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Abstract

Resolvinglocal ambiguitiesis an important issue for
shapefrom shading(SFS) . Pixel ambiguitiesof SFScanbe
eliminatedby propagationappmoacdes.However, patcham-
biguitiesstill exist. We posesolvingtheseambiguitiesasthe
global disambiguatiorproblem. Intuitively, it canbeinter-
pretedas ipping patchesand adjustingheightssud that
theresultsurfacehasno kinks. The problemis intractable
becausexponentiallymanypossiblecon gurationsneedto
be cheded. Alternatively we solvethe integrability testing
problemcloselyrelatedto theoriginal one It canbeviewed
as nding a surfacewhich satis esthe global integrability
constaint. To encodeaheconstaints,weintroducea graph
formulationcalledcon gurationgraph. Seachingthesolu-
tion onthisgraphcanbereducedo a Max-cutproblemand
its solutionis computableusingsemide niteprogramming
(SDP)relaxation. Testscarried out on syntheticand real
imagesshowthat the global disambiguatiorworkswell for
comple shapes.

1. Intr oduction

Resolvinglocalambiguitiess importantfor accurate8D
shapereconstruction.In shapefrom shading(SFS)prob-
lem, eachpixel hasa family (cone)of surfacenormalssat-
isfying theimage-irradiancequation[4]. Surfacenormals
areuniquelydeterminednly at pointswherethe surfaceis
frontalto theillumination direction. Thesepointsarecalled
singularpoints

Shapesaround singular points can be computedex-
actly (without using smoothnessonstraint) using prop-
agation methods[1, 7, 11, 13]. However, local shapes
are determinedup to three types of ambiguity con-
vex/concae/saddld2, 10].

Oncethe label of corvex/concae/saddles determined
at a singularpoint, the shapearoundit can be computed
withoutany ambiguity In this paperwe point out thatthe
image-irradiancequationaloneis not enoughfor SFS:as-
signmentof convex/concae/saddlehasa fundamentakef-
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(d) (e) ®
Figure 1. Venus'face. (a) 3D shapeobtainedby changingfour
labelsof patcheawith singularpoints marked by blue squaresn
(d). (d) shavs there-renderedmage,whichis almostthe sameas
theinputimageof (f). (b) and(e) showvs the casewherewe have
fewer (two) incorrectpatches(c) is the3D shapeaeconstructethy
ouralgorithm.

fect on the overall reconstructedshape. In Figure 1, we
shav severalincorrectlabelsof singularpointscanleadto
wrong shapesvhosere-renderedmageslook identical to
theshadingmages.Theonly noticeablaifferencesretiny
white lines dueto kinks wherelocal estimationshave dis-
crepancie®n surfacenormals. Therefore resolvinglocal
ambiguitieshoils down to checkingkink-free condition:
(P1) Global disambiguation problem. Assignthe con-
vex/concave/saddldabels and heightsto singular points
sud that local patchesreconstructecaroundthemform a
smoothsurfacewithoutkinks.

In orderto stitchlocal patchego form the whole shape,
onewill have to answerthefollowing two questions:

2 Convexity. Whichsingularpointsareconvex? We will
constructhe shapeby travelling monotonoushydown-
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(a) Convexity: corvex vs concae

(b) Range: shortvslong

(c) Dir ection: upwardvs dowvnward

Figure2. Local choicesn problem(P1)and(P2). Singularpointsaremarkedin green(shaded).

wardfrom thepeaks.

2 Range.How far shouldeachlocal propagtiontravel?
The propagtion terminateswhen it meetsthe fron-
tiers of propagtion from other peaksat the same
height. Therefore rangesof propagtionsdependon
the heightsof peaks. The questionis how we deter
mine the rangesor the heightssuchthatthereareno
kinks.

The bruteforce solutionfor (P1)is to checkall the pos-
sibilities by ipping the label and adjustingthe heighton
eachsingularpoint. Because&ombinationsf all thelabels
areexponentiallymany searchindor thecorrectcon gura-
tionis hard.

