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Abstract Contour grouping methods often start with edge detec-
tion, followed by linking edgels to optimize a saliency mea-
We introduce a novel topological formulation for contour sure. Finding salient contours is easy when the image is
grouping. Our grouping criterion, called untangling cycles, clean, and contours are well separated. Gestalt factors of
exploits the inherent topological 1D structure of salient con- grouping, such as proximity and curvilinear continuity, de-
tours to extract them from the otherwise 2D image clut- fine local likelihood of grouping two nearby edgel. Locally
ter. To define a measure for topological classification ro- greedy search, such as shortest path, guided by the group-
bust to clutter and broken edges, we use a graph formula-ing measure can compute an optimal contour grouping effi-
tion instead of the standard computational topology. The ciently. However, existing contour grouping algorithms are
key insight is that a pronounced 1D contour should have extremely unstable. They fail on natural images where im-
a clear ordering of edgels, to which all graph edges ad- age clutters are mixed with gaps on contours. Fundamen-
here, and no long range entanglements persist. Finding tally it is difficult to distinguish gaps with clutter locally
the contour grouping by optimizing these topological cri- (see Fig. 1). A common mistake is finding too many false
teria is challenging. We introduce a novel concept of circu- contours in a cluttered textured region.
lar embedding to encode this combinatorial task. Our so-  We study contour grouping from a novel perspective of
lution leads to computing the dominant complex eigenvec-topology. We ask a harder question: does the image con-
tors/eigenvalues of the random walk matrix of the contour tain any 1D curve-like structure, and if so, can we show
grouping graph. We demonstrate major improvements overthat it is topologically 10? By topologically 1D, we mean
state-of-the-art approaches on challenging real images. a set of edgels that have a well defined ordering, and the
connections between them strictly follow that orderiBy
looking at the topology, we explicitly exclude 2D clutter or
1. Introduction region-like structure from our contour search.
, , ) A key notion we introduce for this topological curve
. Objects with salient contours tend to stand out from an g, 4ing task isentanglementintuitively, a set of edges are
Image — they are nice to I_OOk at. As'd(? from their esthet- entangled if we can not put them in an ordering without
ics, salient contourg help mvoke_our object shape memory, breaking many locally strongly linked edge pairs. We pro-
and speed up our V|_sual perception [8],' In computer vision, ;¢ 5 graph formulation with a topological curve grouping
good bottomjup salient gc_mtour detegtlon can be extremelyscore evaluating both separation from the background and
useful _for ObJeCt. recognition. It prOVIdt_a_s global _shape """ disentanglement within the curve. Computationally, finding
formation, and simplifies object recognition by alignment. such curves requirasmultaneouslyetermining a subset of
edgels and their ordering in the graph. We translate it to a
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Figure 1. Challenges for contour grouping. (a) Contours have gapsFigure 2. Distinction between 1D vs 2D topology. (a) 2D topology
to bridge. (b) Sporadic distractions mislead contour tracing. (c) assumes a clique model. (b)(c) 1D topology assumes a chain or
2D clutter confuses grouping when topology is not considered.  cycle model. A ring has 1D topology but 2D geometry.
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Figure 3. Directed graph for contour grouping. (a) Horse image. (b) Edge map extracted from Pb [10]. (c) Zoom-in view of graph
connection in window A. Each edge node is duplicated in two opposite orientations. Oriented nodes are connected according to elastic
energy and their orientation consistency. H8rg > W;,. Salient contours form 1D topological chain or cycle in this graph. (d) In
window B, addingi?®*°* to duplicated nodes 7 turns a topological chain into a cycle.

circular embedding in theomplexdomain, where disentan- ~ 3.1. Directed graph and contour grouping
glement can be easily encoded and checked. We seek the
desired circular embedding by computing complex eigen-
vectors of the graph weight matrix.

For contour grouping, we first threshold the output of
edge detectoe(g Pb [10]) to obtain a discrete set of edgels.
] . ] We define a directed grapgg = (V,E, W) as follows.

