Untangling Cycles for Contour Grouping

Qihui Zhu, Gang Song and Jianbo Shi

GRASP Laboratory
University of Pennsylvania

Finding Salient Contours by Grouping Edges

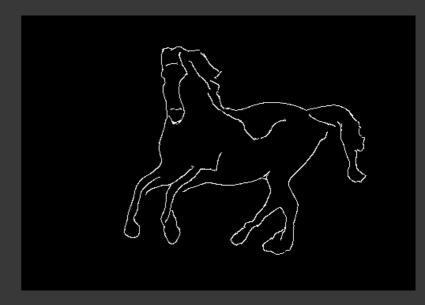
Edge Detection

Input image

Edgels

Finding Salient Contours by Grouping Edges

Contour Grouping



edgels

contours

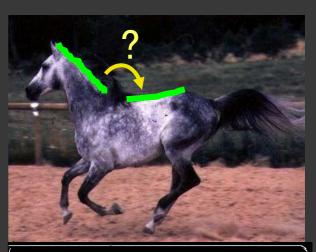
"Long contours are nice to look at", K. Koffka. *Principles of Gestalt Psychology*.

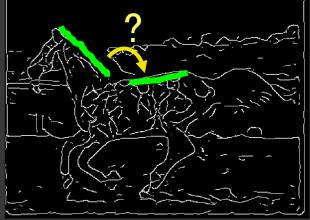
- S. Ullman and A. Shashua. Structural saliency: The detection of globally salient structures using a locally connected network. In *MIT AI Memo*, 1988.
- S. Mahamud, L.Williams, K. Thornber, and K. Xu. Segmentation of multiple salient closed contours from real images. *PAMI*, 2003.
- T. D. Alter and R. Basri. Extracting salient curves from images: An analysis of the saliency network. *CVPR*, 1996.
- A. Amir and M. Lindenbaum. Grouping-based nonadditive verification. *PAMI*, 20(2):186–192, 1998.
- B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. *PAMI*, 25(4):513–518, 2003.
- D. W. Jacobs. Robust and efficient detection of salient convex groups. *PAMI*, 18(1):23–37, 1996.
- G. G. Medioni and G. Guy. Inferring global perceptual contours from local features. In *IUW*, 1993.
- S. Sarkar and P. Soundararajan. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. *PAMI*, 22(5):504–525, 2000.
- J. H. Elder and S. W. Zucker. Computing contour closure. Lecture Notes in Computer Science, 1064, 1996.

Challenges in Real Images

Edge linking fails in clutter:

2D clutter





Gap

Our Goal

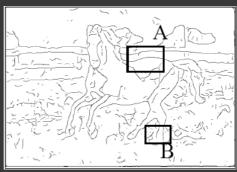
Group salient 1D structures robust to 2D clutter

Image Edges and detected contours

Image

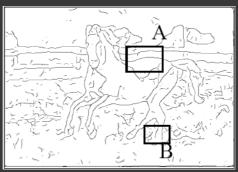
Edges and detected contours

Directed Graph for Grouping G=(V,E,W)



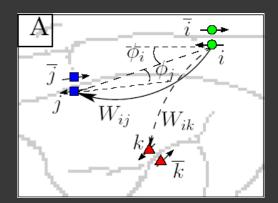
- ${\it V}$ Duplicate each edgel to (i,i)
- W Collinearity
 - Elastic energy

Directed Graph for Grouping G=(V,E,W)

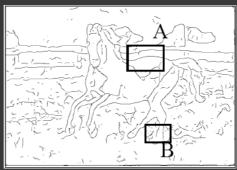


- ${\it V}$ Duplicate each edgel to (i,i)
- W Collinearity
 - Elastic energy

$$W_{ij} = e^{-(1-\cos(|\phi_i| + |\phi_j|))/\sigma^2}$$



Directed Graph for Grouping G=(V,E,W)

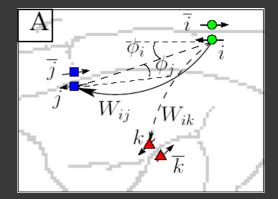


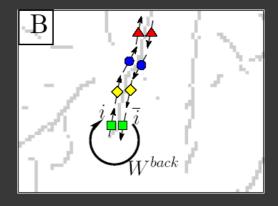
Edgel $\stackrel{\longleftarrow}{\longleftarrow} \frac{i}{i}$

