Contour Context Selection for Object Detection:
A Set-to-Set Contour Matching Approach

Qihui Zhut, Liming Wang?, Yang WU and Jianbo Shi

! Department of Computer and Information Science, UnivgisitPennsylvania
gi hui zhu@eas. upenn. edu, jshi @i s. upenn. edu

2Department of Computer Science and Engineering, Fudaretsity
wangl m@ udan. edu. cn

3Institue of Artificial Intelligence and Robotics, Xi'an digong University
ywu@i ar . xj tu. edu. cn

Abstract. We introduce a shape detection framework caleditour Context Se-
lectionfor detecting objects in cluttered images using only onergtar. Shape
based detection is invariant to changes of object appearand can reason with
geometrical abstraction of the object. Our approach udessaontours as inte-
gral tokens for shape matching. We seek a maximal, holistiching of shapes,
which checks shape features from a large spatial extenglhaslong-range con-
textual relationships among object parts. This amountsthrfg the correct fig-
ure/ground contour labeling, and optimal correspondebetsgeen control points
on/around contours. This removascidental alignmentand does not hallucinate
objects in background clutter, without negative trainirgraples. We formulate
this task as a set-to-set contour matching problem. Naiwtbads would require
searching over 'exponentially’ many figure/ground conttalrelings. We sim-
plify this task by encoding the shape descriptor algebligiaaa linear form of
contour figure/ground variables. This allows us to use thiahie optimization
technique of Linear Programming. We demonstrate our approa the chal-
lenging task of detecting bottles, swans and other objaatiiitered images.

1 Introduction

We study the problem of object detection in natural imag&sgushape. Visual objects
can be represented at a variety of levels from signal (fikteponses) to symbol (object
parts). Our approach focuses on representation of the shapis closer to the symbol
level, which would allow abstract geometrical reasoninghef object. Shape descrip-
tion is invariant to color, texture, and brightness changtsch could enable significant
reduction in the number of training examples, and increbaeauracy of the detection.

Object detection using shape alone is not an easy task. Mapesmatching al-
gorithms are susceptible txcidental alignmenthallucinating objects in background
clutter. To avoid foreground (surface marking) and backgtbclutter, shape descrip-
tors are often computed within a window of limited spatiales#. Local window fea-
tures are discriminative enough for detecting objects sscfaces, cars and bicycles.
However, for many simple objects, such as swans, mugs debgitbcal shape features
are insufficient.
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(d) Control point correspondence

Fig.1. Using a single line drawing object model shown in (c), we detbject in-

stances in images with background clutter in (a) using ohépse. Bottom-up contour
grouping provides tokens of shape matching. Long salientozos in (b) provide dis-

tinctive shape descriptions, allowing both efficient andwsiate matching. Image and
model contours, shown by different colors in (b) and (c), dbhrave one-to-one corre-
spondences. We formulate shape detection as a set-to-®¢tinggask in (d) consisting
of: (1) correspondences between control points, and (Brseh of contours that con-
tribute contextual shape features to those control poaitisin a circular neighborhood.

To overcome thisccidental alignmenproblem, we propose a shape detection ap-
proach calledContour Context Selectiaronsisting of the following the key ingredients:

1. We detect salient contours using bottom-up segmentatiocontour grouping.
Long contours are more distinctive, and maintaining corg@as integral tokens
for matching removes many false positives due to accidatiggiment.

2. We break the model shape into its informative semantitspand explicitly check
which subset of model shape parts is matched. Missing akitfmdel parts can
signal an accidental alignment between the image and model.

3. We seek holistic shape matching. We measure shape feditane a large spatial
extent, as well as long-range contextual relationshipsranobject parts. Acciden-
tal alignments of holistic shape descriptors between inaagkemodel are unlikely.