In S.ect|on '2, we review the related WOI’k.. In Se.ctlon 3, Graph noded correspond to all edgels. Since the edge
we define a directed graph for contour grouping using three g ientation is ambiguous up te, we duplicate every edgel

untangling cycle criteria. The novel circular embedding is jhio two copies andi with opposite direction8, § + .
introduced in Section 4. We present the computational so- Graph edgesE include all the pairs of edgels within

lution in Section 5, and experimental results in Section 6. ¢gme distance.: E = {(i,5) : ||(zs, 1) — (z,y;)]| < re}.

Since every edgel is directed, we connect each edgelly
to the neighbors in the its direction.
Graph weightsW measuredirected collinearity using
The use of graph formulation for contour grouping has a the €lastic energy between neighboring edgels, which de-
long history, and we have drawn ideas from many of them SCribes how much bending is needed to complete a curve
[9, 17, 11, 2, 1, 15, 19]. The most related work is [9] Petweer andj:
by Mahamudet al. who use a similar directed graph for
salient contour detection. However, they compute the top
real eigenvectors of th@in-normalizedgraph weight ma-
trix. As we will show, the relevant topological information
is encoded in theomplexeigenvectors/eigenvalues of the
normalizedrandom walk matrix. This is an important dis-

tinction because the real eigenvectors contain no tOIOOIOg"cycles, one for each duplicated direction. Similarly, an ideal

cal information of the graph. The works of [4, 7, 18] also .

: curve leads to two chains. On the other hand, random clut-
seek salient contours. In contrast, we seek closed topolog- . .
) ) : ter produces fragmented clusters in the graph. Our task is
ical cycles which can include open contours, and are more

. h logical diff 1D -
robust to clutter. We are also motivated by the work of [6] to detect such topological differences, and extract 1D topo

: : S C 2 L logical structures only.
which showed classical pairwise grouping is insufficient for - . A
. . . . To simplify the topological classification task and reduce
contour detection. However, their solution of using short-

: o the search to only cyclic structures, we transform two dupli-
est path is very sensitive to clutter. Our approach computes L ;
-“cated chains into a cycle by adding a small amount of con-

e et - pectin! beween e duplcated odeand. For
Y- 9 grap P open contoursiy’®2°* connects the termination points back

topology is a much harder combinatorial problem. to the opposite direction to create a cycle (see Fig. 3(d)).
Image clutter presents a challenge by creating leakages
3. Untangling Cycle Formulation from_a contour to the_background. This is a classical prob-
lem in 2D segmentation as well. To prevent leakages, we
In this section, we formulate the topological requirement borrow the concept from random walk interpretation of
of 1D structures as/ntangling Cycle Cut ScoreThe cut Normalized Cut [12]. We define the random walk matrix:
score is defined on directedcontour grouping graph. We
start by introducing the construction of the graph.

2. Background

Wi = e~ (—cos(lgil+|ei ) /o®  sf 4 —j (1)

Herei — j means thaj is in forward direction of. W;; >
0 implies thatlV;; = 0. ¢; and¢; denote the turning angles
of ¢ andj w.r.t. the line connecting them (see Fig. 3(c)).

In this graph, an ideal closed contour forms two directed

P=D"'w )



whereD is diagonal withD;; = . W;;. This amounts to
normalizing connection from each node by its total outward
connections. Such normalization has two good side-effects:
it boostsiWbeck connection at termination points of a chain,
making the returning links there as strong as the interior of
the contours; it also enhances connections for jagged salient

contours which do not fit our curvilinear model. Figure 4. Criteria of untangling cycles for contour grouping. Even
salient contour (red) might have gaps and distracting clutter (blue).

