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Abstract. We introduce a shape detection framework calledContour Context Se-
lection for detecting objects in cluttered images using only one exemplar. Shape
based detection is invariant to changes of object appearance, and can reason with
geometrical abstraction of the object. Our approach uses salient contours as inte-
gral tokens for shape matching. We seek a maximal, holistic matching of shapes,
which checks shape features from a large spatial extent, as well as long-range con-
textual relationships among object parts. This amounts to finding the correct fig-
ure/ground contour labeling, and optimal correspondencesbetween control points
on/around contours. This removesaccidental alignmentsand does not hallucinate
objects in background clutter, without negative training examples. We formulate
this task as a set-to-set contour matching problem. Naive methods would require
searching over ’exponentially’ many figure/ground contourlabelings. We sim-
plify this task by encoding the shape descriptor algebraically in a linear form of
contour figure/ground variables. This allows us to use the reliable optimization
technique of Linear Programming. We demonstrate our approach on the chal-
lenging task of detecting bottles, swans and other objects in cluttered images.

1 Introduction

We study the problem of object detection in natural images using shape. Visual objects
can be represented at a variety of levels from signal (filter responses) to symbol (object
parts). Our approach focuses on representation of the shapethat is closer to the symbol
level, which would allow abstract geometrical reasoning ofthe object. Shape descrip-
tion is invariant to color, texture, and brightness changes, which could enable significant
reduction in the number of training examples, and increase of accuracy of the detection.

Object detection using shape alone is not an easy task. Most shape matching al-
gorithms are susceptible toaccidental alignment: hallucinating objects in background
clutter. To avoid foreground (surface marking) and background clutter, shape descrip-
tors are often computed within a window of limited spatial extent. Local window fea-
tures are discriminative enough for detecting objects suchas faces, cars and bicycles.
However, for many simple objects, such as swans, mugs or bottles, local shape features
are insufficient.
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(b) Detection with object contours (c) Model contours

(a) Input image

(d) Control point correspondence

Fig. 1. Using a single line drawing object model shown in (c), we detect object in-
stances in images with background clutter in (a) using only shape. Bottom-up contour
grouping provides tokens of shape matching. Long salient contours in (b) provide dis-
tinctive shape descriptions, allowing both efficient and accurate matching. Image and
model contours, shown by different colors in (b) and (c), do not have one-to-one corre-
spondences. We formulate shape detection as a set-to-set matching task in (d) consisting
of: (1) correspondences between control points, and (2) selection of contours that con-
tribute contextual shape features to those control points,within a circular neighborhood.

To overcome thisaccidental alignmentproblem, we propose a shape detection ap-
proach calledContour Context Selectionconsisting of the following the key ingredients:

1. We detect salient contours using bottom-up segmentationor contour grouping.
Long contours are more distinctive, and maintaining contours as integral tokens
for matching removes many false positives due to accidentalalignment.

2. We break the model shape into its informative semantic parts, and explicitly check
which subset of model shape parts is matched. Missing critical model parts can
signal an accidental alignment between the image and model.

3. We seek holistic shape matching. We measure shape features from a large spatial
extent, as well as long-range contextual relationships among object parts. Acciden-
tal alignments of holistic shape descriptors between imageand model are unlikely.

OurContour Context Selectionreduces to finding a maximal, holistic matching be-
tween asetof image contours and asetof model parts. It searches overfigure/ground
labeling of the image and model contours, andcorrespondencesbetween them. It is im-
portant to note that, in general, image contours and model contours do not correspond
one-to-one. The holistic matching occurs only by considering a set of ‘figure’ contours
together. To formulate thisset-to-setmatching task, we define control points sampled
on and around the image and model contours. We compute shape features on the control
points from the ‘figure’ contours within a large neighborhood (see Fig.1). The task is to
find the correct figure/ground contour labeling, such that there is an optimal one-to-one
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(a) Accidental alignment (b) Missing critical parts