- $\overline{}$ $\overline{}$ Duplicate each edgel to $\overline{}$
- W Collinearity
 - Elastic energy

$$W_{ij} = e^{-(1-\cos(|\phi_i| + |\phi_j|))/\sigma^2}$$

• Backward connection W_{ij}^{back} open contour: chain \rightarrow graph cycle

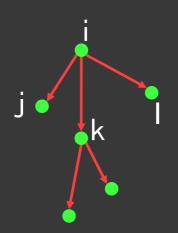




Directed Random Walk

$$P = D^{-1}W$$

$$D = Diag(W \cdot \mathbf{1})$$



$$P_1(j|i) + P_1(k|i) + P_1(l|i) = 1$$

 $P_1(j|i)$ probability of jumping from i to j in one step

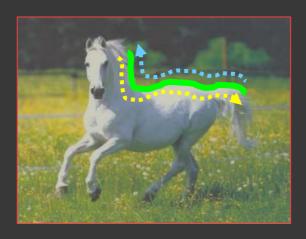
Directed Random Walk

$$P = D^{-1}W$$

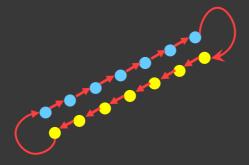
$$D = Diag(W \cdot \mathbf{1})$$

Image contour

Graph cycle



Open contour



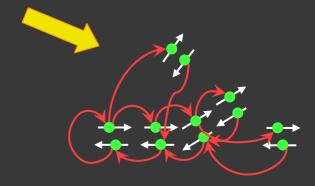
Closed contour

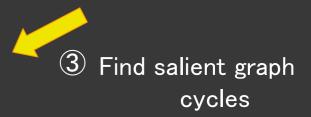
Untangling Cycle Algorithm

Input image

Edgels

2 Construct G





Contour Saliency

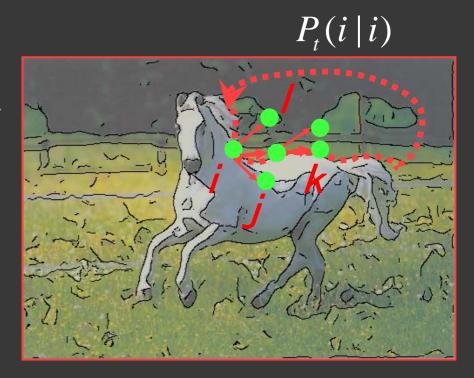
Q: What is the appropriate saliency measure for good cycles (1D contour) and bad cycles (2D clutter)?

Shortest cycle? Longest cycle? Shortest average cycle? ...

Persistency of a Random Walk Cycle

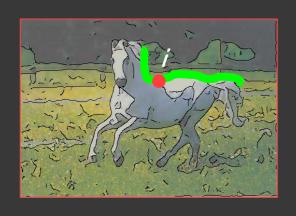
 $P_{t}(i|i)$ probability of cycling $i \rightarrow i$ in t steps

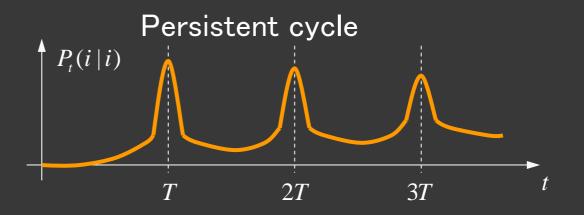
Check how likely a random walk cycle back to starting points after some time t

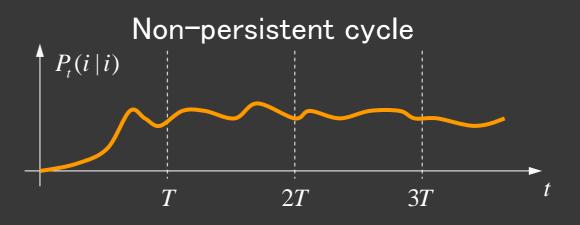


Observation: Persistent Cycles

Image contour = Persistent cycles



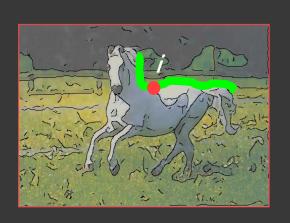


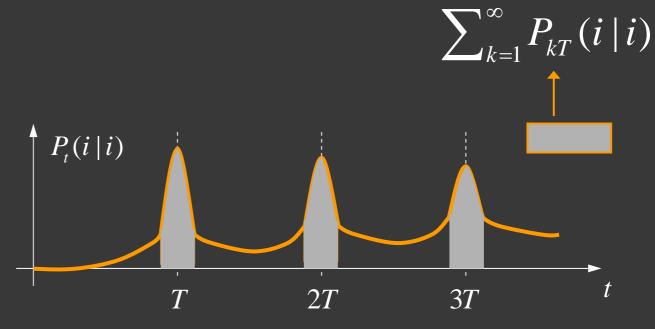


Persistent Cycle Measure

· 'Peakiness' of returning probability: $\overline{P_t}(i\,|\,i)$

$$R(i,T) = \frac{\sum_{k=1}^{\infty} P_{kT}(i \mid i)}{\sum_{k=0}^{\infty} P_{k}(i \mid i)}$$



