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Abstract

We introduce a novel topological formulation for contour
grouping. Our grouping criterion, called untangling cycles,
exploits the inherent topological 1D structure of salient con-
tours to extract them from the otherwise 2D image clut-
ter. To define a measure for topological classification ro-
bust to clutter and broken edges, we use a graph formula-
tion instead of the standard computational topology. The
key insight is that a pronounced 1D contour should have
a clear ordering of edgels, to which all graph edges ad-
here, and no long range entanglements persist. Finding
the contour grouping by optimizing these topological cri-
teria is challenging. We introduce a novel concept of circu-
lar embedding to encode this combinatorial task. Our so-
lution leads to computing the dominant complex eigenvec-
tors/eigenvalues of the random walk matrix of the contour
grouping graph. We demonstrate major improvements over
state-of-the-art approaches on challenging real images.

1. Introduction

Objects with salient contours tend to stand out from an
image – they are nice to look at. Aside from their esthet-
ics, salient contours help invoke our object shape memory,
and speed up our visual perception [8]. In computer vision,
good bottom-up salient contour detection can be extremely
useful for object recognition. It provides global shape in-
formation, and simplifies object recognition by alignment.

(a) Gaps (b) Distractions (c) 2D clutter
Figure 1. Challenges for contour grouping. (a) Contours have gaps
to bridge. (b) Sporadic distractions mislead contour tracing. (c)
2D clutter confuses grouping when topology is not considered.

Contour grouping methods often start with edge detec-
tion, followed by linking edgels to optimize a saliency mea-
sure. Finding salient contours is easy when the image is
clean, and contours are well separated. Gestalt factors of
grouping, such as proximity and curvilinear continuity, de-
fine local likelihood of grouping two nearby edgel. Locally
greedy search, such as shortest path, guided by the group-
ing measure can compute an optimal contour grouping effi-
ciently. However, existing contour grouping algorithms are
extremely unstable. They fail on natural images where im-
age clutters are mixed with gaps on contours. Fundamen-
tally it is difficult to distinguish gaps with clutter locally
(see Fig. 1). A common mistake is finding too many false
contours in a cluttered textured region.

We study contour grouping from a novel perspective of
topology. We ask a harder question: does the image con-
tain any 1D curve-like structure, and if so, can we show
that it is topologically 1D? By topologically 1D, we mean
a set of edgels that have a well defined ordering, and the
connections between them strictly follow that ordering. By
looking at the topology, we explicitly exclude 2D clutter or
region-like structure from our contour search.

A key notion we introduce for this topological curve
finding task isentanglement. Intuitively, a set of edges are
entangled if we can not put them in an ordering without
breaking many locally strongly linked edge pairs. We pro-
vide a graph formulation with a topological curve grouping
score evaluating both separation from the background and
disentanglement within the curve. Computationally, finding
such curves requiressimultaneouslydetermining a subset of
edgels and their ordering in the graph. We translate it to a

(a) Clique (b) Chain (c) Cycle
Figure 2. Distinction between 1D vs 2D topology. (a) 2D topology
assumes a clique model. (b)(c) 1D topology assumes a chain or
cycle model. A ring has 1D topology but 2D geometry.
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Figure 3. Directed graph for contour grouping. (a) Horse image. (b) Edge map extracted from Pb [10]. (c) Zoom-in view of graph
connection in window A. Each edge node is duplicated in two opposite orientations. Oriented nodes are connected according to elastic
energy and their orientation consistency. HereWij À Wik. Salient contours form 1D topological chain or cycle in this graph. (d) In
window B, addingW back to duplicated nodesi, i turns a topological chain into a cycle.

circular embedding in thecomplexdomain, where disentan-
glement can be easily encoded and checked. We seek the
desired circular embedding by computing complex eigen-
vectors of the graph weight matrix.

In Section 2, we review the related work. In Section 3,
we define a directed graph for contour grouping using three
untangling cycle criteria. The novel circular embedding is
introduced in Section 4. We present the computational so-
lution in Section 5, and experimental results in Section 6.

2. Background

The use of graph formulation for contour grouping has a
long history, and we have drawn ideas from many of them
[9, 17, 11, 2, 1, 15, 19]. The most related work is [9]
by Mahamudet al. who use a similar directed graph for
salient contour detection. However, they compute the top
real eigenvectors of theun-normalizedgraph weight ma-
trix. As we will show, the relevant topological information
is encoded in thecomplexeigenvectors/eigenvalues of the
normalizedrandom walk matrix. This is an important dis-
tinction because the real eigenvectors contain no topologi-
cal information of the graph. The works of [4, 7, 18] also
seek salient contours. In contrast, we seek closed topolog-
ical cycles which can include open contours, and are more
robust to clutter. We are also motivated by the work of [6]
which showed classical pairwise grouping is insufficient for
contour detection. However, their solution of using short-
est path is very sensitive to clutter. Our approach computes
not only the parametrization, but also the segmentation si-
multaneously. Searching for subgraphs with the specified
topology is a much harder combinatorial problem.