The kink-free constraintis very importantin addition
to image-irradianceequation. Normally we do not expect
kinks on the objectsurface.We usethetermkink-free con-
straintto avoid confusionwith the traditional smoothness
constrain{3, 8, 19, 20]. Unlike smoothnessonstraintthe
kink-free constraintin (P1) doesnot atten the surface, it
only requiresthe turning points (from going up to going
down) to besmooth.Onthecontrary smoothnessonstraint
regularizeshe shapeby penalizingthe seconderivative of
surfaceheights.Henceit forcesthe surfaceto be at. Extra
smoothnessonstrainintroducesinnecessargtistortionsof
the shapeandoftenproducesversmoothsurfacedq3, 8].

This paperis organizedasfollows. In Section2, we out-
line a computationakolutionof (P1)usinga simpli ed re-
formulation. In Section3, we explain how local shapecan
be computed.We presenthe detailsof our computational
solutionin Section4. We demonstrateur resultson syn-
thetic dataas well asreal datain Section5. Finally we
provide discussionsn Section6, followedby conclusion.

2. Problemreformulation

Since searchingdirectly for the solution of (P1)is a
formidabletask, we simplify the problemasfollows. Lo-
cal propagtion from one singular point produce height
differencesto all the other points. In particular local
propagtions give height difference estimationsbetween
neighboringsingular points as long as heights decrease
monotonouslyfrom oneto the other Supposdheseneigh-
bor pairs of singular points are known, we can check
whetherthe height differencesare correct. This becomes
thefollowing problem:

(P2) Integrability testing problem. Given A) the lo-
cal propagation resultsaround singular pointsand B) the

neighboringpairs, assignheightson singular points suc
thattheheightdifferencesof all theneighborpairs are con-
sistentwith thosefromthelocal propagations.

Onealternatve way to see(P2)is thatwe have to choose
+/- signsof heightdifferenceson the neighborpairs. The
absolutevalues of height differencesare given by local
propagtions butwedonotknow thedir ections(seeFigure
2(c)). Thesechoicesmustbe consistenin orderto assure
heightassignmentto exist. To be speci c, the choicessat-
isfy the global integrability constaint: If we traversesome
neighborpairsin aloop, heightdifferencesmustsumup to
zero, meaningthat we returnto the sameheight. This is
dueto the factthat surfacesare assumedo be continuous
without sudderjumpsin the heights.

Both two questiongaisedin (P1)areansweredy solv-
ing (P2). The direction choicesdeterminethe corvexity.
Thelocal patchis convex if the singularpointis the higher
onein all the neighborpairs containingit. The heightas-
signmentsieterminghevalid rangesof local propagtions.

We only considethecasewherethereis auniquesurface
satisfying(P1). If thereareno noisessolutionof (P2)satis-
es (P1). Furthermoreif thesolutionof (P2)is unique,it is
exactly the desiredsurface. Whennoisespresentthe inte-
grability testingproblemamountso nding the heightas-
signmentdeastviolating the constraintinducedby neigh-
bor pairs.

Problem(P2) hasa computablesolution. We will con-
structacon®gumationgraptwhosenodesaresingulamoints
andedgesareneighborpairsof singularpoints. Using the
con gurationgraphformulationwe canencodeglobalinte-
grability constraintby computingheighton eachnodeand
determiningdirection on eachedge. We demonstratehis
amountgo aMax-cutproblemandthesolutioncanbecom-
putedusingan SDPrelaxation.

3. Local propagation

The local propagtion estimateghe local shapearound
a referencepoint up to corvex/concare ambiguity Singu-
lar points are good referencepoints becauseheir surface
normalsare x edin their orientations.

De nition. Point pis a singularpointiff n(p) = § .

Local propagitionmethodscomputeghelocal shapeac-
cordingto imageintensitiesin thefollowing way:

2 |nput. Imageintensitiesl (-) of aregion- . Thepo-
sition (x; y) of asingularpointp 2 - .