To bridge gaps, we allovik > 1 steps of forward connections:
v1v2, V1V3, v1v4. We define external cut as links from foreground

. . to background nodes:; vo. 1D contours should have perfect or-
Graph topology highlights the key d_lfference between ering. We define internal cut as out-of-order connectiogs:,
salient 1D curves and 2D clusters. The ideal model of a 2D ,,.,,, we seek 1D topological structures minimizing all three.

cluster is a graplelique In contrast, the ideal model for a
1D curve is a graphycleor chain— it requires that the intra-

internal
cut

external
cut

3.2. Criteria for 1D topological grouping

group connections must be strictly ordered (see Fig. 2).
Ordering plays an important role in distinguishing 1D

topological grouping. We definentanglementasconnec-

tion of nodes violating a given orderingdny 1D topolog-

random walk matrixP that separateS from V:

2.

i€8,jE(V-S)

1

Ecut<s) = E

P;; (4)

ical structure can be put into a specific ordering, such that

each graph node connects to exactly one successor and . )
grap y fernal background nodes from vertex $ét This cost is

connected to exactly one predecessor (see Fig. 2 (b)(c)). | at(S.V ) L e
2D topological structures, it is impossible to find a good or- closely related t6=777-=>, which is a “1-sided” Normal-

dering without entanglement (see Fig. 2 (a)). Entanglementized Cut. This cut criterion is resistant to accidental leak-
is a tell-tail sign of 2D topological structure. ages from background clutter to foreground. In contrast to

It is important to generalize the notion of strictly topo- the standard Normalized Cut cost [16], our contour group-
logical 1D to a coarser level. In real images, most image ing does not care about the cut from background clutter to

curves have missing edgedse. gaps. In order to bridge foreground; hence itis “1-sided".
gaps without including clutter, each node needs to connectintenal cut (Leu:) , _
multiple neighboring nodes. These neighbors will contain A key distinguishing factor of a 1D structure is that it
multiple (k) nodes in the forward direction of ordering. As has a clear node ordermg. It requires minimal er_ltanglement
a result, its underlying graph topology is no longer strictly betwe_en nodes far away in the (_)rderlng. We define the node
1D. We need to relax the topologically 1D to a coarser level °'d€rng as a one-to-one mapping:
k — allowing up tok forward connections for each node (see
Fig. 4). One can think thdt defines a “thickness” factor on
the 1D topology. As the numbérincreases, the topological
structure gradually changes from 1D to 2D. Wheequals
the length of the contour, the group becomes 2D.

Given the directed graply = (V,E, W), we seek a
group of verticesS C V and an ordering on it such that
they maximize the following score:

i\‘é\/e call itexternal cutreflecting that we are cutting off ex-

0:8—85={1,2,..,|5} 5)
whereQ introduces a permutation of the nodessSin

The “thickness” factork measuresmaximal step size
defining how much each link can violate the orderifig
Edge(s, j) isforwardif 0 < O(j) — O(i) < k; backwardif
—15]/2 < O(j) — O(i) < 0; fast forwardotherwise. A per-
fect 1D cycle requires all the links to be forward (see Fig. 4)
up to k steps ahead. No backward and fast forward links
should exist. Backward and fast forward links argangle-
mentsince they make the group tangle into a 2D structure.
Untangling 1D cycles amounts to reducing such links.

Given a subse$, O andk, we defineinternal cutas the
total entangled random walk transition probability:

>

(O(H20G)V(OH)>O()+k)

Untangling Cycle Cut Score (Max oversS, O, k)

1 - Ecut(S) - Icut(S7 07 k)
T (k)

S: Subset of graph nodés, i.e. S C V.

O: Cycle ordering orf.
k: Cycle thickness.

Cu(S, 0, k) = 3)

1

Tewt(S,0,k) = @ Py (6)

External cut (Ecu.) HereO(i) > O(j) counts for backward links an@(j) >
First, we need to measure how stronglyis separated  O(i) + & for fast forward links. For simplicity, we assume
from its surrounding background. We define a cut on the thatsS is circular, i.e. the successor (| wraps back td.
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(a) Image (b) Graph (c) Weight matrix (d) Circular embedding
Figure 5. Circular embedding in complex space for finding 1D topological cycles. Three canonical cases are shown: a perfect cycle (green)
shown in row 1, a cycle with sporadic distracting edges (red) in row 2, and with 2D clutter (red) in row 3. Column (a) Canonical image
cases. Column (b) Directed graph constructed from edgels. Column (c) Random walk transitiomhgatnixe for strong links). Column
(d) The optimal circular embedding. Distracting edges and 2D clutter are embedded into the origin.

