methods[1, 9, 17, 19, 20] performpoorly on
theseexamples. Energy minimization approachessuffer
from smoothnessconstraintand local minima: the result
surfaceis ¯atgloballybut bumpy locally (Figure6(e)).Lo-
cal propagation methodscan give reasonablesmoothsur-
faces,but fail to give a correctglobal shape(Figure6(f)).
For a fair comparison,we have alreadytunedthe parame-
tersfor the previous methods[1, 17] andtake the bestre-
sults. Further, we choosethe top two resultsfrom the six
methodssurveyedin [19].

Figure 5 shows recovering the correctcon®gurationis
critical for propagationmethods.If thepropagation is per-
formedfrom incorrectsingularpoints, the result could be
very bad. Even if we arelucky to choosetheright starting
point out of hundredsof candidates,propagationfrom only
onepoint still doesnot give correctresults.This is dueto
the fact that the in¯uential zoneof a single point usually
doesnot cover theentireimage.

Ouralgorithmis testedontwo realimages,astonesculp-
ture and part of the Three Graces. The light sourcedi-
rectionsareapproximatelyestimatedas(0:55; 0:55; 0:62)T

and (0; 0; 1)T respectively. Examplesunderuncontrolled
illumination conditionsareextremelydif®cult. Our single
light source,Lambertianassumptionis usuallyviolatedin
practice: incorrect intensitiesdue to diffuse light sources
andinter-re¯ections,multiple self shadows, discontinuities
suchascracksanddents,nonconstantalbedodueto paints
anddirts, just to namea few of them. Our algorithmhas
donea good job despitethesedif®culties (Figure5). The
roughshapesarecorrectanddetailsarewell preserved.

6. Discussions

Severalauthorshavepointedout thatthelocalambiguity
problemin SFS.In [18], localambiguitieswereresolvedby
userspecifyingsurfacenormalsat a few key points. Kim-
mel andBruckstein[6] observed that the classi®cationof
singularpointsandrelationsbetweenthemare important.
However, their methoddoesnot work for saddle(shoulder)
points,which is a seriouslimitation. PradosandFaugeras
[12] assumedthatboundaryconditionsaswell asheightsat
singularpointsweregiven,but thesedataaregenerallyin-
accessible.Their recentwork [13] consideredtheeffect of
thedistancebetweenthelight sourceandthesurfaceanda
monotonousschemewasobtained.They actuallyassumed
that points were becomingfurther away from the camera
while they wereapproachingto the imageboundary. This
is avery limited assumption.

Comparingto previous energy minimization and local
propagationmethodsourapproachdirectlyresolvestheam-
biguity in SFS.Ourmethodrequiresnoboundarydata,user
interactionor additionalassumptionsto solveSFS.

We would like to point out a shortcomingof our solu-
tion. The equivalencebetweenproblem (P1) (kink-free)
and (P2) (integrability) dependson the correctcon®gura-
tion graph topology. Con®gurationgraph is de®nedon
'neighborpairs'. Correctneighborpairs(betweensingular
points)requiresknowing a prior that the heightdecreases
monotonouslyfrom one to the other. We usea heuristic
of choosingclose-bysingularpointsasneighborpairs,and
it works for most cases. However, there is no guarantee
that suchheuristicalwaysleadsto the correctsolution. In
factwe have observedbadneighborpairscausingincorrect
solutions(satisfying(P1) but having kinks). Onepossible



(a) (b) (c) (d) (e) (f)
Figure6. Resultsof VenusandNefertiti. (a) Input image.(b) In¯uentialzonesof peaks(color coded).(c)-(d) Resultby our methodunder
two differentviews. (e) Resultby TsaiandShah's method[17, 19] with thebestparameters.(f) Resultby BichselandPentland's method
[1, 19] with thebestparameters.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 7. Resultsof Isis. (a) Input image. (b)(e)(f) Surfacecomputedby our algorithm hasa correctglobal con®gurationas well as
local surfacedetailsshown in (e)(f) (her faceandleft hand).(c) Incorrectlabellingof singularpointsleadsto incorrectglobalshape.(d)
Propagation from onecorrectsingularpoint hasa very limited range.(h) shows a zoom-inincorrectfacereconstructionof (d), compared
with ourmethodin (g).



(c) (d)

Figure 8. Results on two real images. (a) A stone relief. (b) 3D reconstruction of

(a). (c) The Three Graces. (d) 3D Reconstruction of (c). Note that the surface is 

(b)(a)

intensities are darker in the error regions.

correctly reconstructed, except for errors in the lower leg of (d). Due to dirt, 

solutionis to perturbthe con®gurationgraphby removing
certainneighborpairsandcheckfor thekink-freeconstraint
uponsolving(P2).

7. Conclusion

In thispaper, wepointoutthatimage-irradianceequation
aloneis not a suf®cient conditionfor SFS:the shapemust
also be kink-free. The kink-free constraintshouldnot be
confusedwith smoothnessconstraint— local shapecanbe
computedexactly up to convex/concave/saddlelabels.The
questionis how we can glue theselocal shapestogether,
which amountsto a combinatorialsearch. In this work,
we simpli®ed this searchby checkingthe global integra-
bility constraintbetweenthepatches.To solve it, we build
thecon®gurationgraphandcomputationallythis combina-
torial optimizationreducesto a Max-cutproblem.Theex-
perimentresultson realandsyntheticdatademonstrateour
methodworkswell oncomplex shapes.
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