Our Contour Context Selectiaeduces to finding a maximal, holistic matching be-
tween asetof image contours and setof model parts. It searches oviagure/ground
labeling of the image and model contours, andrespondencdsetween them. It is im-
portant to note that, in general, image contours and modebcies do not correspond
one-to-one. The holistic matching occurs only by consitga set of ‘figure’ contours
together. To formulate thiset-to-seimatching task, we define control points sampled
on and around the image and model contours. We compute skaipeds on the control
points from the ‘figure’ contours within a large neighborlddgsee Figl). The task is to
find the correct figure/ground contour labeling, such thetehs an optimal one-to-one



(a) Accidental alignment (b) Missing critical parts

Fig.2. Typical false positives can be traced to two causes: (1) dertil alignment
shown in (a). Our algorithm prunes it by exploiting contauteigrity,i.e. requiring con-
tours to be whole-in/whole-out. Contours violating thisistraint is marked in white on
the image. (2) Missing critical object parts indicates it matching is a false posi-
tive. In (b), after removing the accidental alignment todpele logo outline (marked in
white), only the body can find possible matches and the netliecgwan is completely
missing shown at the top-right corner of (b). Our approaggtts this type of detection
by checking missing critical model contours after joint tmur selection.

matching of the control points. This set-to-set matchinggeptally requires searching
over exponentially many choices of figure/ground labelifvg.simplify this task by en-

coding the shape descriptor algebraically in a linear fofgootour selection variables,
allowing to use the reliable optimization technique of lAn@rogramming.

This paper is organized as follows. Sectimtroduces the basic concept and for-
mulation of Contour Context Selection. We present the cdatfmnal solution for this
framework using Linear Programming (LP) in Secti@nSection4 describes related
works and comparisons. Sectidrdemonstrates our approach on the challenging task
of detecting non-rectangular and wiry objects, followedhry conclusion in Sectiof.

2 Shape Detection as a Set-to-Set Contour M atching Problem

Our goal is to detect objects in images usingirgle model and identify correspon-
dences between the image and the model.

We use salient contours, extracted from bottom-up contoaugng, as tokens for
image-model shape matching. Shape matching with contostsad of isolated edges
has several advantages. Long salient contours are monectlist, which leads to ef-
ficiency of the search as well as the accuracy of shape matchurthermore, by re-
quiring the entire contour to match objects as a whole, wexenaccidental alignment
causing false postive detections (see Bi¢p) for an example).

Using contour grouping as the starting point of shape matcbarries risk as well.
Contours could be mis-detected, or accidentally leak tkdpanind clutter. A good
contour grouping algorithm is essential for shape matchivig utilize the approach in
[1] which has demonstrated good performance in cluttered émalgtecting reliable
contours. Furthermore, these contours groups are nofrdisproviding multiple hy-
potheses at places where contours can potentially lealk&r objectsé€.g.junctions).

To evaluate shape matching, one needs to measure the acofiedignment, and
more importantly, determinghichparts are aligned. For simple shapes, missing a small



but critical object part can indicate a complete mismatek, Big.2 (b). In this work,
we manually divide the model into contours which corresgaodlistinctive parts. Just
as image contours, we require model contours to be matchewhsle.

The computational task of shape matching thus consists raflpbasearches over
image contours and model contours to obtain the maximal matt¢he image and
model shapes. We cast the shape detection as the followdindeon:

Set-to-set contour matching. Given an image and a modelM represented by two
sets of long salient contours:

- ImageZ = {C{,C3,...Cly}, C{ is thek" contour;
— Model: M = {C,C37,...,C/{ }, CM is thel™ contour.
we would like to select the maximal contour subsgt¥ C 7 and M C M, such
that object shapes composed#y’ andM*¢! match (see Figl for an image example).
Once this set-to-set matching is solved, to quantify shagielning we measure

— which set of model contours are matched;
— how well the matched contours are aligned.

The final classification cost function combines the follogviwo terms:
Cclassification = Cconfig : Calign (1)

whereC.,, tiy €valuates the configuration of the matched model contonts(Cay; 1,
measures quality of their alignment defined later in theofeihg sections.