3. Untangling Cycle Formulation

In this section, we formulate the topological requirement
of 1D structures asUntangling Cycle Cut Score. The cut
score is defined on adirectedcontour grouping graph. We
start by introducing the construction of the graph.

3.1. Directed graph and contour grouping

For contour grouping, we first threshold the output of
edge detector (e.g. Pb [10]) to obtain a discrete set of edgels.
We define a directed graphG = (V,E,W) as follows.

Graph nodesV correspond to all edgels. Since the edge
orientation is ambiguous up toπ, we duplicate every edgel
into two copiesi andi with opposite directionsθ, θ + π.

Graph edgesE include all the pairs of edgels within
some distancere: E = {(i, j) : ‖(xi, yi)−(xj , yj)‖ ≤ re}.
Since every edgel is directed, we connect each edgeli only
to the neighbors in the its direction.

Graph weightsW measuredirectedcollinearity using
the elastic energy between neighboring edgels, which de-
scribes how much bending is needed to complete a curve
betweeni andj:

Wij = e−(1−cos(|φi|+|φj |))/σ2
if i → j (1)

Herei → j means thatj is in forward direction ofi. Wij >
0 implies thatWji = 0. φi andφj denote the turning angles
of i andj w.r.t. the line connecting them (see Fig. 3(c)).

In this graph, an ideal closed contour forms two directed
cycles, one for each duplicated direction. Similarly, an ideal
curve leads to two chains. On the other hand, random clut-
ter produces fragmented clusters in the graph. Our task is
to detect such topological differences, and extract 1D topo-
logical structures only.

To simplify the topological classification task and reduce
the search to only cyclic structures, we transform two dupli-
cated chains into a cycle by adding a small amount of con-
nectionW back between the duplicated nodesi and i. For
open contours,W back connects the termination points back
to the opposite direction to create a cycle (see Fig. 3(d)).

Image clutter presents a challenge by creating leakages
from a contour to the background. This is a classical prob-
lem in 2D segmentation as well. To prevent leakages, we
borrow the concept from random walk interpretation of
Normalized Cut [12]. We define the random walk matrix:

P = D−1W (2)
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whereD is diagonal withDii =
∑

i Wij . This amounts to
normalizing connection from each node by its total outward
connections. Such normalization has two good side-effects:
it boostsW back connection at termination points of a chain,
making the returning links there as strong as the interior of
the contours; it also enhances connections for jagged salient
contours which do not fit our curvilinear model.

3.2. Criteria for 1D topological grouping

Graph topology highlights the key difference between
salient 1D curves and 2D clusters. The ideal model of a 2D
cluster is a graphclique. In contrast, the ideal model for a
1D curve is a graphcycleor chain– it requires that the intra-
group connections must be strictly ordered (see Fig. 2).

Ordering plays an important role in distinguishing 1D
topological grouping. We defineentanglementasconnec-
tion of nodes violating a given ordering. Any 1D topolog-
ical structure can be put into a specific ordering, such that
each graph node connects to exactly one successor and is
connected to exactly one predecessor (see Fig. 2 (b)(c)). In
2D topological structures, it is impossible to find a good or-
dering without entanglement (see Fig. 2 (a)). Entanglement
is a tell-tail sign of 2D topological structure.

It is important to generalize the notion of strictly topo-
logical 1D to a coarser level. In real images, most image
curves have missing edges,i.e. gaps. In order to bridge
gaps without including clutter, each node needs to connect
multiple neighboring nodes. These neighbors will contain
multiple (k) nodes in the forward direction of ordering. As
a result, its underlying graph topology is no longer strictly
1D. We need to relax the topologically 1D to a coarser level
k – allowing up tok forward connections for each node (see
Fig. 4). One can think thatk defines a “thickness” factor on
the 1D topology. As the numberk increases, the topological
structure gradually changes from 1D to 2D. Whenk equals
the length of the contour, the group becomes 2D.

Given the directed graphG = (V, E, W ), we seek a
group of verticesS ⊆ V and an ordering on it such that
they maximize the following score:

Untangling Cycle Cut Score (Max overS,O, k)

Cu(S,O, k) =
1− Ecut(S)− Icut(S,O, k)

T (k)
(3)

S: Subset of graph nodesV , i.e. S ⊆ V .
O: Cycle ordering onS.
k: Cycle thickness.