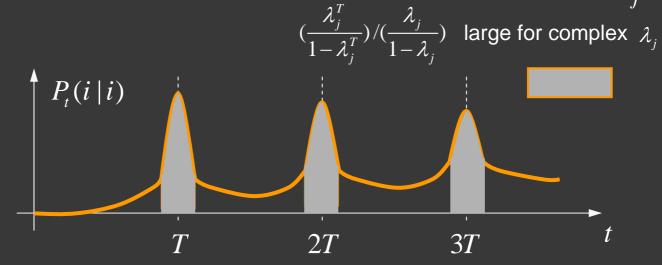


Theorem 'Peakiness': R(i,T) can be computed:

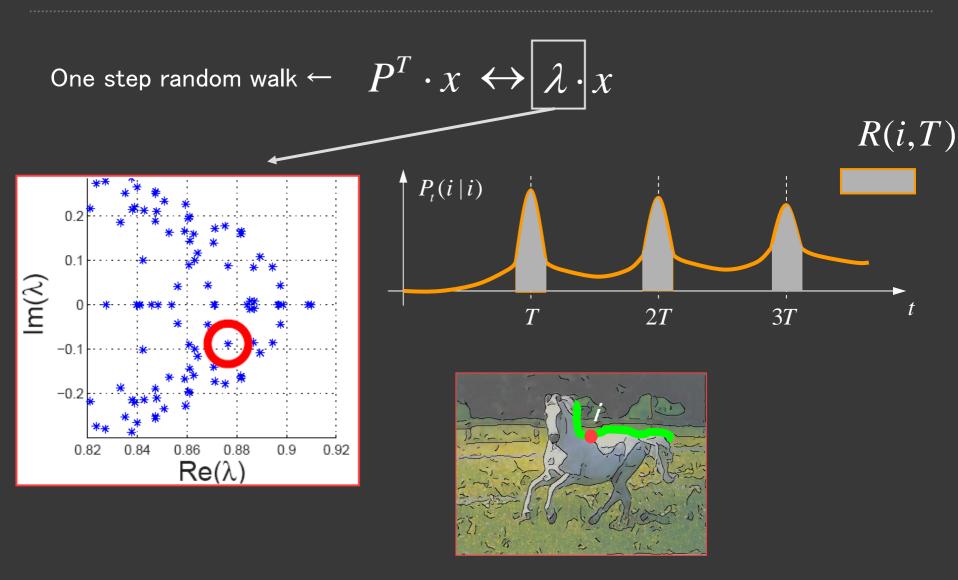
$$R(i,T) = \frac{\sum_{j} \text{Re}(\frac{\lambda_{j}^{T}}{1 - \lambda_{j}^{T}} \cdot U_{ij} V_{ij})}{\sum_{j} \text{Re}(\frac{\lambda_{j}}{1 - \lambda_{j}} \cdot U_{ij} V_{ij})}$$

 $U_{:j}$ $V_{:j}$: left & right eigenvectors of $oldsymbol{P}$

R(i,T): dominated by complex eigenvalues λ_i



Complex Eigenvalues of Random Walk



Complex Eigenvector of Random Walk

One step random walk $\leftarrow P^T \cdot \chi \leftrightarrow \lambda x$ \rightarrow Rotation in complex vector:

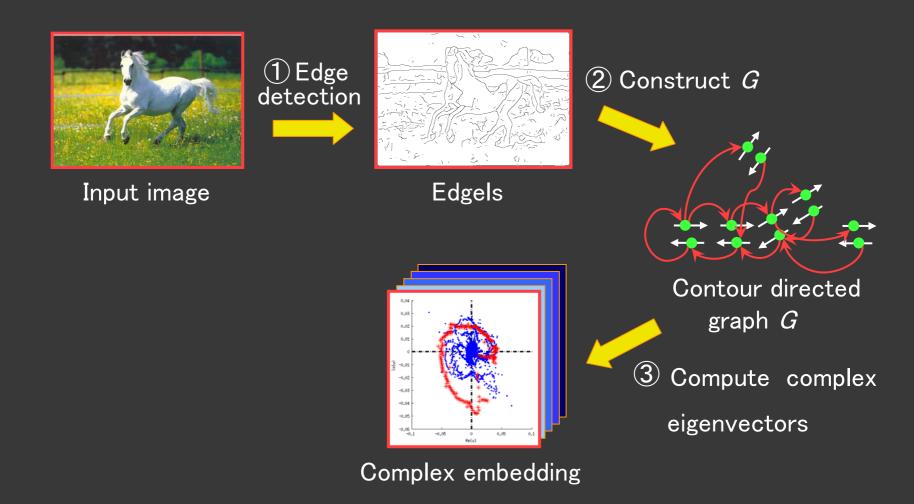
Complex eigenvectors encode both cyclic ordering and likelihood on cycles