Fig. 2. Typical false positives can be traced to two causes: (1) Accidental alignment
shown in (a). Our algorithm prunes it by exploiting contour integrity,i.e. requiring con-
tours to be whole-in/whole-out. Contours violating this constraint is marked in white on
the image. (2) Missing critical object parts indicates thatthe matching is a false posi-
tive. In (b), after removing the accidental alignment to theapple logo outline (marked in
white), only the body can find possible matches and the neck ofthe swan is completely
missing shown at the top-right corner of (b). Our approach rejects this type of detection
by checking missing critical model contours after joint contour selection.

matching of the control points. This set-to-set matching potentially requires searching
over exponentially many choices of figure/ground labeling.We simplify this task by en-
coding the shape descriptor algebraically in a linear form of contour selection variables,
allowing to use the reliable optimization technique of Linear Programming.

This paper is organized as follows. Section2 introduces the basic concept and for-
mulation of Contour Context Selection. We present the computational solution for this
framework using Linear Programming (LP) in Section3. Section4 describes related
works and comparisons. Section5 demonstrates our approach on the challenging task
of detecting non-rectangular and wiry objects, followed bythe conclusion in Section6.

2 Shape Detection as a Set-to-Set Contour Matching Problem

Our goal is to detect objects in images using asinglemodel and identify correspon-
dences between the image and the model.

We use salient contours, extracted from bottom-up contour grouping, as tokens for
image-model shape matching. Shape matching with contours instead of isolated edges
has several advantages. Long salient contours are more distinctive, which leads to ef-
ficiency of the search as well as the accuracy of shape matching. Furthermore, by re-
quiring the entire contour to match objects as a whole, we remove accidental alignment
causing false postive detections (see Fig.2 (a) for an example).

Using contour grouping as the starting point of shape matching carries risk as well.
Contours could be mis-detected, or accidentally leak to background clutter. A good
contour grouping algorithm is essential for shape matching. We utilize the approach in
[1] which has demonstrated good performance in cluttered images detecting reliable
contours. Furthermore, these contours groups are not disjoint, providing multiple hy-
potheses at places where contours can potentially leak to other objects (e.g.junctions).

To evaluate shape matching, one needs to measure the accuracy of alignment, and
more importantly, determinewhichparts are aligned. For simple shapes, missing a small
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but critical object part can indicate a complete mismatch, see Fig.2 (b). In this work,
we manually divide the model into contours which corresponds to distinctive parts. Just
as image contours, we require model contours to be matched asa whole.

The computational task of shape matching thus consists of parallel searches over
image contours and model contours to obtain the maximal match of the image and
model shapes. We cast the shape detection as the following problem:
Set-to-set contour matching. Given an imageI and a modelM represented by two
sets of long salient contours:

– Image:I = {CI
1 , CI

2 , . . . CI
|I|}, CI

k is thekth contour;

– Model:M = {CM
1 , CM

2 , . . . , CM
|M|}, CM

l is thelth contour.

we would like to select the maximal contour subsetsIsel ⊆ I andMsel ⊆ M, such
that object shapes composed byIsel andMsel match (see Fig.1 for an image example).

Once this set-to-set matching is solved, to quantify shape matching we measure

– which set of model contours are matched;
– how well the matched contours are aligned.

The final classification cost function combines the following two terms:

Cclassification = Cconfig · Calign (1)

whereCconfig evaluates the configuration of the matched model contours, and Calign

measures quality of their alignment defined later in the following sections.
The main technical difficulty is that the image and model contours do not have one-

to-one correspondence. Contours detected from bottom-up grouping and segmentation
are different from the semantically meaningful contours inthe model. However, as a
whole they will have matches (see Fig.1). Set-to-set contour matching bridges this
semantic gap between the bottom-up grouping and the top-down model.