The main technical difficulty is that the image and model oarg do not have one-
to-one correspondence. Contours detected from bottonraypimg and segmentation
are different from the semantically meaningful contourshe model. However, as a
whole they will have matches (see Fit). Set-to-set contour matching bridges this
semantic gap between the bottom-up grouping and the top+-duvdel.

2.1 Solution for set-to-set contour matching

Our solution to the set-to-set matching problem includesetessential components:
Control point correspondence. While contour themselves do not correspond in one-to-
one, their shape information can be evaluated at nearbiyol points and those control
points could have one-to-one correspondences. Supposelqints{p:, p2, . .., Pm}

are sampled from the image af@, ¢, . . ., ¢, } are sampled from the model. We de-
fine the correspondence mat(i<°"),,, «, from the image to the model as:

cor _ J 1, if p; matchesg;
Ui’ = {0, otherwise (2)

Note that these control points can be located anywhere imtage, not limited to con-
tours. Computing dense point correspondences is unnegdsstéead, rough matching
of some control points is sufficient to select and match cargetsZ*¢’ and M*¢!.
Featurerepresentation: holistic shape features. The important question is, what will
be the appropriate shape feature for matching these cqits, and how to compute



Image contour selection

Dy; = miss+[3 - mismatch

Model contour selection

Fig.3. lllustration of our computational solution for set-to-s&tntour matching on
shape detection example from Fify. The top and the bottom row shows the image
and model contour candidate sets marked in gray. Each cooctmtributes its shape
information to nearbygontrol pointsin the form of Shape Context histogram, shown on
the right. By selecting different contouts®¢’, y*¢*), each control point can take on a set
of possible Shape Context descriptions’( sc™). With the correct contour selection
in the image and model (marked by colors), there is a onetoeorrespondendé™”
between (a subset of) image and model control points (markesymbols). This is a
computationally difficult search problem. The efficient@&ithm we developed is based
on an encoding of Shape Context description (which coule takexponentially many
possible values) using linear algebraic formulation ondbetour selection indicator:
sc! = V1. g%l This leads to the Linear Programming optimization solutio

shape dissimilarityD; ;. ComparingD;; requires the feature to be common in the image
and the model. Since there do not exist one-to-one correlgnmes between contours,
the feature description is more appropriate on the conttwrglobal shape level rather
than on the individual contour level. We propose a holistiape representation at the
control points covering not only nearby contours but alseviey contours (see Fig).



The holistic shape representation immediately poses thielgm offigure/ground
selectiorsince figure/ground segmentation is unknown and the shapgréeis likely to
include both foreground and background contours. Unknagmentation introduces
great difficulties to any shape features witfix@dcontext. A fixed context feature can-
not adapt to the combinatorial possibilities of figure/grduabeling, each generating
different contexts. Without the correct segmentationkigamund clutter and contours
from other objects can corrupt the shape feature. Our giraseto adjust the context
of the holistic shape features during matching dependintherfigure/ground selec-
tion. Therefore, we are able to select the right featuredatermine the figure/ground
segmentation simultaneously.

Matching constraint: contour integrity. Contour selection implies that we restrict

each contour to be an integral unitin matching. For eachozonit! = {pgk),p(f), ...,pﬁk)}

WhEYEpZ(-k)’S are edge pixels, there are only two choices: either alktige piersp§k>
participate in the matching, or none of them are includedtidly matched contours
are not allowed. The same constraint is applied to modelocosC} as well. We
introduce contour selection indicatar&’ € {0, 1}/ in the entire test image and
y*e € {0,1}/M*1 in the model defined as

» 1 Contour CY is selected
(Image contour selection) = on ou.r ¢ 19 5eiecte , (3
0 otherwise
M :
(Model contour selection) yeet = L Contour €™ s selected (4)
0 otherwise,

The constraint of contour integrity makes matching roboistdcidental alignment.