Im Re

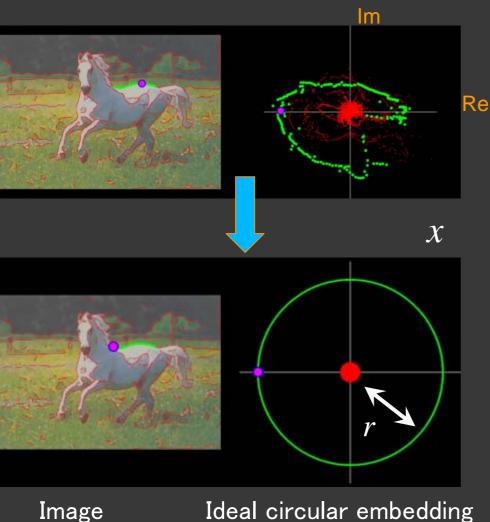
Image

Complex eigenvector x

Untangling Cycle Algorithm



Ideal Cost for Circular Embedding



Ideal circular embedding

Each complex eigenvector gives a circular embedding of the original graph

For a point x in complex plane

$$x(r,\theta) = r \cdot e^{i\theta}$$

Ideal Cost for Circular Embedding

in circular embedding:

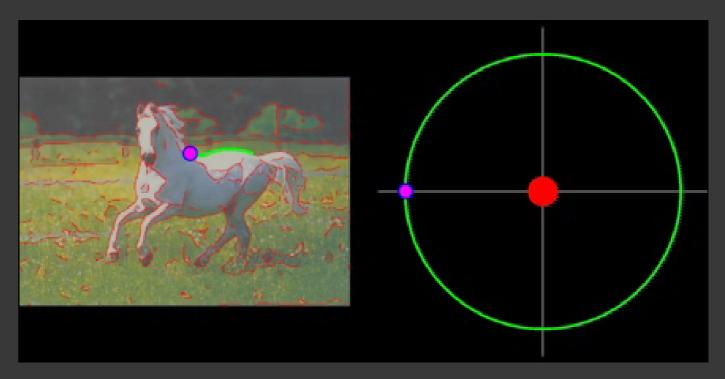
One step random walk
$$\leftarrow P^T \cdot \chi \leftrightarrow \lambda \cdot \chi$$

→ Rotation in circular embedding:

$$x \to P^T \cdot x$$

$$x(r,\theta) = r \cdot e^{i\theta}$$

$$x \to \lambda \cdot x$$



Image

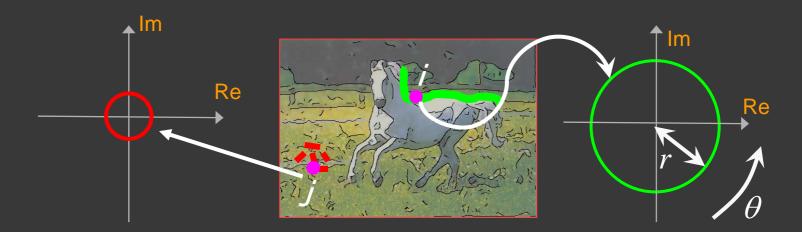
Ideal circular embedding

Ideal Cost of Circular Embedding

we want:

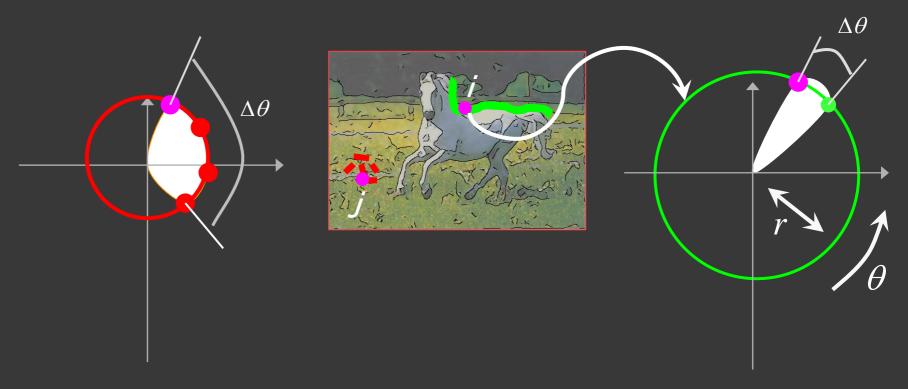
- Good Contour → large circle according to cyclic ordering
- Bad Clutter → core around the origin