2 Qutput. HeightdifferencesD(p;q) = z(p) i z(Q)
betweerthe singularpoint p andary otherpointg.

To understanchowv shapecan be estimatedlocally by
propagtion, let us®rst considerthe formationof the shad-
ing image. Supposethe light sourcedirectionis = =
(I1;12;13)T with 12 + 12 + 13 = 1 andthe surface nor
mal of a pointatp is n(p) = (ni;ny;n3)". Giventhe
albedoY2at p andassuminghe surfaceis Lambertian the
intensity | (p) at p satis®esthe image-irradiancesquation
I (p) = ¥2" ¢n(p).

SFStriesto recover the differentiableheight®eldz(p) :
R> 7! R. Letz, = &,z = &. Thenzis relatedto the
intensityl by
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Withoutlossof generalitywe canassumehatthealbedo
Y 1. Forthesimplecasewhere’ = (0;0;1)", (1) degen-
erateso
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Now SFScanbeformulatedassolvinga PDE(2) known
asthe Eikonalequation2, 7]. However, thereis no simple
PDE solutionto it. Becausehe boundaryconditionis un-
known, it doesnothave auniquesolutionin general.There-
fore, generalPDE solutionsdo not guaranteehe desired
result.

To estimatdocal shapewe usea fastandaccurateSFS
propagtion methodcalledfastmarching[6, 7, 15]. It re-
constructghesurfaceby a Dijkstra style propagtiononthe
grid. Fastmarchingworksin themonotonousieighborhood
arounda singularpoint, which is locally the highestor the
lowest. A monotonousieighborhoodneansvhenmoving
furtheraway from the extremalpoint, heightsz decreaser
increasemonotonously Rouy and Tourin [14] proved that

Figure 3. Local shapeestimationfrom singularpoint p via fast
marching:frontierof shortespathproducequalheightcontours.
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Figure4. Local propagtionwith obliquelight source.(a) Trans-
formation of the coordinatesfrom camerato illumination. (b)
Shapepropagtion in the new coordinategillumination) starting
from singularpointsmarkedin green(shaded).

theresultsurfaceof fastmarchingis a viscositysolutionto
the Eikonalequation(2) in this neighborhood.
Conceptuallyfastmarchingcomputeghe lengthof the
shortestpathD (p; ) from the local highestpoint p to ev-
ery otherpoint g, asan estimationof the heightdifference
z(p) i z(g). Thelengthis computedaf,theintegrationof
theweightson the pointsp's,de®nedas (1=I(p))2; 1.

z
P
D(pi) = jnff dpig) =~ (A=I(9)%7 1dsg (3)

whereL containsall the pathsfrom p to g. Noticer z is
the fastestdescendirectionin the height®eld. Dueto the
monotonicity thereexist afastestdescenpathl® from p to
g d(p;a) = z(p) i z(q) alongthis path. For arny small
sgmentr tor + ¢ s, jjr z(r)jj givesanupperboundof the
heightdescenti.e. z(r)j z(r+ ¢ s) - ¢ sjjr z(r)jj. There-
fore anotherweightedpath can not have a shorterlength
thanthe fastestdescentpath. The length of the weighted
shortespathis exactly the heightdifference.

The natureof fastmarchingis local propagtion. It can
be viewed asfrontier propagtion similar to the character
istic strip expansionin [5]. If we tracethe propagtion
frontierswhencomputingthe shortespath,they arein fact
the equal height contoursof the height®eld. The short-
est path computationextendsthesecontoursstartingfrom
the singular point. Under the view of frontier propag-
tion, fastmarchingcanbegeneralizedo the caseof oblique
light source by performingfrontier propagtionin thelight
sourcecoordinateg?, 9] (seeFigure4).