2.2 Context Sensitive Shape Features

Now we are ready to introduce the holistic shape repregentaalledContext Sensi-
tive Shape Featuredetermined by the figure/ground selection of the contoutaded
by z*¢ andy*¢!. We choose Shape Context (SC) &s our basic shape feature descrip-
tor. Measuring global shape requires the scope of SC to be kmough to cover the
entire object. Definesc! to be the vector of SC histogram centered at control paint
i.e. scl(k) = # of points in bin k. We introduce a contribution matrix;! with size
(#bin)x (#contour) to encode the contribution of each contour tdéée of sc! :

VZ-I (k,1) = # of points in bin k from contour C; (5)

Similar notationsic}’ andV, are defined for SC at control poigt in the model.

The key observation is that shape featweswill be differentdepending on con-
textz*¢, i.e.they are not fixed. Since each contour can have 2 choicesy sithected
or not selected, there exis2§ possible contexts — exponential in the number of con-
toursn. One advantage of histogram type of features such as Shapexte that the
exponentially many combinations of contexts can be writbea simple linear form:

scl(k) = Z‘/;I(k, 1) - a3t = (VI z%el), (6)
1



This allows us to cast the complex search as an optimizatioolgm later.

Our goal is to findz*¢* andy*¢ such that they produce similar shape features:
VI.ozsel ~ VjM -y*¢!. We evaluate and compare these two features by the context
sensitive dissimilarity:

(Context sensitivity) Dij(scl, stM) = Dy (V' x5, VjM Syt (7)

The shape dissimilarity);; not only depends on the local attributesppfandg;, but
more importantly, on the context given b§¢’ andy*¢!. Matching object shapes boils
down to minimizingD;;, which is a combinatorial search problem:oii’ andy®'.

2.3 Contour Context Selection Cost

Finding set-to-set contour matching finally becomes a jsigdrch over correspon-
denced/“°" and contour selection®’, y*¢ by minimizing the following cost:

min Calign ((]cor7 sel sel Z UcorD lesel’ VMysel) (8)

Ucor gsel ysel

s.t. U € GeoSet 9)

wherec = Z ; Uf7m is the number of control point correspondences. Corresgroces
Ueer from dlfferent object parts should have geometric consisteWe use a star model
for checking global geometric consistency. Each corredpnog(p;, ¢;) can predict an
object center;;. For the correct set of correspondences, all the predietetics should
form a clusterj.e. close to their averageenter(U") = 3 ci; U wij/ 3 U wij,
wherew;;'s are the weights on correspondences. Thus correspomiéfﬂfesatisfying
the geometric consistency constraint can be expressed as:

GeoSet = {||center(U") — cZ]UCOTH < dpmaz if Ufjor #0} (10)

whered, ... 1S the maximum distance allowed for deviation from the cente

What is the right matching cosd;; (V;' - z*, VM . y*¢)? Recall that our problem
is to search for the maximal ‘common’ subsets from the imag# @model contours
such that their shapes are similar. This maximal conditiothe contour subsets places
additional requirement on the shape dissimilafity. A straightforward cost function,
such as the-norm: Dy (V;' - a5 VM - ysel) = |[VI - goet — VM -yl will simply
result in the trivial solution which chooses empty sets flooth sidesi(e. z°¢! = 0,
y*¢! = 0). In fact all the norms as well ag* distance suffer from the same problem.

We introduces th@int selection costor D;; which balances the maximal require-
ment on the match of contour sets and the quality of the matehseek to match as
many model contours as possible while the difference betweaage and model con-
tours is small. Before describing the details, we first idtroe a few variables. Set

- scMP = VMylull to be the shape context centered at model pgiselecting the
full model, wherey/“!! = 1,1 means selecting all model contours;



— scl = VIz*¢l to be the shape context with selectioif’ on image ap;;
— sc;’ = VMy*“ to be the shape context with selectigii’ on model at;.