$$x(r,\theta) = r \cdot e^{i\theta}$$



Ideal Cost of Circular Embedding

$$r \star \Delta \theta = \text{constant}$$



In clutter, P(j,:) many immediate neighbors for each random walk step

In contour, P(i,:) few immediate neighbors for each random walk step

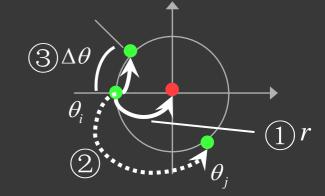
Circular Embedding Score

We conjecture the ideal circular embedding Max.

$$C_{e}(r,\theta,\Delta\theta) = \sum_{\substack{\theta_{i} < \theta_{j} \leq \theta_{i} + 2\Delta\theta \\ r_{i} > 0, r_{j} > 0}} P_{ij} / |S| \cdot \frac{1}{\Delta\theta}$$

$$S = \{(r,\theta) | r = r_{0}\}$$

- r Circle indicator with $r_i \in \{r_0, 0\}$
- θ Phase angles on cycles specifying an ordering
- $\Delta \theta$ Average jumping angle $\Delta \theta = \overline{\theta_j \theta_i}$



Solution: Complex Eigenvector

$$C_{e}(r,\theta,\Delta\theta) = \sum_{\substack{\theta_{i} < \theta_{j} \leq \theta_{i} + 2\Delta\theta \\ r_{i} > 0, r_{j} > 0}} P_{ij} / |S| \cdot \frac{1}{\Delta\theta}$$

Continuous relaxation

$$\max_{u,v \in \mathbb{C}^n} \operatorname{Re}(u^H P v)$$
s.t. $u^H v = c$

Solution: Complex Eigenvector

$$C_e(r,\theta,\Delta\theta) = \sum_{\substack{\theta_i < \theta_j \leq \theta_i + 2\Delta\theta \\ r_i > 0, r_j > 0}} P_{ij} / |S| \cdot \frac{1}{\Delta\theta}$$
 Continuous relaxation

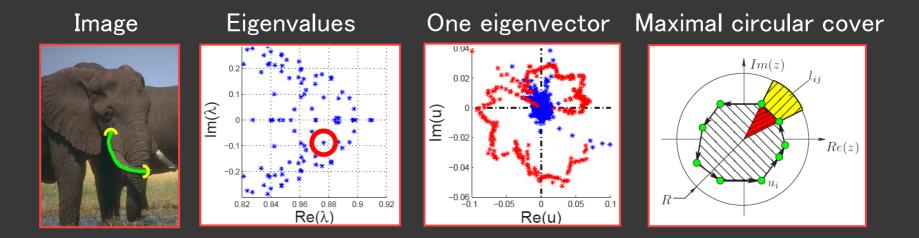
$$\max_{u,v \in \mathfrak{C}^n} \operatorname{Re}(u^H P v)$$
s.t. $u^H v = c$

Theorem: All critical points (local maxima) $(u_{\text{max}}, v_{\text{max}})$ of the above are left and right eigenvectors of P

$$Pv_{\text{max}} = \lambda v_{\text{max}}$$
 $P^T u_{\text{max}}^* = \lambda u_{\text{max}}^*$