External cut (Ecut)
First, we need to measure how stronglyS is separated

from its surrounding background. We define a cut on the

k steps

v0v1

v2

v3

v5

v4

internal
cut

external
cut

Figure 4. Criteria of untangling cycles for contour grouping. Even
salient contour (red) might have gaps and distracting clutter (blue).
To bridge gaps, we allowk > 1 steps of forward connections:
v1v2, v1v3, v1v4. We define external cut as links from foreground
to background nodes:v1v0. 1D contours should have perfect or-
dering. We define internal cut as out-of-order connections:v5v3,
v5v4. We seek 1D topological structures minimizing all three.

random walk matrixP that separatesS from V :

Ecut(S) =
1
|S|

∑

i∈S,j∈(V−S)

Pij (4)

We call it external cut, reflecting that we are cutting off ex-
ternal background nodes from vertex setV . This cost is
closely related tocut(S,V−S)

V ol(S) , which is a “1-sided” Normal-
ized Cut. This cut criterion is resistant to accidental leak-
ages from background clutter to foreground. In contrast to
the standard Normalized Cut cost [16], our contour group-
ing does not care about the cut from background clutter to
foreground; hence it is “1-sided”.
Internal cut ( Icut)

A key distinguishing factor of a 1D structure is that it
has a clear node ordering. It requires minimal entanglement
between nodes far away in the ordering. We define the node
ordering as a one-to-one mapping:

O : S 7→ S = {1, 2, ..., |S|} (5)

whereO introduces a permutation of the nodes inS.
The “thickness” factork measuresmaximal step size

defining how much each link can violate the orderingO.
Edge(i, j) is forward if 0 < O(j)−O(i) ≤ k; backwardif
−|S|/2 ≤ O(j)−O(i) ≤ 0; fast forwardotherwise. A per-
fect 1D cycle requires all the links to be forward (see Fig. 4)
up to k steps ahead. No backward and fast forward links
should exist. Backward and fast forward links areentangle-
mentsince they make the group tangle into a 2D structure.
Untangling 1D cycles amounts to reducing such links.

Given a subsetS,O andk, we defineinternal cutas the
total entangled random walk transition probability:

Icut(S,O, k) =
1
|S|

∑

(O(i)≥O(j))∨(O(j)>O(i)+k)

Pij (6)

HereO(i) ≥ O(j) counts for backward links andO(j) >
O(i) + k for fast forward links. For simplicity, we assume
thatS is circular, i.e. the successor of|S| wraps back to1.
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(a) Image (b) Graph (c) Weight matrix (d) Circular embedding
Figure 5. Circular embedding in complex space for finding 1D topological cycles. Three canonical cases are shown: a perfect cycle (green)
shown in row 1, a cycle with sporadic distracting edges (red) in row 2, and with 2D clutter (red) in row 3. Column (a) Canonical image
cases. Column (b) Directed graph constructed from edgels. Column (c) Random walk transition matrixP (white for strong links). Column
(d) The optimal circular embedding. Distracting edges and 2D clutter are embedded into the origin.

Tube size (T )
The maximal step sizek is a crucial factor involved with

internal cut. In the ideal case of 1D cycle, we only allow
connection withk = 1 step forward. As stated before, we
need to measure 1D topology at a coarser scale to resist
clutter and tolerate gaps. Therefore we wantk to be as small
as possible while keeping the internal and external cut low.

A physical analogy is very useful for understanding
our task. Imagine we are asked to pull out string-like (1D)
and ball-like (2D) interconnected particles through a tube.
As long as the tube is narrow, we have to pull things out
little by little, and we must untangle the strings to prevent
jamming up in the tube. In contrast, it is impossible to pull
out ball-like structures through the narrow tube.

We define tube size to measure how much entanglement
is allowed in topological 1D structures as:

T (k) = k/|S| (7)

Note that tube sizeT (k) is independent of cycle length. In-
tuitively, the tube size describes how ‘thick’ the cycle is: the
thinner the cycle is, the easier to pull it out through the tube.
T (k) reaches minimum of1/|S| whenk = 1.

Finally, we combine minimization of all the above three
criteria into maximization of score (3).

One way to visualize the three criteria is to observe the
structures of matrixP (Fig. 5(c)). SelectingS amounts to

choosing a sub-block ofP . External cut removes all the
links outside the sub-block. After permutationO, internal
cut removes all the links outside the sub-band ofP ’s diag-
onals. k is exactly the width of this sub-band. Therefore,
Eq. (3) boils down to finding a sub-block ofP , a permuta-
tion and a bandwidthk, such that the fewest links are left
outside the sub-band. Note that standard graph cut algo-
rithms (e.g. [16]) only consider external cut, but do not take
internal cut and cycle thickness into account.