Tube size ) choosing a sub-block oP. External cut removes all the
The maximal step size s a crucial factor involved with  links outside the sub-block. After permutatiéh internal
internal cut. In the ideal case of 1D cycle, we only allow cut removes all the links outside the sub-band’sf diag-
connection withk = 1 step forward. As stated before, we onals. k is exactly the width of this sub-band. Therefore,
need to measure 1D topology at a coarser scale to resisEq. (3) boils down to finding a sub-block &f, a permuta-
clutter and tolerate gaps. Therefore we wiatd be as small  tion and a bandwidtt, such that the fewest links are left
as possible while keeping the internal and external cut low. outside the sub-band. Note that standard graph cut algo-
A physical analogy is very useful for understanding rithms .g [16]) only consider external cut, but do not take
our task. Imagine we are asked to pull out string-like (1D) internal cut and cycle thickness into account.
and ball-like (2D) interconnected particles through a tube.
As long as the tube is narrow, we have to pull things out 4. Circular embedding
little by little, and we must untangle the strings to prevent
jamming up in the tube. In contrast, it is impossible to pull
out ball-like structures through the narrow tube.
We define tube size to measure how much entanglemen
is allowed in topological 1D structures as:

Optimizing Eq. (3) essentially performs segmentation
and parametrization on the grapimultaneously We only
Put out a subset of nodes with a good parametrizatien,
ordering. This is a hard combinatorial task. Our strategy is
to embed the graph into a circular space, such that the three
T(k) = k/|S| @ criteria in (3) can be encoded and checked effectively.
Definition Circular embedding is a mapping from the vertex

Note that tube siz&'(k) is independent of cycle length. In-  SetV of the original graph to a circle plus the origin:
tuitively, the tube size describes how ‘thick’ the cycle is: the OV 0): O (i) =z — (1.0, 8
thinner the cycle is, the easier to pull it out through the tube. cire 1 V= (1, 0) : Ocirell) = @i = (ri,0) - (8)

T'(k) reaches minimum of /|.S| whenk = 1. Herer; is the circle radius which can only take a positive
Finally, we combine minimization of all the above three fixed valuery or 0. 6; is the angle associated with each
criteria into maximization of score (3). node. Circular embedding can easily encode bothctlte

One way to visualize the three criteria is to observe the and theorderingof graph nodesS = {v; : r; = ro} spec-
structures of matrixP (Fig. 5(c)). Selectings amounts to  ifies the nodes being cut out, as in Eq. (4). An@lepeci-



fies the ordering. We simplify the embedding by restricting
0; = 2mi/|S| (see Fig. 5)j.e. x; is distributed uniformly
on the circle. It is important to force; to spread out in the
circular embedding. If:;’s all map to the same point, no
order information can be obtained.

Average jumping angleIn order to express tube size, we
define theaverage jumping anglef the links as:

9)

Note that the average only cour(is j) where there is an
edge(i, 7) in the original contour grouping graph. Since an-
gle 6 encodes the ordering)d describes how far one node
is expected to jump through the links.

We seek a circular embedding such that 1D topologi-
cal structure is mapped to the circle while background is
mapped to the origin. The optimal circular embedding max-
imizes the following score:

AG =0, — 6,

Circular Embedding Score (Max over r, 6, Af)

1
Z P /1S - )
0:<0;<0,+2A0
r; >0, Tj >0

Ce(r,0,A0) = (10)

Circle indicator withr; € {rg,0}.
Angles on the circle specifying an ordering
Average jumping angle.

r
0:
AG:

The equivalence of the circular embedding and untan-
gling cycles is established by the following lemma:

Lemma 1. Circular Embedding Score (Eqg. (10)) is equiva-
lent to Untangling Cycle Cut Score (Eg. (3)) assuming that
the angle differencé; — 6, is distributed uniformly.

The derivation of Lemma 1 includes interpretation of the
three criteria in the embedding space, shown as follows.

1) External cutrequires that there are minimal links from
the circle to the origin. Because = {v; : r; = ro} speci-
fies foreground nodes aild — S = {v; : ; = 0} specifies
background nodes, all links involved i.,,; are those from
the circle to the origin (see Fig. 6).