Maximum values are $\max_{\lambda} (\text{Re}(\lambda \cdot c))$

Discretization



Find embedding cycles with large radius

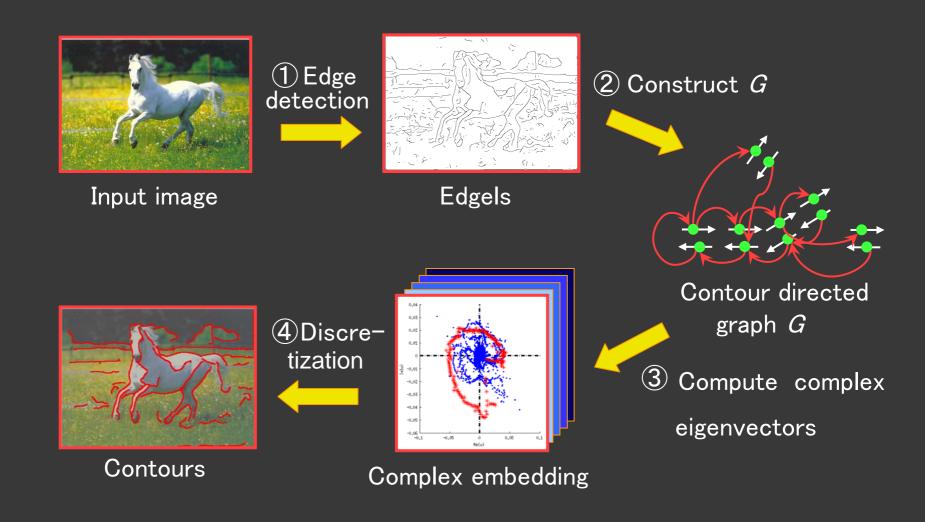
Maximal cover area

$$\max_{s_1, ..., s_k} \sum_{j=1}^k A(u_{s_j}, u_{s_{j+1}})$$

$$A(u_{s_j}, u_{s_{j+1}}) = \frac{1}{2} \operatorname{Im}(u_{s_j}^* \cdot u_{s_{j+1}})$$
Section area spanned by $u_{s_j}, u_{s_{j+1}}$

Compute shortest paths in the embedding space

Untangling Cycle Algorithm

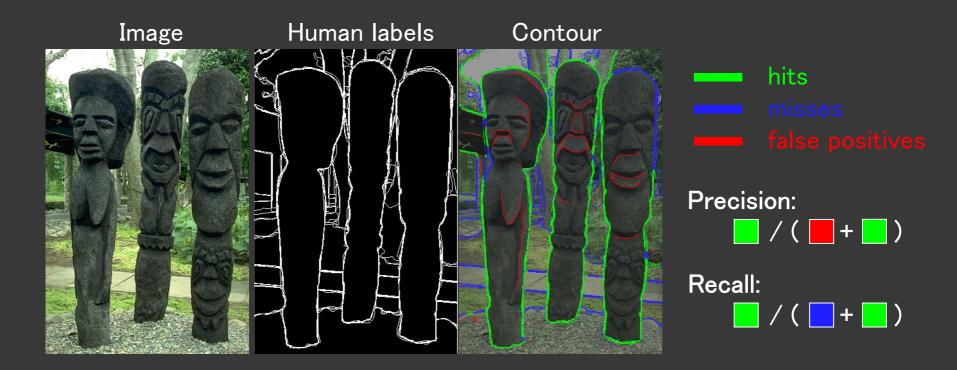


Experiments: BSDS

Experiments: BSDS

Experiments: Horses

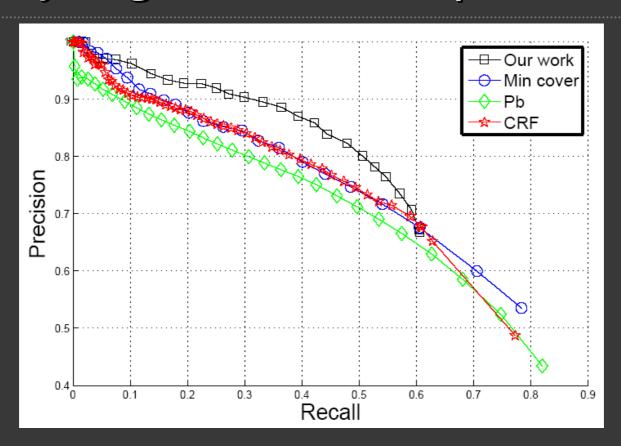
Berkeley Segmentation Benchmark



Compare our method to

- Pb D. Martin *et al*, PAMI 2004
- **CRF** X. Ren *et al*, ICCV 2005
- Min cover P. Felzenszwalb et al, WPOCV 2006