4. Circular embedding

Optimizing Eq. (3) essentially performs segmentation
and parametrization on the graphsimultaneously. We only
cut out a subset of nodes with a good parametrization,i.e.
ordering. This is a hard combinatorial task. Our strategy is
to embed the graph into a circular space, such that the three
criteria in (3) can be encoded and checked effectively.
Definition Circular embedding is a mapping from the vertex
setV of the original graph to a circle plus the origin:

Ocirc : V 7→ (r, θ) : Ocirc(i) = xi = (ri, θi) (8)

Hereri is the circle radius which can only take a positive
fixed valuer0 or 0. θi is the angle associated with each
node. Circular embedding can easily encode both thecut
and theorderingof graph nodes.S = {vi : ri = r0} spec-
ifies the nodes being cut out, as in Eq. (4). Angleθi speci-
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fies the ordering. We simplify the embedding by restricting
θi = 2πi/|S| (see Fig. 5),i.e. xi is distributed uniformly
on the circle. It is important to forcexi to spread out in the
circular embedding. Ifxi’s all map to the same point, no
order information can be obtained.
Average jumping angle In order to express tube size, we
define theaverage jumping angleof the links as:

∆θ = θj − θi (9)

Note that the average only counts(i, j) where there is an
edge(i, j) in the original contour grouping graph. Since an-
gle θ encodes the ordering,∆θ describes how far one node
is expected to jump through the links.

We seek a circular embedding such that 1D topologi-
cal structure is mapped to the circle while background is
mapped to the origin. The optimal circular embedding max-
imizes the following score:

Circular Embedding Score (Max over r, θ, ∆θ )

Ce(r, θ, ∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0, rj>0

Pij/|S| · 1
∆θ

(10)

r: Circle indicator withri ∈ {r0, 0}.
θ: Angles on the circle specifying an ordering.

∆θ: Average jumping angle.

The equivalence of the circular embedding and untan-
gling cycles is established by the following lemma:

Lemma 1. Circular Embedding Score (Eq. (10)) is equiva-
lent to Untangling Cycle Cut Score (Eq. (3)) assuming that
the angle differenceθj − θi is distributed uniformly.

The derivation of Lemma 1 includes interpretation of the
three criteria in the embedding space, shown as follows.

1) External cutrequires that there are minimal links from
the circle to the origin. BecauseS = {vi : ri = r0} speci-
fies foreground nodes andV − S = {vi : ri = 0} specifies
background nodes, all links involved inEcut are those from
the circle to the origin (see Fig. 6).

2) Internal cut requires angles spanned by links on the
circle to be small. Edges in the original graph is mapped
to chords on the circle. The angle spanned by the chord is
θi − θj = 2π

|S| (i − j). Therefore, links involved inIcut are
those with either negative angle (backward links) or large
positive angle (fast forward links).

3) Tube sizeis given by the average jumping angle∆θ.
Recall thatk gives the upper bound determining which links
are forward. In circular embedding, it means the angle dif-
ference of forward links does not exceedk · 2π

|S| . If the jump-

ing angles are distributed uniformly withink · 2π
|S| , then

∆θ = (2π/|S|) · (k/2) = π · k/S = π · T (k) (11)

1

2

3 T (k)
Ecut

Icut

1

2

3

1

2

3

θj

θi r

∆θ

r ↔ Ecut

θ ↔ Icut

∆θ ↔ T (k)

(a) Untangling cycle criteria (b) Circular embedding
Figure 6. Interpretation of the three untangling cycle criteriaEcut,
Icut andT (k) in circular embedding.

This seems to be a crude approximation to∆θ at the first
glance. However, in contour grouping, it is reasonable be-
cause we set up the graph with multiple forward links for
each node and the weights for these links tend to be similar.

Now we can rewrite the score function (3) in circular em-
bedding, expressed by(r, θ) and the average jumping angle
∆θ. BecausePij is row normalized (Eq. (2)),

∑
i Pij/|S| =

1. Since non-forward links are either included inEcut(S)
or Icut(S,O, k), 1−Ecut(S)− Icut(S,O, k) is essentially
counting how many forward links are left. The numerator
of Eq. (3) can be expressed in terms ofr, θ and∆θ:

1− Ecut(r)− Icut(r, θ, ∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0,rj>0

Pij

|S| (12)

The forward links are chords with spanning angles no more
than2∆θ. Combining Eq. (11), (12), maximizing Eq. (3)
reduces to the maximizing Eq. (10) in circular embedding.