We usesc” (k), sc (k), sc}’ (k) to denote thé:'" bin in the shape context.

Our joint selection cost consists of two termsissand mismatch(see Fig.3). To
match as many model contours as possible, the followingmiffce between the num-
ber of matched points and that of full model points should lo@mized:

missgj) = scf/‘}—(k) — min(sc! (k), scj”(k)) (11)

Heremin(sc! (k), scj.w(k)) counts the number of matched contour points between the
image and model in shape context hin

The above ternmissé”) alone does not measure how well the selected image con-
tours match to the selected model contours. To ensure trehingtquality, the amount
of difference between the number of image and model contoimtpin all shape con-
text bins needs to be minimized:

mismatch,(jj) = [scf (k) — s’ (k)] (12)

By combining Eq. {1) and Eq. (2), we have the following dissimilarity:

3 k[miss,(cij UNEYCR mismatchgj )]
2ok scé\’l}-(k;)

where > 1 is a factor balancing the two types of costs. We Egscﬁ“(k) to
normalize the cosD;; such that it is invariant to the number of contour points.

Dy = 13)

3 Computational Solution viaLinear Programming

Direct optimization of contour context selection cost ftioe Eq. @) is a hard combi-
natorial search problem. The shape dissimilafity (V! - 25/, VM . y5¢l) can only be
evaluated given correspondendé¥”. However, finding the correct correspondences
Ueer requiresz*® andy*¢. Therefore, the inference problem becomes circular. We
approximate this joint optimization by breaking the loopoitwo stepssingle point
figure/ground labelingndjoint contour selectionThe first step focuses on finding re-
liable correspondencés®” (maybe sparse) by matching image contours to the whole
model. The second step selects contours simultaneoustyldath image contours la-
belled as figure and all the model contours being matcheadbas the correspon-
dences computed in the first step. In both steps, we optirneedst function by relax-
ing it as an instance of Linear Programming (LP).

3.1 Single Point Figure/Ground Labeling

Our first step discovers all potential control point cor@sgenced/;; and computes
the correspondent figure/ground labelini' for them. We fixy*¢! = 1 to encourage
matching to the full model as much as possible. Partial nesteine undesired since the



(b) Contours

Fig.4. lllustration of Contour Context Selection for shape detectFrom the input
image (a), we detect long salient contours shown in (b). Bssible control point cor-
respondences in (c), we select foreground contours whadmlgthape configuration
most resembles to the model, with selectioti’ shown in gray scale (the brighter,
the larger value of:*¢!). Voting map for pruning geometrically inconsistent cspen-
dences is shown at the right bottom corner of (c). (d) showstmnsistent correspon-
dences marked by different colors using the hypothesizedspondences. The optimal
joint image-model contour selection is shown in (e). Not¢hia last example, model
selection allow us to detect false match between the mughenfate.
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correspondences they produce are much less reliable. foherenly themismatch
termin Eq. (L3) is applied and hence the dissimilarity;; reduces td_;-norm:

min ||V, - 2% — VJ-M <11 (14)

el

This cost will not collapse to zero because model contoecsieh is fixed ¢*¢! = 1).

Brute force approach of the above problem is formidable éwemid-size problems
(20-30 contours). We compute an approximate solution bylicoous relaxation on
binary variabler*¢’ and add the constraift< z*¢! < 1 thereafter. Since the norm in
the cost function id.;*, this leads to an instance of Linear Programming (LP) which
can be computed very efficiently.

Correspondences found from single point figure/groundlilagpenight not satisfy
geometric consistency EdL@). Therefore, we enforce geometric consistency by prun-
ing hypotheses of control point correspondences via ag@incedured]. Each image
control point can predict an object center using the bestimiat model control points
computed by Eq.14). These predictions generate votes weighted by the shape di
similarity, which accumulate to a voting map. We extractegbicenters from the local
maxima and further backtrace the voting centers to identifisistent correspondences.