4. Proposedapproach

Ourapproactworksasfollows. Supposeave canidentify
the singular pointsfrom the shadingimage. Thesearethe
brightestpointsin theimage. Thelocal heightestimations
D (p; g) arecomputedoy fastmarchingin (3) w.r.t. singular
points. Furthermorejf we candeterminethe subsetP of
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Figure5. Resultof Matlab PEAKS. (a) Inputimage.(b) Con®guiation graphon singularpoints: nodeshave uncertaintieof their heights
h andedgeshave uncertaintie®f up anddown directionsencodedy d = 8 1. Incorrectcon®guration violating integrability constraint
leadsto incorrectshapeshavn in (e). Our resultshawvn in (d) correctlydetermineghe peaks andthe overall shapematcheswvell with the

groundtruthin (c).

singularpointswhich are peakpointsandtheir heightval-
ues,thentheheightsfor all pointscanberecoveredas:

2(q) = maxfz(p) i D(p:a)9 )
We employ a graphto representhe directionalchoicesin
(P2). Checkingthe global integrability constraintamounts
to agraphcombinatoriakearch.

4.1.Con guration graph formulation and notations

A con®guiation graphG = (V;E; W) is a graphrep-
resentinghe global con®guratiorof the shape Figure5(b)
shavs one exampleof the graph. The verticesV include
all the singularpoints,i.e. peaksyvalleys andsaddlepoints
in the light sourcedirection. Thesepoints canbe viewed
asthe representaties of the local patches.E consistsall
the neighborpairsin (P2). WeightsW (E) on theseedges
aresimplytheabsolutevaluesof heightdifferencedetween
vertices,computedby fastmarching. Let ussetn = jVj,
m = jEj.

Let height eld h = (hy;hy;::h,)T beavectorof the
heightsatall thevertices.Assigningdifferentheightsonthe
verticescanbethoughtasmoving thepatchestthevertices
vertically andstitchingthemtogether

Edge con gurations canbe capturedformally by d =
(dg;dg; s dm)T with dj = 8 1(i = 1;2;::;; m), encoding
thedirectionsof heightdifferences.

d=+1 i® e = (w;v)andhg,6 h

®)

Valuesof § 1 ond; 'sgivethechoicesof upwardor down-
ward directionin (P2). The optimal choiceof the height
®eldh andedgecon®guratior answerghetwo questions
of (P1):

2 Convexity. Classifythe nodesto be peaksor valleys,
by checkingthe signsof d;'s ontheincidentedges.

2 Range.Starttravelling from the peaksandkeepgoing
downward monotonously

Therefore®ndingtheglobalconsistenshapeamountgo
®ndingtheheight®elch andedgecon®guratiom.

1we de®nethevertex orderontheedgesase; = (vi;v)) withk < 1.

4.2.Constraints on the graph

The height®eldh andthe edgecon®guratiord arere-
latedto eachotherthroughthefollowing quantities.
De®nevertex-edgeincidencematrixA 2 R™£" as

k
| (6)

8
< +1 g = (w;Vv)forj
Aj =, il e=(ww)forj
0 otherwise

De®nethegraphweightsontheedge®v 2 R™£™M as
Q)

wherew;'s arethe absolutevaluesof heightdifferencede-
tweenthenodeson edgee; . We placew;'s onthe diagonal
becausehis is convenientfor laterdiscussion.

With the aborve notions and formulations,we will ex-
plorehow theglobalintegrability constrainfactsonthecon-
®gurationgraphd andh, representinghelocal patchcon-
®gurations arerelatedthroughA , W . If we madeawrong
assignmenbn oneof theedgecon®guratior; , contradict-
ing to the height®eldh, thenary loop traversingsingular
pointspassinghroughd; will notreturnto thesameheight.
A wrongassignmentf d will violatetheintegrability con-
straint. This intuition is capturedoy thefollowing claim:

W = diag(wz;Wo;:::; Wn)

Claim 1. Theassignmenof height®eldh andedge con®g-
urationd satis®egheintegrability constaint, if

Ah = wd (8

Proof. The heightdifferenced = (f1;f5;:::;f,)T onall
theedgesanbe computedas

f = Ah ©)

It is not dif®cult to see,in ideal case elementff areac-
tually thediagonalentriesof W , exceptfor thepossibilities
of +/- signs.Sof canberepresenteds:

f=wd (10)

with d encodingthe +/- ambiguity If a con®gurationis
correct,theremustbeaheight®eldh suchthat(9) and(10)
hold simultaneouslyThis justi®es(8). O



Noticethatwhenthe heightsareshiftedby a constang:
h() = h(1) + a, westill have

Ah @ = An D) = wd (12)

Sofor a®xedd, we have afamily of correspondindp.
In orderto obtaina urmﬂguqlsolution of h, anadditional

row is addedto A. A®= 2 withb = (1;1;::;1). Ac-
™ T

cordinglywe have h® = ,WO= andd®=
MR 0 0 O

g . Then(8) remainsin the sameform A%h%= W %°.