5. Complex eigenvectors: a continuous relax-
ation

Now we are ready to derive a computational solution.
We generalize the discrete circular embedding (8) by map-
ping the graph into the continuous complex plane. The opti-
mal continuous circular embedding turns out to be the com-
plex eigenvectors of the random walk matrix.

First we relax bothr and θ in Eq. (10) to continuous
values. Our goal is to find the optimal mappingOcmpl :
V 7→ C, Ocmpl(vj) = xj = rje

iθj , which approximates
the optimalr andθ in Eq. (10). Hererj = ‖xj‖ andθj are
magnitude and phase angle of the complex numberxj .

In the desired embedding with a fixed∆θ, the term

∑

i,j

Pij cos(θj − θi −∆θ) =
∑

i,j

PijRe(x∗i xj · e−i∆θ)/r2
0

is a good approximation of the sum of forward links (nu-
merator in Eq. (12)). When the angle differenceθj − θi

equals average jumping angle∆θ, the weight reaches the
maximum of 1. Whenθj − θi deviates from∆θ, the weight
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Figure 7. Persistent cycles. (a) 1D contours correspond to good cycles. (b) Returning probabilityPr(i, t) on 1D contours has period peaks
since random walk on it tends to return in a fixed time. (c) 2D clutter corresponds to bad cycles. (d) Returning probabilityPr(i, t) of
random walk on 2D clutter is flat.

gradually dies off. Then the score function (12) becomes:

∑
ij PijRe(x∗i xj · e−i∆θ) · t0∑

i |xi|2 (13)

where the denominator is exactly|S| in the discrete case.
Heret0 = 1/∆θ relates tox as well.

Expressed in a matrix form, Eq. (13) becomes

max
∆θ∈R,x∈Cn

Re(xHPx · t0e−i∆θ)
xHx

(14)

Solving Eq. (14) is not an easy task. Moreover, we are
not only interested in the best solution of Eq. (14), but all
the locally optimal solutions. These local optima will give
all the 1D structures in the graph. We find a relaxation by
settingu = x, v = u · e−i∆θ. We setc = t0e

−i∆θ to
be a constant. Eq. (14) can be rewritten as maximizing
Re((uHPv · c)/(uHv)) with u, v ∈ Cn. Furthermore, it
is equivalent to the following optimization problem:

max
u,v∈Cn

Re(uHPv) s.t. uHv = c (15)

This problem leads exactly toP ’s complex eigenvectors.

Theorem 1. All the critical points (local maxima)
(umax, vmax) of the optimization problem (15) are given
by the left and right eigenvectors ofP respectively,i.e.,
Pvmax = λvmax and PT u∗max = λu∗max. Furthermore,
the corresponding maximal value ismaxλ(Re(λ ·c)) where
λ is one eigenvalue ofP .

Proof. Please see Appendix.

The complex eigenvectors gives us the ordering of 1D
cycles, encoded in the phase angle ofu. The average jump-
ing angle∆θ is given by the phase angle ofλ because
Re(λ · c) reaches its maximum when the phase angles of
λ∗ andc = t0e

−i∆θ are most similar.

6. Random walk interpretation

Random walk provides an alternative view to see why
complex eigenvector is useful for untangling cycles. Ran-
dom walk has been shown to be effective analyzing region

segmentation [12]. Unlike traditional random walk analy-
sis, we are interested in periodicity of the states rather than
the convergence behavior. Periodicity is a good indication
that there exist persistent cycles in the graph.

6.1. Random walk

Following traditional random walk analysis, transition
matrix P = D−1W (Eq. (2)) encodes the probability of
switching states. In other words,Pij is the probability that
a particle starts from nodej and randomly walk to nodei
in one step. Note thatP is asymmetric because the random
walk is directional.

According to our graph setup (see Section 3), both open
and closed image contours become directed cycles in the
contour graph. Finding image contours amounts to search-
ing cycles in this directed graph. However, there are numer-
ous graph cycles and not all cycles correspond to 1D image
contours. Now the key question is:What is the appropri-
ate saliency measure for good cycles (1D contour) and bad
cycles (2D clutter)?

We first notice an obvious necessary condition. If the
random walk starting at a node comes back to itself with
high probability, then it is likely that there is a cycle passing
through it. We denote the returning probability by

Pr(i, t) =
∑

`

Pr(i, t | |`| = t) (16)

Here` is a random walk cycle with lengtht passingi. How-
ever, this condition alone is not enough to identify 1D cy-
cles. 2D clutter can also introduce Consider the case where
there are many distracting branches of the main cycle. In
this case, paths through the branches will still return to the
same node but with different path lengths. Therefore, it is
not sufficient to require the paths to return only, but return
in thesame period.