2.1 Solution for set-to-set contour matching

Our solution to the set-to-set matching problem includes three essential components:
Control point correspondence. While contour themselves do not correspond in one-to-
one, their shape information can be evaluated at nearbycontrol points, and those control
points could have one-to-one correspondences. Suppose control points{p1, p2, . . . , pm}
are sampled from the image and{q1, q2, . . . , qn} are sampled from the model. We de-
fine the correspondence matrix(U cor)m×n from the image to the model as:

U cor
ij =

{

1, if pi matchesqj

0, otherwise.
(2)

Note that these control points can be located anywhere in theimage, not limited to con-
tours. Computing dense point correspondences is unnecessary. Instead, rough matching
of some control points is sufficient to select and match contour setsIsel andMsel.
Feature representation: holistic shape features. The important question is, what will
be the appropriate shape feature for matching these controlpoints, and how to compute
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Fig. 3. Illustration of our computational solution for set-to-setcontour matching on
shape detection example from Fig.1. The top and the bottom row shows the image
and model contour candidate sets marked in gray. Each contour contributes its shape
information to nearbycontrol pointsin the form of Shape Context histogram, shown on
the right. By selecting different contours (xsel, ysel), each control point can take on a set
of possible Shape Context descriptions (scI , scM ). With the correct contour selection
in the image and model (marked by colors), there is a one-to-one correspondenceU cor

ij

between (a subset of) image and model control points (markedby symbols). This is a
computationally difficult search problem. The efficient algorithm we developed is based
on an encoding of Shape Context description (which could take on exponentially many
possible values) using linear algebraic formulation on thecontour selection indicator:
scI = V I · xsel. This leads to the Linear Programming optimization solution.

shape dissimilarityDij . ComparingDij requires the feature to be common in the image
and the model. Since there do not exist one-to-one correspondences between contours,
the feature description is more appropriate on the contour set or global shape level rather
than on the individual contour level. We propose a holistic shape representation at the
control points covering not only nearby contours but also faraway contours (see Fig.3).
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The holistic shape representation immediately poses the problem offigure/ground
selectionsince figure/ground segmentation is unknown and the shape feature is likely to
include both foreground and background contours. Unknown segmentation introduces
great difficulties to any shape features with afixedcontext. A fixed context feature can-
not adapt to the combinatorial possibilities of figure/ground labeling, each generating
different contexts. Without the correct segmentation, background clutter and contours
from other objects can corrupt the shape feature. Our strategy is to adjust the context
of the holistic shape features during matching depending onthe figure/ground selec-
tion. Therefore, we are able to select the right features anddetermine the figure/ground
segmentation simultaneously.
Matching constraint: contour integrity. Contour selection implies that we restrict
each contour to be an integral unit in matching. For each contourCI

k = {p
(k)
1 , p

(k)
2 , ..., p

(k)
c }

wherep
(k)
i ’s are edge pixels, there are only two choices: either all theedge pixelsp(k)

i

participate in the matching, or none of them are included. Partially matched contours
are not allowed. The same constraint is applied to model contoursCM

l as well. We
introduce contour selection indicatorsxsel ∈ {0, 1}|I|×1 in the entire test image and
ysel ∈ {0, 1}|M|×1 in the model defined as

(Image contour selection) xsel
ℓ =

{

1 Contour CI
ℓ is selected

0 otherwise
, (3)

(Model contour selection) ysel
ℓ =

{

1 Contour CM
ℓ is selected

0 otherwise,
(4)

The constraint of contour integrity makes matching robust to accidental alignment.