We replaceA%h%W%d% by A;h;W ;d in later para-
graphs.

Ourgoalis to searchover all possibleh andd suchthat
they satisfy (8). As we will shov next, this reducesto a
Max-cutproblem.

4.3.Max-cut Problem

In the caseof noisy imagemeasurementg8) doesnot
hold strictly. The appropriated andh satisfyingthe inte-
grability constrain(8) canbe computedas

(dopt ;hopt ) = arg Ln_igjjAh i Wd jj2 (12)

Claim 2. dopt , hopt Optimizing(12) can be computedoy
a Max-cutproblemas

P
dopt = argmaxgy did = 1 Eij (13)
hopt = AYwd opt (14)
WIthE = WT(AAY| DT(AAY | DHW.

Proof. First it is easy to see hgy is relatedto dop
throughhgpe = AYWd o , Wwhere AY is the pseudoin-
verseof A, i.e. AY = [ATA] AT, Our searchtaskre-
ducesto optimization over d only, i.e. (dopt ;hopt) =
argming., jjAh | Wd jj, is equivalentto

dopt = argr‘r]jinjjAAde i Wdijj3 (15)
= arngLindTEd (16)

Minimizing d" Ed, with E asa positive semi-de®nitema-
trix andd; = 8 1(i = 1;2;::;; m) is acombinatorialsearch
problemoverthe2™ discretechoicesof d.
Usingthefactd;d; = § 1, we canrewrite it as
X X
d"Ed =2 Ej | Ej (17)
d; dj =il
X
arg rrljin d"Ed = arg max Ej (18)
didj=j 1
If we separatedi = 1fromd; = | 1andregardE; as

the edgesconnectingwo parts,the abose equationgivesa
max-cutof d;'s. O

Finding solution for integrability test problem (P2) is
now computationallyreducedto solving a Max-cut. Note
we are performingour searchon a limited numberof sin-
gularpointsinsteadof all theimagepixels. The con®guia-
tion graphactuallycompressetheinformationinto limited
nodes. Thesearethe placeswherewe have to make deci-
sions,with elsevheredeterminedy thefastmarchingalgo-
rithm. The choicesof d andh have to be madein a global
view.

4.4.Numerical approaches

Max-cutis NP-hard?. Brute force searchis only feasi-
ble for smallgraphsizee.g. lessthan10 nodes.For larger
graphswe computethe Max-cutby semi-de®nitgorogram-
ming (SDP}. We relaxtheedgecon®gurationl to realval-
ues.LetX = dd T, ourproblemcanberelaxedto

minimize dTEd = tr (EX)
subjectto X = tr(A;X) =1,
X 2 ST,Ai = eieiT

i=12::m

whichis aSDPproblem®. Dueto thecorvexity of thesemi-
de®nitecone,SDPcould be solved fastandreliably by the
state-of-arimplementation$16]. In practice,it worksvery
well in optimizing (16).

4.5. Shapeintegration

Now we have recovered the global con®gurationen-
codedby d andh. Sinced; = 8 1 indicateswhich oneof
theneighboringverticesis higher peaks(corvex) areiden-
ti®@ed by ®ndingthevertex higherthanall of its neighborsn
thegraph.Fromthesepeaksandtheir estimatedheights o-
cal propagtionsarestitchedtogetheraccordingo (4). How
far eachlocal propagtion cantravel, in uential zones is
determinedy therelative heightsof the peaks.

If the graphtopologyis incorrect,the result might still
have kinks. Therefore we needto checkwhetherthereare
kinks betweemeighboringpatches.Supposen; (s); n,(s)
aresurfacenormalsestimatedrom neighboringin uential
zones 1;- » respectiely. S(B) measureshediscrepang
of surfacenormalon the boundaryB, which indicatesthe
"sharpnessof thekink.