2) Internal cutrequires angles spanned by links on the
circle to be small. Edges in the original graph is mapped

O r e Eew
@ 0 < Leut
® A9 T(k)

(\ @ ILeu
@ T(k)
~

(a) Untangling cycle criteria (b) Circular embedding
Figure 6. Interpretation of the three untangling cycle critéfia,,
I+ andT'(k) in circular embedding.

® Eeut

This seems to be a crude approximationté at the first
glance. However, in contour grouping, it is reasonable be-
cause we set up the graph with multiple forward links for
each node and the weights for these links tend to be similar.
Now we can rewrite the score function (3) in circular em-
bedding, expressed Hly, 6) and the average jumping angle
Af. Because’;; is row normalized (Eq. (2)} , P;;/|S| =
1. Since non-forward links are either includedii,;(S)
or I.,+(S,0,k), 1 — Ecut (S) — It (S, O, k) is essentially
counting how many forward links are left. The numerator
of Eq. (3) can be expressed in terms-pf andAd:

2

0;<0;<0;+2A0
r;>0,1; >0

1—Ecut(’/‘)— |S|

Toywt(r,60,A0) = (12)

The forward links are chords with spanning angles no more
than2A6¢. Combining Eq. (11), (12), maximizing Eqg. (3)
reduces to the maximizing Eqg. (10) in circular embedding.

5. Complex eigenvectors: a continuous relax-
ation

Now we are ready to derive a computational solution.
We generalize the discrete circular embedding (8) by map-
ping the graph into the continuous complex plane. The opti-
mal continuous circular embedding turns out to be the com-
plex eigenvectors of the random walk matrix.

First we relax bothr and 6 in Eq. (10) to continuous
values. Our goal is to find the optimal mappity,,.,; :

V = C, Oempi(v;) = z; = r;je'%, which approximates

to chords on the circle. The angle spanned by the chord isthe optimal- andé in Eq. (10). Here; = ||z;| andé, are

0, —0; = fs—”'(i — 7). Therefore, links involved id..,; are

those with either negative angle (backward links) or large
positive angle (fast forward links).

3) Tube sizds given by the average jumping angh.
Recall that: gives the upper bound determining which links
are forward. In circular embedding, it means the angle dif-
ference of forward links does not excdeq%. If the jump-

ing angles are distributed uniformly within- %f‘ then

A= (2n)|8]) - (k/2) =7 k/S=nm-T(k) (11)

magnitude and phase angle of the complex nuraber
In the desired embedding with a fixéx¥, the term

ZPU cos(8; — 0, — Af) = ZPine(xij e Ve

,J 2]

is a good approximation of the sum of forward links (nu-
merator in Eq. (12)). When the angle differerte— 6;
equals average jumping angl&), the weight reaches the
maximum of 1. Wher); — ¢; deviates fronAd, the weight
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Figure 7. Persistent cycles. (a) 1D contours correspond to good cycles. (b) Returning proBadfility on 1D contours has period peaks

since random walk on it tends to return in a fixed time. (c) 2D clutter corresponds to bad cycles. (d) Returning prabefility of
random walk on 2D clutter is flat.

gradually dies off. Then the score function (12) becomes: segmentation [12]. Unlike traditional random walk analy-
sis, we are interested in periodicity of the states rather than
the convergence behavior. Periodicity is a good indication
that there exist persistent cycles in the graph.