3.2 Joint Contour Selection

We have obtained the rough correspondeit®@s from the previous step. We optimize
the contour selection cost E@)W.r.t. °¢, y*¢ to prune false positives and detect ob-
jects. The outcome includes both the matching €4st,, and model contours actually
matched, indicated by*¢'. Both of them can be used to prune false positives. Note that
it is not required to have a complete correspondencé/s¢€t since the cost Eq.1Q)
has been normalized by the number of correspondences.

LP can also be used to solve E@) for contour context selection by relaxing®!
andy*¢ to real value vectors. Eql8) and Eq. 8) translate to the following problem:

min 37 gy Dol 6 min(oe (0,6} ()] + o = o}

st scl = VI gl scé-u = VjM el

whereN; = Y, scM% (k) is a normalization constant andin(xz, y) computes the
elementwise min of vectors andy. The two terms in the summation angss and
mismatch in Eq. (L3) respectively. The above problem can be relaxed to an iostah
LP by adding slack variables;, > sc/ (k) ands;;, > sc}’ (k) formin(sc] (k), sc}’ (k)).
The selected model contours from joint contour selectiomfa shape configura-
tion that are actually matched to image contours. Becawsaumber of object model
contours is typically very limited (usually 6 to 8), we canmoally specify a dictionary

of all possible configurations of true positivés,. settingCr,,, ¢y in EQ. (L) to be 0/1.

! BesidesL,, other distance functions such &s andy? for shape context can also be used.
However, the relaxations will be computationally much miotensive.
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Detection of model contours with bad configurations, e.gsinig critical parts, are re-
jected. This configuration checking together with the miaigltostC,,;4, can prune
most of the false positives while preserving true positives

4 Related Worksand Discussion

Salient contours and their configurations are more distiathan individual edge points
for shape matching. Ferraet al. ([4],[5]) represent objects by learning a codebook
of Pairs of Adjacent Segments, which are consecutive rqusfinhight contour frag-
ments. They achieve detection using a bag-of-words appr&mttoret al.[6] learn a
boosted contour-based shape features for object detetti@se efforts utilize mostly
short contour fragments, and therefore have to rely on manyihg examples to boost
the discriminative power of shape features. In contrastwmrk takes the advantage
of contour grouping such ag][to detect long salient contours, capturing more global
geometric information of objects. More importantly, we strain these long contours
to act as a whole unit,e. they can either be entirely matched to an object, or entirely
belong to the background. This characteristic makes shaehing more immune to
accidental alignment to background clutter. Similar prtips are exploited by group-
ing based verification approaché$, [and the recent work by Felzenswadbal. [8].

From a broader perspective, our recognition frameworksget@n shape matching,
which has a long history in vision. A large amount of resedrak been done on dif-
ferent levels of shape information. Early works1[(] focused on silhouettes which are
relatively simple for representing shape. Silhouette baggproaches are limited to ob-
jects with a single closed contour without any interior eslgyéth occlusions. Objects in
real images are more complex, and may be embedded in hedtgrdifforts on dense
matching of the edge points often focus on spatial configuratof key points, such
as geometric hashing {], decision tree 2] and Active Shape Models. F]. However,
keypoints alone are insufficient to distinguish objectg&san cluttered images]

Feature representation and shape similarity measuremerthea key issues for
matching. Shape Contexi][uses spatial distribution of edges points relative to &giv
point to describe shape. Inner Distance Shape Context (JP&SiDes it to account for
articulated objectsl[4]. We build our basic shape feature representation on Shape C
text, with contour as the unit. A much larger context windawering the whole object
enables our approach to capture global shape configuratMamtroduce a novel con-
tour selection mechanism to extract global shape featga@sst background clutter.