Berkeley Segmentation Comparison



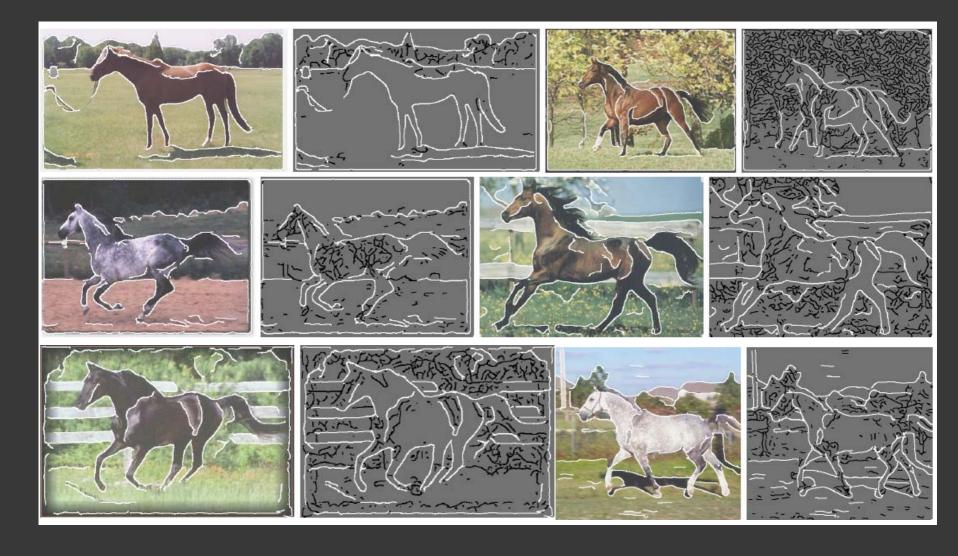
P. F. Felzenszwalb and D. McAllester. A min-cover approach for finding salient curves. In *WPOCV*, page 185, 2006.

- X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion using conditional random fields. In *ICCV*, pages 1214–1221, 2005.
- Pb D. Martin et al, PAMI 2004

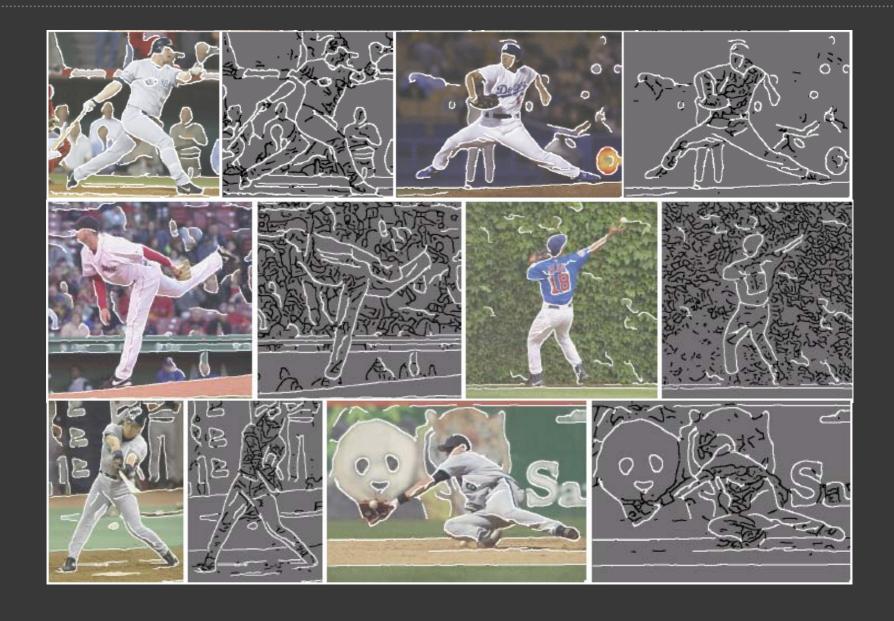
Conclusion

- Utilize topology information for contour grouping
- Persistent cycles: circular/complex embedding
- Untangling cycle cut score: grouping 1D structures