2.2 Context Sensitive Shape Features

Now we are ready to introduce the holistic shape representation calledContext Sensi-
tive Shape Featuresdetermined by the figure/ground selection of the contours induced
by xsel andysel. We choose Shape Context (SC) [2] as our basic shape feature descrip-
tor. Measuring global shape requires the scope of SC to be large enough to cover the
entireobject. DefinescI

i to be the vector of SC histogram centered at control pointpi,
i.e. scI

i (k) = # of points in bin k. We introduce a contribution matrixV I
i with size

(#bin)×(#contour) to encode the contribution of each contour to each bin ofscI
i :

V I
i (k, l) = # of points in bin k from contour Cl (5)

Similar notationsscM
j andV M

j are defined for SC at control pointqj in the model.
The key observation is that shape featuresscI

i will be differentdepending on con-
textxsel, i.e. they are not fixed. Since each contour can have 2 choices, either selected
or not selected, there exists2n possible contexts – exponential in the number of con-
toursn. One advantage of histogram type of features such as Shape Context is that the
exponentially many combinations of contexts can be writtenin a simple linear form:

scI
i (k) =

∑

l

V I
i (k, l) · xsel

l = (V I · xsel)k (6)
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This allows us to cast the complex search as an optimization problem later.
Our goal is to findxsel and ysel such that they produce similar shape features:

V I
i · xsel ≈ V M

j · ysel. We evaluate and compare these two features by the context
sensitive dissimilarity:

(Context sensitivity) Dij(sc
I
i , sc

M
j ) = Dij(V

I
i · xsel, V M

j · ysel) (7)

The shape dissimilarityDij not only depends on the local attributes ofpi andqj , but
more importantly, on the context given byxsel andysel. Matching object shapes boils
down to minimizingDij , which is a combinatorial search problem onxsel andysel.

2.3 Contour Context Selection Cost

Finding set-to-set contour matching finally becomes a jointsearch over correspon-
dencesU cor and contour selectionxsel, ysel by minimizing the following cost:

min
Ucor ,xsel,ysel

Calign(U cor, xsel, ysel) =
1

c

∑

i,j

U cor
ij Dij(V

Ixsel, V Mysel) (8)

s.t. U cor ∈ GeoSet (9)

wherec =
∑

i,j U cor
ij is the number of control point correspondences. Correspondences

U cor from different object parts should have geometric consistency. We use a star model
for checking global geometric consistency. Each correspondence(pi, qj) can predict an
object centercij . For the correct set of correspondences, all the predicted centers should
form a cluster,i.e. close to their averagecenter(U cor) =

∑

cijU
cor
ij wij/

∑

U cor
ij wij ,

wherewij ’s are the weights on correspondences. Thus correspondencesU cor satisfying
the geometric consistency constraint can be expressed as:

GeoSet = {‖center(U cor) − cijU
cor
ij ‖ ≤ dmax if U cor

ij 6= 0} (10)

wheredmax is the maximum distance allowed for deviation from the center.
What is the right matching costDij(V

I
i · xsel, V M

j · ysel)? Recall that our problem
is to search for the maximal ‘common’ subsets from the image and model contours
such that their shapes are similar. This maximal condition on the contour subsets places
additional requirement on the shape dissimilarityDij . A straightforward cost function,
such as theL1-norm:Dij(V

I
i ·xsel, V M

j · ysel) = ‖V I
i ·xsel −V M

j · ysel‖, will simply
result in the trivial solution which chooses empty sets fromboth sides (i.e. xsel = 0,
ysel = 0). In fact all the norms as well asχ2 distance suffer from the same problem.

We introduces thejoint selection costfor Dij which balances the maximal require-
ment on the match of contour sets and the quality of the match.We seek to match as
many model contours as possible while the difference between image and model con-
tours is small. Before describing the details, we first introduce a few variables. Set

– scMF
j = V M

j yfull to be the shape context centered at model pointqj selecting the
full model, whereyfull = 1|M|×1 means selecting all model contours;
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– scI
i = V I

i xsel to be the shape context with selectionxsel on image atpi;
– scM

j = V M
j ysel to be the shape context with selectionysel on model atqj .

We usescMF
j (k), scI

i (k), scM
j (k) to denote thekth bin in the shape context.

Our joint selection cost consists of two terms:missandmismatch(see Fig.3). To
match as many model contours as possible, the following difference between the num-
ber of matched points and that of full model points should be minimized:

miss
(ij)
k = scMF

j (k) − min(scI
i (k), scM

j (k)) (11)

Heremin(scI
i (k), scM

j (k)) counts the number of matched contour points between the
image and model in shape context bink.