5 Experiments

We demonstrate our detection approach using only one heavdrdnodel without neg-
ative training images, To evaluate our performance, we shdoe challenging ETHZ
Shape Classes] containing five diverse object categories with 255 imagetotal.
Each image has one or more object instances. All categoaes significant scale
changes, illumination changes and intra-class variatiMwgeover, many objects are
surrounded by extensive background clutter and have antedntours. We have the
same experimental setup &3,[using only a single hand-drawn model for each class
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| | Applelogos| Bottles | Giraffes | Swans | Mugs |

Our precision/recal|49.3%/86.4% |65.4%/92.7% |69.3%/70.3% | 31.3%/93.9% | 25.7%/83.4%
Precision/recall in] | 32.6%/86.4% 33.3%/92.7% 43.9%/70.3% 23.3%/93.9%440.9%/83.4%

Table 1. Comparison of precision. We compare the precision of ouraagh to the
precision in p] at the same recall (lower recall irv]). We convert the result ofj]
reported in DR/FPPI into P/R since the number of images ih e&ss is known. Our
performance is significantly better tha# jn four out of five classes. The other class
"Mugs” have some instances that are too small to be detegtezbbtour grouping.
Note that we did not use magnitude information which playswgportant role in .

and all 255 images as test set. To adapt to large scale varisgcgenerate multiple
models by resizing the original one to 5 to 8 scales for eaabscl

We first use contour grouping proposedlhto generate long salient contours from
images. Contours can have overlaps due to multiple posgiblepings at junctions.
Large window shape context for contour selection has 12 polgles, 5 radial bins and
4 edge orientations. Moreover, blurring on bi$ is used to increase the robustness
of shape context to deformation and inner-class variatidhgs refinement can also
be encoded into contribution matriced, V™ as well. LPs arising from single point
figure/ground labeling as well as joint contour selectiomsulved efficiently by using
off-the-shelf toolbox SeDuMi. Single point figure/grourabeling for each hypothe-
sized correspondence is computed within 0.2 sec. Aftecsietgethe figure contours,
votes for object center weighted by shape dissimilaritycatiected into a voting map.
We extract local maximums in the voting map above certaiesthold to generate object
hypotheses. Since the correct object scale is unknowndtedod, voting is performed
in a multiscale fashion, with non-maximum suppression ath position and scale.

Precision vs. recall (P/R) curve is used for quantitativedation. To compare with
the results in§] which is evaluated by detection rate (DR) vs. false posifier image
(FPPI), we translate their results into P/R values. We ca®UR instead of DR/FPPI
because DR/FPPI depends on the ratio of the number of positid negative test im-
ages and hence is biased. Our final results on this datasbecsen in Figs. Results
of the two steps of our framework are both evaluated. Singietgigure/ground label-
ing only uses matching cost as the final evaluation for dietectvhile joint contour
selection uses both matching cost and the detected shafiguration. Compared to
the latest result ind], our performance is considerably better on four classesfdive.
We also compare voting using simple local shape contextewittfirst step of contour
selection. Contour selection greatly improves detectrenfiggmances (see Fi§).

Our shape matching algorithm can reliably extract and sel@ttours of object in-
stances in test images, robust to background clutter argingisontours. Image results
of detection with selected object and model contours areotstrated in Fig6.

6 Conclusion

We introduce a novel shape based recognition frameworka@lbntour Context Se-
lection We construct context sensitive shape features dependisglected contours
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Fig. 5. Precision vs. recall curves on five classes of ETHZ Shapes€a®ur precisions

on "Apple logos”, "Bottles”, "Giraffes” and "Swans” are ceitlerably better than re-
sults in B]: 49.3%/32.6% (Apple 10gos),65.4%/33.3% (Bottles),69.3%/43.9% (Gi-
raffes) and31.3%/23.3% (Swans). Also notice that we boost the performance by large

amount compared to local shape context voting without aargelection.

and propose a method to search the best match. Joint saleotloth image and model
contours ensures detection to be robust to backgrouneéchnt accidental alignment.
We are able to detect object in cluttered images using ondytaaining example. Ex-

periments on hard object detection task demonstrate piragmissults.
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