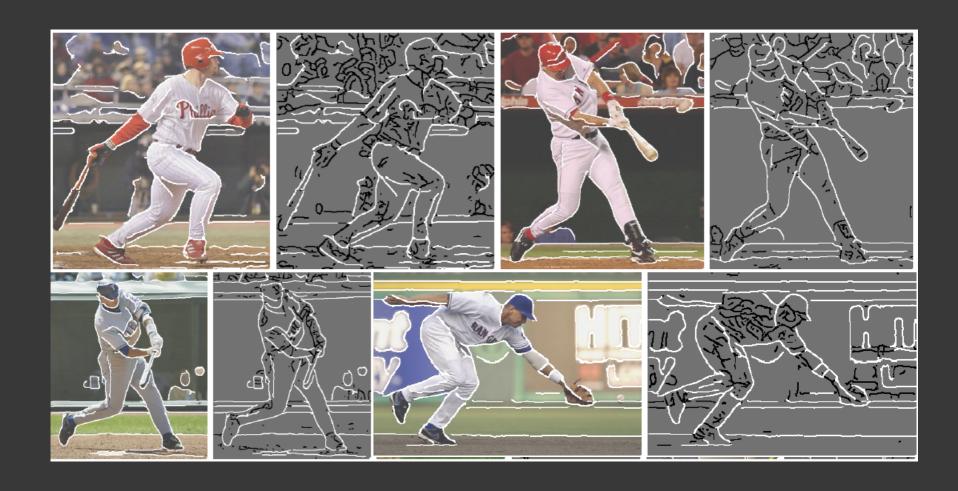
Experiments: Horses



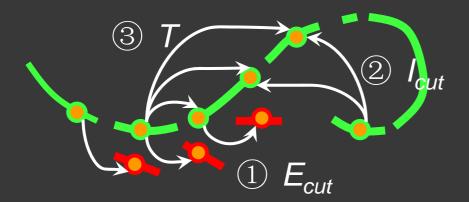
Experiments: Baseball Players



Experiments: Baseball Players



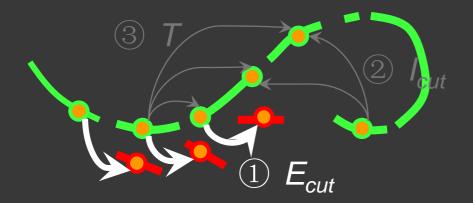
Untangling Cycle Cut Score

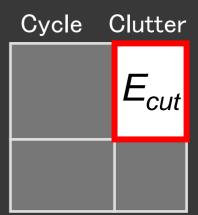


- 1 External cut (E_{cut})
- \bigcirc Internal cut (I_{cut})
- \bigcirc Tube size (T)

A discrete graph cut score useful for segmenting persistent cycles from continuous embedding space

External Cut

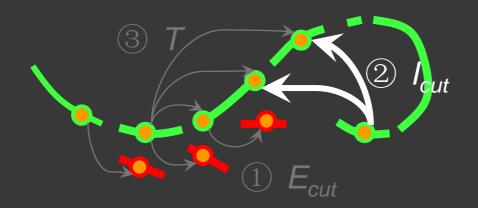


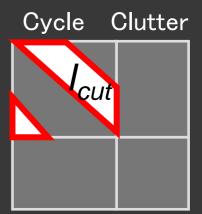


$$E_{cut}(S) = \frac{1}{|S|} \sum_{i \in S, j \in (V-S)} P_{ij}$$

- Cut cycle (S) from clutter (V-S)
- Similar to NCut (2D grouping)

Internal Cut





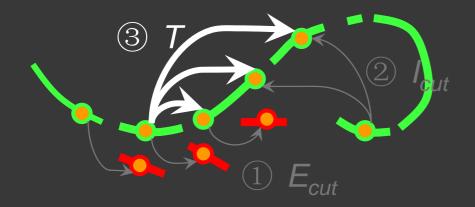
$$I_{cut}(S,O,k) = \frac{1}{|S|} \sum_{(O(i) \ge O(j)) \lor (O(j) \ge O(i) + k)} P_{ij}$$

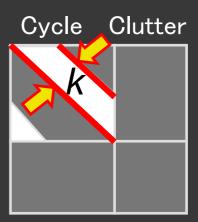
Ordering

$$O: S \mapsto S = \{1, 2, ..., |S|\}$$

 $Ordering \\ O:S \mapsto S = \{1,2,...,|S|\} \\ \begin{cases} Forward & 0 < O(j) - O(i) \le k \\ Backward & -|S|/2 \le O(j) - O(i) \le 0 \end{cases} \\ Fast-forward otherwise \end{cases}$

Tube Size





$$T(k) = k / |S|$$

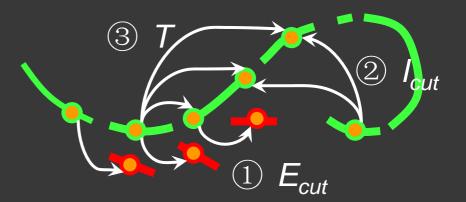
- Thickness: how fat is the cycle?
- Special cases
 - k=1 ideal case of a cycle
 - k=|S| 2D structures

Combining Scores

Maximize Untangling Cycle Cut Score

$$C_u(S, O, k) = \frac{1 - E_{cut}(S) - I_{cut}(S, O, k)}{T(k)}$$

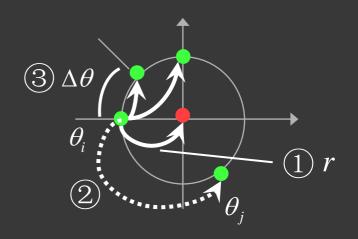
- Subset of graph nodes V
- O Cycle ordering on S
- k Cycle thickness



Cut Score Interpretation

Three untangling cycle criteria

Circular embedding



- ① External cut: $r \Leftrightarrow E_{cut}$
- $oldsymbol{2}$ Internal cut: $heta \Leftrightarrow I_{ extit{cut}}$
- 3 Tube size: $\Delta\theta \Leftrightarrow T$