The above termmiss
(ij)
k alone does not measure how well the selected image con-

tours match to the selected model contours. To ensure the matching quality, the amount
of difference between the number of image and model contour points in all shape con-
text bins needs to be minimized:

mismatch
(ij)
k = |scI

i (k) − scM
j (k)| (12)

By combining Eq. (11) and Eq. (12), we have the following dissimilarity:

Dij =

∑

k[miss
(ij)
k + β · mismatch

(ij)
k ]

∑

k scMF
j (k)

(13)

whereβ > 1 is a factor balancing the two types of costs. We use
∑

k scMF
j (k) to

normalize the costDij such that it is invariant to the number of contour points.

3 Computational Solution via Linear Programming

Direct optimization of contour context selection cost function Eq. (8) is a hard combi-
natorial search problem. The shape dissimilarityDij(V

I · xsel, V M · ysel) can only be
evaluated given correspondencesU cor. However, finding the correct correspondences
U cor requiresxsel andysel. Therefore, the inference problem becomes circular. We
approximate this joint optimization by breaking the loop into two steps:single point
figure/ground labelingandjoint contour selection. The first step focuses on finding re-
liable correspondencesU cor (maybe sparse) by matching image contours to the whole
model. The second step selects contours simultaneously from both image contours la-
belled as figure and all the model contours being matched, based on the correspon-
dences computed in the first step. In both steps, we optimize the cost function by relax-
ing it as an instance of Linear Programming (LP).

3.1 Single Point Figure/Ground Labeling

Our first step discovers all potential control point correspondencesUij and computes
the correspondent figure/ground labelingxsel for them. We fixysel = 1 to encourage
matching to the full model as much as possible. Partial matches are undesired since the
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(a) Input image

(b) Contours

A B C

A B

C

(c) Single point figure/ground labeling

(d) Correspondence points

(e) Joint contour selection

A B C

A B

C

A B C

A B

C

Fig. 4. Illustration of Contour Context Selection for shape detection. From the input
image (a), we detect long salient contours shown in (b). For possible control point cor-
respondences in (c), we select foreground contours whose global shape configuration
most resembles to the model, with selectionxsel shown in gray scale (the brighter,
the larger value ofxsel). Voting map for pruning geometrically inconsistent correspon-
dences is shown at the right bottom corner of (c). (d) shows the consistent correspon-
dences marked by different colors using the hypothesized correspondences. The optimal
joint image-model contour selection is shown in (e). Note inthe last example, model
selection allow us to detect false match between the mug and the face.
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correspondences they produce are much less reliable. Therefore, only themismatch
term in Eq. (13) is applied and hence the dissimilarityDij reduces toL1-norm:

min
xsel

‖V I
i · xsel − V M

j · 1‖1 (14)

This cost will not collapse to zero because model contour selection is fixed (ysel = 1).
Brute force approach of the above problem is formidable evenfor mid-size problems

(20-30 contours). We compute an approximate solution by continuous relaxation on
binary variablexsel and add the constraint0 ≤ xsel ≤ 1 thereafter. Since the norm in
the cost function isL1

1, this leads to an instance of Linear Programming (LP) which
can be computed very efficiently.

Correspondences found from single point figure/ground labeling might not satisfy
geometric consistency Eq. (10). Therefore, we enforce geometric consistency by prun-
ing hypotheses of control point correspondences via a voting procedure [3]. Each image
control point can predict an object center using the best match to model control points
computed by Eq. (14). These predictions generate votes weighted by the shape dis-
similarity, which accumulate to a voting map. We extract object centers from the local
maxima and further backtrace the voting centers to identifyconsistent correspondences.