Z Z
S(B)=1[ 1j ni(s)¢ny(s)ds]= ds (19)
B B

We checkand correctthe heightsof the patcheso ensure
thatthevalueof (19)is small,i.e. without kinks.

2However, therearepolynomialalgorithmsfor the Min-cut problem.

3An SDP solwves this problem: minimize tr (CX ), subject to
tr(AiX) = b,i = 1;2;:5;p, X 2 S, SP denotethe setof posi-
tive semi-de®nitematrices.

4ei (i = 1;2;::; m) arethecanonicabasis.



4.6.Algorithm overview

In summaryour algorithmcontainsthe following steps:

1. Singular points detection Select points with local
maximalintensitiesandabove somethreshold.

2. Fast marching Estimates the height differences
D (p;g) from eachsingularpoint p to its local neigh-
borhood.

3. Con®guration graph formulation Construct the
graphby connectingneighboringsingularpoints.

4. Disambiguation Use SDP to ®nddgp optimizing
d" Ed in (16).

5. Shapeintegration Identify peaksfrom dop . Adjust
the in"uential zoneswhen necessary Estimate h at
the peaksby (14). Surfaceheightsare computedby
stitchingequation(4).

5. Results

We testour approacton syntheticandreal imageswith
comple shapesandit outperformsprevious enegy mini-
mizationandlocal propa@tionmethods.

We ®rst testthe algorithmon the Matlab PEAKS image
in Figure 5. It consistsof 9 singular points, of which 3
arepeaks3 arevalleys and3 aresaddlepoints. This simple
exampleshovsthepowerof ourmethocdto solvelocalshape
ambiguities.As seenin Figure5, we recover correctlythe
convex/concae/saddldabelling aswell asthe overall 3D
shape.

Figure 6 shavs resultson more complex syntheticim-
ages. For the Venusimage, the graphhas94 verticesand
213 edges,of which 3 are determinedo be global peaks.
In the caseof the EgyptianqueenNefertiti, the graphhas
65 verticesand 148 edges,of which 3 are determinedto
be global peaks. We seethat local propagtion is able to
producedetailediocal 3D structurewhile integrability con-
straintis ableto determinethe relative heightsof different
partsaswell asthe propagtiondirection. For example,the
algorithmmanageso ®gureout thatpropagtionshouldbe
performedfrom the lower to the upperpart on Nefertiti's
headdressyhereotherwisethe whole shapeof the surface
will bechanged.

Previous methods[1, 9, 17, 19, 20] perform poorly on
theseexamples. Enegy minimization approachesuffer
from smoothnesgonstraintand local minima: the result
surfaceis “at globally but bumpy locally (Figure6(e)). Lo-
cal propagition methodscan give reasonablesmoothsur
faces,but fail to give a correctglobal shape(Figure 6(f)).
For a fair comparisonwe have alreadytunedthe parame-
tersfor the previous methodg[1, 17] andtake the bestre-
sults. Further we choosethe top two resultsfrom the six
methodssuneyedin [19].

Figure 5 shows recovering the correctcon®gurationis
critical for propagtion methods.If the propagtionis per
formedfrom incorrectsingularpoints, the resultcould be
very bad. Evenif we arelucky to choosethe right starting
point out of hundredsf candidatespropagtionfrom only
onepoint still doesnot give correctresults. This is dueto
the fact that the in uential zone of a single point usually
doesnot covertheentireimage.

Ouralgorithmis testedbntwo realimagesastonesculp-
ture and part of the Three Graces. The light sourcedi-
rectionsareapproximatelyestimatedas(0:55; 0:55; 0:62)"
and(0;0;1)" respectiely. Examplesunderuncontrolled
illumination conditionsare extremely dif®cult. Our single
light source,Lambertianassumptioris usuallyviolatedin
practice: incorrectintensitiesdue to diffuse light sources
andinterre ectionsmultiple self shadavs, discontinuities
suchascracksanddents,nonconstanalbedodueto paints
anddirts, just to namea few of them. Our algorithm has
donea goodjob despitethesedif®culties (Figure5). The
roughshapesrecorrectanddetailsarewell presered.