6.2. Persistent cycles

We have found that 1D cycles have a special pattern of
returning probabilityPr(i, t) (see Fig. 7). From analysis
of Section 4, one step of random walk on 1D cycles tends
to stay in the cycles (external cut to be small), and move
a fixed amount forward in the cyclic ordering (internal cut
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(a) Image (b) Eigenvalues (c) One eigenvector (d) Maximum circular cover
Figure 8. Illustration of computational solution. (a) An elephant with a detected contour grouping (green) and endpoints (yellow) on its
tusk. (b) The topnc eigenvalues sorted by their real components. Their phase angles relate to the 1D thickness of cycles. We look for
complex ones with large magnitudes but small phase angles indicating the existence of thin 1D structures. (c) The complex eigenvector
corresponding to the selected eigenvalue in (b) (red circle) is plotted. The detected tusk contour is embedded into a geometric cycle plotted
in red. We find discretization in this embedding space by seeking the maximum circular cover shown in (d). See text for more details.

to be small). If one starts a random walk from a node in
1D cycles, it is very likely to return at multiple times of a
certain period. We call these cyclespersistentcycles. Our
task is to separate persistent cycles from other random walk
cycles.

To quantify the above observation, we introduce the fol-
lowing ’peakness’ measure of the random walk probability
pattern:

R(i, T ) =
∑∞

k=1 Pr(i, kT )∑∞
k=0 Pr(i, k)

(17)

Here we compute the probability that the random walk re-
turns at steps of multiples ofT . R(i, T ) being high indicates
there are 1D cycles passing through nodei.

The key observation is thatR(i, T ) closely relates to
complex eigenvalues ofP , instead of real eigenvalues.

Theorem 2. (Peakness of Random Walk Cycles)R(i, T )
can be computed by the eigenvalues of transition matrixP :

R(i, T ) =

∑
j Re( λT

j

1−λT
j
· UijVij)

∑
j Re( 1

1−λj
· UijVij)

(18)

Proof. See Appendix.

Theorem 2shows thatR(i, T ) is the “average” of

f(λj , T ) = Re( λT
j

1−λT
j
· UijVij)/Re( 1

1−λj
· UijVij). For

real λj , f(λj , T ) ≤ 1/T . For complexλj , f(λj , T ) can
be large. For example, whenλj = s · ei2π/T , s → 1,
Uij = Vij = a ∈ R, f(λj , T ) → ∞. Hence it is the com-
plex eigenvalue with proper phase angle and magnitude that
leads to repeated peaks. Complex eigenvalues and eigen-
vectors ofP indeed carry important information on persis-
tent 1D cycles.

Because the random walk will eventually converge to the
steady state,Pr(i, T ) converges to a constant. This means
thatR(i, T ) → 1/T no matter what the graph structure is.
We can alleviate this technical issue by multiplying a decay

factor η. Namely, we useηkPr(i, k) to replacePr(i, k).
Responses with longer time are weighted lower because the
peaks become more and more blurred. This amounts to re-
placeP by ηP and all the above analysis.

7. Computational solution

The complex eigenvector is an approximation of the op-
timal circular embedding and will not produce exact 1D cy-
cles. Therefore, we still need to search for 1D cycles in this
space. We introduce a discretization method and give the
overall untangling cycle procedure in this section.

7.1. Discretization

For each of the top complex eigenvectors, we seek dis-
crete topological cycle(s) separated from background. First,
we can read off the tube size directly from the phase angle
of its corresponding eigenvalue. This determines the “thick-
ness”k of our cycle. Since we prefer thin 1D cycles, we will
only examine eigenvectors with small phase angles.

Once we know a 1D cycle exists, we search for it in its
complex eigenvector whose components areu1, ...u2n. The
topological graph cycles are mapped to the geometric cycles
in this embedding space. The larger the cycle is geometri-
cally, the better the 1D graph cycle is topologically. There-
fore, we should search for a sequences1, s2, ..., sh, sh+1 =
s1 such that|us1 |, ..., |ush

| are large andθ(us1), ..., θ(ush
)

are in an increasing order. This can be tackled by finding the
sequence enclosing the largest area in the complex plane:

max
s1,...,sh

h∑

j=1

A(usj
, usj+1) (19)

HereA(usj
, usj+1) = 1

2 Im(u∗sj
· usj+1) is the signed area

of the triangle spanned byusj
, usj+1 and0.

To simplify the search, we can packui into bins
B1, ..., Bm according to their phase angles. Suppose there
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is an edge(i, j) in the original graph. Ifui is in a prop-
erly ordered cycle, the phase angle differenceθ(uj)−θ(ui)
will, on average, equal to∆θ. Hence, we can safely assume
that all its neighborsuj are at most one bin apart fromui if
the bin size is chosen properly (e.g. 2∆θ). Furthermore, we
group nodes within the same bin by their spatial connectiv-
ity. This greatly reduces the computational cost.