3.2 Joint Contour Selection

We have obtained the rough correspondencesU cor from the previous step. We optimize
the contour selection cost Eq. (8) w.r.t. xsel, ysel to prune false positives and detect ob-
jects. The outcome includes both the matching costCalign and model contours actually
matched, indicated byysel. Both of them can be used to prune false positives. Note that
it is not required to have a complete correspondence setU cor since the cost Eq. (13)
has been normalized by the number of correspondences.

LP can also be used to solve Eq. (8) for contour context selection by relaxingxsel

andysel to real value vectors. Eq. (13) and Eq. (8) translate to the following problem:

min
xsel,ysel

∑

Ucor
ij

=1

{
1

Ni

∑

k

[scMF
i (k)− min(scI

i (k), scM
j (k))] +

β

Ni

‖scI
i − scM

j ‖1}

s.t. scI
i = V I

i · xsel, scM
j = V M

j · ysel

whereNi =
∑

k scMF
i (k) is a normalization constant andmin(x, y) computes the

elementwise min of vectorsx andy. The two terms in the summation aremiss and
mismatch in Eq. (13) respectively. The above problem can be relaxed to an instance of
LP by adding slack variablessijk ≥ scI

i (k) andsijk ≥ scM
j (k) for min(scI

i (k), scM
j (k)).

The selected model contours from joint contour selection form a shape configura-
tion that are actually matched to image contours. Because the number of object model
contours is typically very limited (usually 6 to 8), we can manually specify a dictionary
of all possible configurations of true positives,i.e. settingCconfig in Eq. (1) to be 0/1.

1 BesidesL1, other distance functions such asL2 andχ2 for shape context can also be used.
However, the relaxations will be computationally much moreintensive.
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Detection of model contours with bad configurations, e.g. missing critical parts, are re-
jected. This configuration checking together with the matching costCalign can prune
most of the false positives while preserving true positives.

4 Related Works and Discussion

Salient contours and their configurations are more distinctive than individual edge points
for shape matching. Ferrariet al. ([4],[5]) represent objects by learning a codebook
of Pairs of Adjacent Segments, which are consecutive roughly straight contour frag-
ments. They achieve detection using a bag-of-words approach. Shottonet al.[6] learn a
boosted contour-based shape features for object detection. These efforts utilize mostly
short contour fragments, and therefore have to rely on many training examples to boost
the discriminative power of shape features. In contrast, our work takes the advantage
of contour grouping such as [1] to detect long salient contours, capturing more global
geometric information of objects. More importantly, we constrain these long contours
to act as a whole unit,i.e. they can either be entirely matched to an object, or entirely
belong to the background. This characteristic makes shape matching more immune to
accidental alignment to background clutter. Similar properties are exploited by group-
ing based verification approaches [7], and the recent work by Felzenswalbet al. [8].

From a broader perspective, our recognition framework is based on shape matching,
which has a long history in vision. A large amount of researchhas been done on dif-
ferent levels of shape information. Early works [9,10] focused on silhouettes which are
relatively simple for representing shape. Silhouette based approaches are limited to ob-
jects with a single closed contour without any interior edges with occlusions. Objects in
real images are more complex, and may be embedded in heavy clutter. Efforts on dense
matching of the edge points often focus on spatial configurations of key points, such
as geometric hashing [11], decision tree [12] and Active Shape Models [13]. However,
keypoints alone are insufficient to distinguish objects shapes in cluttered images [2].

Feature representation and shape similarity measurement are the key issues for
matching. Shape Context [2] uses spatial distribution of edges points relative to a given
point to describe shape. Inner Distance Shape Context (IDSC) refines it to account for
articulated objects [14]. We build our basic shape feature representation on Shape Con-
text, with contour as the unit. A much larger context window covering the whole object
enables our approach to capture global shape configurations. We introduce a novel con-
tour selection mechanism to extract global shape features against background clutter.