6. Discussions

Severalauthorshave pointedoutthatthelocalambiguity
problemin SFS.In [18], localambiguitiesvereresohedby
userspecifyingsurfacenormalsat a few key points. Kim-
mel and Bruckstein[6] obsenred that the classi®cationof
singularpoints andrelationsbetweenthem are important.
However, their methoddoesnot work for saddle(shoulder)
points,which is a seriouslimitation. Pradosand Faugeras
[12] assumedhatboundaryconditionsaswell asheightsat
singularpointsweregiven, but thesedataare generallyin-
accessibleTheir recentwork [13] consideredhe effect of
the distancebetweerthelight sourceandthe surfaceanda
monotonouschemewasobtained. They actuallyassumed
that points were becomingfurther away from the camera
while they wereapproachingo theimageboundary This
is avery limited assumption.

Comparingto previous enegy minimization and local
propa@tionmethodurapproachdirectly resohestheam-
biguity in SFS.Our methodrequiresno boundarydata,user
interactionor additionalassumption$o solve SFS.

We would like to point out a shortcomingof our solu-
tion. The equivalencebetweenproblem (P1) (kink-free)
and (P2) (integrability) dependson the correctcon®gura-
tion graphtopology Con®gurationgraphis de®nedon
‘'neighborpairs'. Correctneighborpairs(betweensingular
points) requiresknowing a prior thatthe heightdecreases
monotonouslyfrom oneto the other We usea heuristic
of choosingclose-bysingularpointsasneighborpairs,and
it works for most cases. However, thereis no guarantee
that suchheuristicalwaysleadsto the correctsolution. In
factwe have obsernedbadneighborpairscausingncorrect
solutions(satisfying(P1) but having kinks). One possible



(@) (b) o (d) (e) ®
Figure6. Resultsof VenusandNefertiti. (a) Inputimage.(b) In uentialzonesof peakscolor coded).(c)-(d) Resultby our methodunder
two differentviews. (e) Resultby TsaiandShahs method[17, 19] with the bestparameters(f) Resultby BichselandPentlands method

[1, 19] with thebestparameters.

(@) (b) (c) (d)

(e) ® ) (h)
Figure 7. Resultsof Isis. (a) Inputimage. (b)(e)(f) Surface computedby our algorithm hasa correctglobal con®gurationas well as
local surfacedetailsshavn in (e)(f) (herfaceandleft hand).(c) Incorrectlabelling of singularpointsleadsto incorrectglobal shape.(d)
Propagtion from onecorrectsingularpoint hasa very limited range.(h) shovs azoom-inincorrectfacereconstructiorof (d), compared

with our methodin (g).



(@) (b)

Figure 8. Results on two real images. (a) A stone relief. (b) 3D reconstruction of
(). (c) The Three Graces. (d) 3D Reconstruction of (c). Note that the surface is
correctly reconstructed, except for errors in the lower leg of (d). Due to dirt,

intensities are darker in the error regions.

solutionis to perturbthe con®gurationgraphby remaoving
certainneighbormairsandcheckfor thekink-freeconstraint
uponsolving (P2).

7.Conclusion

In thispaperwe pointoutthatimage-irradiancequation
aloneis not a suf®cient conditionfor SFS:the shapemust
alsobe kink-free. The kink-free constraintshouldnot be
confusedwith smoothnessonstraint— local shapecanbe
computedexactly up to corvex/concae/saddldabels. The
guestionis how we can glue theselocal shapegogether
which amountsto a combinatorialsearch. In this work,
we simpli®ed this searchby checkingthe global integra-
bility constraintbetweerthe patches.To solve it, we build
the con®gurationgraphandcomputationallythis combina-
torial optimizationreducego a Max-cut problem. The ex-
perimentresultson realandsyntheticdatademonstrateur
methodworkswell on complex shapes.
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