The maximal enclosed area problem can be solved by
the shortest path algorithm. Notice that the sequence
us1 , ..., ush

, ush+1 = us1 produces a closed loop around the
origin. Suppose it only wraps around the origin once. For
each pair ofi, j in neighboring bins, set̀ij = 1

2 [θ(uj) −
θ(ui)] · R2 − A(ui, uj). R is chosen sufficiently large to
guaranteèij > 0 for all i,j. Then Eq. (19) can be reduced
to

πR2 − min
s1,...,sh+1

h∑

j=1

`sjsj+1 (20)

This shortest cycle problem can be broken into two parts:
the first shortest path froms1 in bin B1 to a nodesu in
bin B2, and the second one fromsu back tos1. Hence,
mins1,...,sh+1

∑h
j=1 `sjsj+1 in Eq. (20) becomes

min
s1∈B1,su∈B2

s1,...,sh+1

[
u−1∑

j=1

`sjsj+1 +
h∑

j=u

`sjsj+1 ] (21)

where each summation itself is a shortest path.

7.2. Algorithm

In summary, our untangled cycle algorithm has 3 steps:

Algorithm 1 Untangling cycles
1: Graph setupConstruct the directed graphG and com-

pute transition matrixP by Eq. (1) and (2).
2: Complex embeddingCompute the firstnc complex

eigenvectors ofP . Each complex eigenvector produces
a complex circular embeddingu1, u2, ...u2n ∈ C.

3: Cycle tracingFor u1, u2, ...u2n, use shortest path to
find a cycleS ⊆ {1, ..., 2n} minimizing (Eq. (20)).

8. Experiments

We test ouruntangling cyclealgorithm on a variety of
challenging real images, including Berkeley Segmentation
Dataset [10] (see Fig. 13), Weizmann horse database [3]
(see Fig. 11) and Berkeley baseball player dataset [13] (see
Fig. 12). Our untangling cycle algorithm is capable of find-
ing one-dimensional contours even when many of the im-
ages have significant clutter (see Fig. 10). We output con-
tours that are both open or closed, straight or bent. These
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Figure 9. Precision recall curve on the Berkeley benchmark, with
comparison to Pb [10], CRF [14] and min cover [5]. We use prob-
ability boundary [10] with low threshold to produce graph nodes,
and seek untangling 1D topological cycles for contour grouping.
The same set of parameters are used to generate all the results.

experiments are performed using the same set of parameters
and we show all the detected contours without any postpro-
cessing. Extensive tests show that our algorithm is effec-
tive in discovering one-dimensional topological structures
in real images.

Our results are significantly better than those of state-of-
the-art, particularly on cluttered images. To quantify our
performance, we compare our precision-recall curve on the
Berkeley benchmark set with two top algorithms: CRF [14]
and min cover [5] on this test. Our result is well above these
approaches by about7% in the medium to high precision
part. Visually our results produce much cleaner contours.
Many of the false positives are shading edges, which are
not labelled by humans. However, once they are grouped,
they could be easy to prune in later recognition process.
These are the advantages not reflected by the metric in the
Berkeley benchmark, which counts matched pixels inde-
pendently.

9. Conclusion

To our knowledge, this is the first major attack on con-
tour grouping using topological formulation. Our grouping
criterion, untangling cycles, exploits the inherent 1D topo-
logical structure of salient contours to extract them from the
otherwise 2D image clutter. We made this precise by defin-
ing a directed graph linking local edgels. We encode the
untangling cycle criterion by circular embedding. Compu-
tationally, this reduces to finding the top complex eigenvec-
tors of the random walk matrix. We demonstrate significant
improvements over state-of-the-art approaches on challeng-
ing real images.
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Figure 10. Contour grouping result on real images. All detected binary edges are shown (right). Our method prunes clutter edges (dark),
and groups salient contours (bright). We use no edge magnitude information for grouping, and can detect faint but salient contours under
significant clutter. We focus on graph topology, and detect contours that are either open or closed, straight or bended.
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Appendix

A. Proof of Theorem 1
Theorem 1 All the critical points (local maxima)
(umax, vmax) of the following optimization problem is
given by the left and right eigenvectors ofP respectively,
i.e., Pvmax = λvmax andPT u∗max = λu∗max.

max
u,v∈Cn

Re(uHPv) (22)

s.t. uHv = c (23)

Furthermore, the corresponding maximal value is
maxλ(Re(λ · c)) whereλ is one eigenvalue ofP .