5 Experiments

We demonstrate our detection approach using only one hand-drawn model without neg-
ative training images, To evaluate our performance, we choose the challenging ETHZ
Shape Classes [5] containing five diverse object categories with 255 images in total.
Each image has one or more object instances. All categories have significant scale
changes, illumination changes and intra-class variations. Moreover, many objects are
surrounded by extensive background clutter and have interior contours. We have the
same experimental setup as [5], using only a single hand-drawn model for each class
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Apple logos Bottles Giraffes Swans Mugs

Our precision/recall49.3%/86.4% 65.4%/92.7% 69.3%/70.3% 31.3%/93.9% 25.7%/83.4%
Precision/recall in [5] 32.6%/86.4% 33.3%/92.7% 43.9%/70.3% 23.3%/93.9%40.9%/83.4%

Table 1. Comparison of precision. We compare the precision of our approach to the
precision in [5] at the same recall (lower recall in [5]). We convert the result of [5]
reported in DR/FPPI into P/R since the number of images in each class is known. Our
performance is significantly better than [5] in four out of five classes. The other class
”Mugs” have some instances that are too small to be detected by contour grouping.
Note that we did not use magnitude information which plays animportant role in [5].

and all 255 images as test set. To adapt to large scale variance, we generate multiple
models by resizing the original one to 5 to 8 scales for each class.

We first use contour grouping proposed in [1] to generate long salient contours from
images. Contours can have overlaps due to multiple possiblegroupings at junctions.
Large window shape context for contour selection has 12 polar angles, 5 radial bins and
4 edge orientations. Moreover, blurring on bins [3] is used to increase the robustness
of shape context to deformation and inner-class variations. This refinement can also
be encoded into contribution matricesV I , V M as well. LPs arising from single point
figure/ground labeling as well as joint contour selection are solved efficiently by using
off-the-shelf toolbox SeDuMi. Single point figure/ground labeling for each hypothe-
sized correspondence is computed within 0.2 sec. After selecting the figure contours,
votes for object center weighted by shape dissimilarity arecollected into a voting map.
We extract local maximums in the voting map above certain threshold to generate object
hypotheses. Since the correct object scale is unknown beforehand, voting is performed
in a multiscale fashion, with non-maximum suppression on both position and scale.

Precision vs. recall (P/R) curve is used for quantitative evaluation. To compare with
the results in [5] which is evaluated by detection rate (DR) vs. false positive per image
(FPPI), we translate their results into P/R values. We choose P/R instead of DR/FPPI
because DR/FPPI depends on the ratio of the number of positive and negative test im-
ages and hence is biased. Our final results on this dataset canbe seen in Fig.5. Results
of the two steps of our framework are both evaluated. Single point figure/ground label-
ing only uses matching cost as the final evaluation for detection, while joint contour
selection uses both matching cost and the detected shape configuration. Compared to
the latest result in [5], our performance is considerably better on four classes out of five.
We also compare voting using simple local shape context withour first step of contour
selection. Contour selection greatly improves detection performances (see Fig.5).

Our shape matching algorithm can reliably extract and select contours of object in-
stances in test images, robust to background clutter and missing contours. Image results
of detection with selected object and model contours are demonstrated in Fig.6.

6 Conclusion

We introduce a novel shape based recognition framework called Contour Context Se-
lection. We construct context sensitive shape features depending on selected contours
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Fig. 5. Precision vs. recall curves on five classes of ETHZ Shape Classes. Our precisions
on ”Apple logos”, ”Bottles”, ”Giraffes” and ”Swans” are considerably better than re-
sults in [5]: 49.3%/32.6% (Apple logos),65.4%/33.3% (Bottles),69.3%/43.9% (Gi-
raffes) and31.3%/23.3% (Swans). Also notice that we boost the performance by large
amount compared to local shape context voting without contour selection.

and propose a method to search the best match. Joint selection on both image and model
contours ensures detection to be robust to background clutter and accidental alignment.
We are able to detect object in cluttered images using only one training example. Ex-
periments on hard object detection task demonstrate promising results.
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