Proof. Let u = ur + iuc andv = vr + ivc. By splitting
into real and imaginary parts, the original problem can be
written as

max
ur,uc,vr,vc

uT
r Pvr + uT

c Pvc (24)

s.t. uT
r vr + uT

c vc = Re(c) (25)

uT
r vc − uT

c vr = Im(c) (26)

ur, uc, vr, vc ∈ Rn (27)

Hence, the Lagrangian has the following form withµ andν
as the multipliers:

L =uT
r Pvr + uT

c Pvc + µ[uT
r vr + uT

c vc − Re(c)]

+ ν[uT
r vc − uT

c vr − Im(c)]

By taking derivatives of the Lagrangian, we have

∂L

∂ur
= Pvr + µvr + νvc (28)

∂L

∂uc
= Pvc + µvc − νvr (29)

∂L

∂vr
= PT ur + µur − νuc (30)

∂L

∂vc
= PT uc + µuc + νur (31)

Setting the above derivatives to0 gives all the local max-
ima of the original problem (22). After combining the equa-
tions, we obtain

P (vr + ivc) = (−µ + iν)(vr + ivc) (32)

PT (ur + iuc) = (−µ− iν)(ur + iuc) (33)

SinceP is real, Eq. (33) is equivalent toPT (ur − iuc) =
(−µ + iν)(ur − iuc). This means that all the critical points
(u∗, v) = (ur−iuc, vr +ivc) are left and right eigenvectors
of P . Let λ = −µ + iν. By substitutingPv = λv into the
objective function, we conclude that the optimal value is
maxλ(Re(λ · c)).

B. Proof of Theorem 2
First we prove the following lemma:

Lemma 1 Pr(i,m) can be expressed in terms of eigenval-
ues and eigenvectors of transition matrixP 1:

Pr(i,m) =
∑

λj real

λm
j UijVij +

∑

λj complex

Re(λm
j UijVij)

(34)
whereλj is thejth eigenvalues ofP andUij is theith entry
of thejth right eigenvector andVij is the ith entry of the
jth left eigenvector.

Proof. By simple induction one can prove that

Pr(i,m) = (Pm)ii (35)

Here(Pm)ij represents the entry at rowi and columnj.
Consider the eigenvalue decomposition ofP

P = UΣU−1 (36)

HereΣ = diag(λ1, ..., λn) andU is a nonsingular com-
plex matrix whose columns are corresponding eigenvectors
u1, ..., un. Since eigenvectors are not necessarily orthog-
onal, U−1 is not equal toUH in general. However, rows
of U−1 are left eigenvectors ofP , i.e. (U−1)T = V . The
power ofP can be easily computed by

Pm = UΣmU−1 (37)

We can write(Pm)ii as

(Pm)ii = (UΣmU−1)ii (38)

=
∑

j

Uij · λm
j · Vij (39)

=
∑

λj real

λm
j UijVij +

∑

λj complex

Re(λm
j UijVij)

(40)

Eq (40) comes from the fact thatUij andVij are all real if
λj is real and all complex eigenvalues appear in pairs.

With Lemma 1, we can easily proveTheorem 2.
Theorem 2(Peakness of Random Walk Cycles)R(i, T ) can
be computed by the eigenvalues of transition matrixP :

R(i, T ) =

∑
j Re( λT

j

1−λT
j
· UijVij)

∑
j Re( 1

1−λj
· UijVij)

(41)

1To simplify the analysis, we assume thatP is diagonalizable inCn×n

and achieve this by perturbingP . For anyε ∈ R, there exists diagonaliz-
ableQ such that‖P −Q‖ < ε.
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Proof. FromLemma 1, it is straight forward to get

∞∑

k=1

Pr(i, kT ) =
∑

j

Re(λT
j /(1− λT

j ) · UijVij) (42)

∞∑

k=1

Pr(i, k) =
∑

j

Re(1/(1− λj) · UijVij) (43)

Finally we have

R(i, T ) =

∑
j Re( λT

j

1−λT
j
· UijVij)

∑
j Re( 1

1−λj
· UijVij)

(44)
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Figure 11. Contour grouping result on Weizmann horse database. All detected binary edges are shown (right). Our method prune clutter
edges (dark), and groups salient contours (bright). We use no edge magnitude information for grouping, and can detect faint but salient
contours under significant clutter. We focus on graph topology, and detect contours that are both open or closed, straight or bent.
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Figure 12. Contour grouping result on Berkeley baseball player dataset. See the caption of Figure 11 for description.
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Figure 13. Contour grouping result on Berkeley Segmentation Dataset. See the caption of Figure 11 for description.

15