> PiRe(aia; - e72) -ty
2 lil?
where the denominator is exactl§| in the discrete case. 6.1. Random walk

Herety = 1/Ad relates tar as well.
Expressed in a matrix form, Eq. (13) becomes

(13)

Following traditional random walk analysis, transition
matrix P = D~'W (Eq. (2)) encodes the probability of
Re(2 Pz - tgeiA9) switching states. In other wordg;; is the probability that
(14) a particle starts from nodgand randomly walk to nodé

in one step. Note tha? is asymmetric because the random

Solving Eg. (14) is not an easy task. Moreover, we are walk is directional.
not only interested in the best solution of Eq. (14), but all  According to our graph setup (see Section 3), both open
the locally optimal solutions. These local optima will give and closed image contours become directed cycles in the
all the 1D structures in the graph. We find a relaxation by contour graph. Finding image contours amounts to search-
settingu = z, v = u - e A% We setec = toe "2 to ing cycles in this directed graph. However, there are numer-
be a constant. Eq. (14) can be rewritten as maximizing ous graph cycles and not all cycles correspond to 1D image
Re((uf Pv - ¢)/(ufv)) with u,v € C™. Furthermore, it ~ contours. Now the key question isVhat is the appropri-

max H
AOER,xzeCn T

is equivalent to the following optimization problem: ate saliency measure for good cycles (1D contour) and bad
cycles (2D clutter)?
max Re(uf’ Pv) st.utlv=c¢ (15) We first notice an obvious necessary condition. If the
u,veln random walk starting at a node comes back to itself with
This problem leads exactly tB’'s complex eigenvectors. high probability, then it is likely that there is a cycle passing

through it. We denote the returning probability by
Theorem 1. All the critical points (local maxima)
(Umazs Umaz) Of the optimization problem (15) are given Pr(i,t) = ZPT(M || =t) (16)
by the left and right eigenvectors @f respectively,i.e., 7
Pmar = ANmae @nd PTu* = du* Furthermore,

max max*®

the corresponding maximal valuerisax (Re(\ - ¢)) where ~ Herelis arandom walk cycle with lengthpassing. How-

A is one eigenvalue aP. ever, this condition alone is not enough to identify 1D cy-
. cles. 2D clutter can also introduce Consider the case where
Proof. Please see Appendix. O there are many distracting branches of the main cycle. In

) ) ) this case, paths through the branches will still return to the

The complex eigenvectors gives us the ordering of 1D g5me node but with different path lengths. Therefore, it is

pycles, encodgd in the phase angle.oThe average jump- ot sufficient to require the paths to return only, but return
ing angle Ad is given by the phase angle of because i, thesame period

Re(A - ¢) reaches its maximum when the phase angles of
A* andc = tge A% are most similar. 6.2. Persistent cycles

6. Random walk interpretation We have found that 1D cycles have a special pattern of
returning probabilityPr(i,t) (see Fig. 7). From analysis
Random walk provides an alternative view to see why of Section 4, one step of random walk on 1D cycles tends
complex eigenvector is useful for untangling cycles. Ran- to stay in the cycles (external cut to be small), and move
dom walk has been shown to be effective analyzing regiona fixed amount forward in the cyclic ordering (internal cut
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Figure 8. lllustration of computational solution. (a) An elephant with a detected contour grouping (green) and endpoints (yellow) on its
tusk. (b) The tope. eigenvalues sorted by their real components. Their phase angles relate to the 1D thickness of cycles. We look for
complex ones with large magnitudes but small phase angles indicating the existence of thin 1D structures. (c) The complex eigenvector
corresponding to the selected eigenvalue in (b) (red circle) is plotted. The detected tusk contour is embedded into a geometric cycle plotted
in red. We find discretization in this embedding space by seeking the maximum circular cover shown in (d). See text for more details.

0.9 0.92

to be small). If one starts a random walk from a node in factorn. Namely, we use)* Pr(i, k) to replacePr(i, k).
1D cycles, it is very likely to return at multiple times of a Responses with longer time are weighted lower because the

certain period. We call these cyclpsrsistentcycles. Our

peaks become more and more blurred. This amounts to re-

task is to separate persistent cycles from other random walkplace P by nP and all the above analysis.

cycles.

To quantify the above observation, we introduce the fol-
lowing 'peakness’ measure of the random walk probability
pattern:

_ Zl?;l PT(’L'7 kT)

Yo Pr(is k)
Here we compute the probability that the random walk re-
turns at steps of multiples @f. R(i, T) being high indicates
there are 1D cycles passing through node

The key observation is thak(i,T') closely relates to
complex eigenvalues dP, instead of real eigenvalues.

Theorem 2. (Peakness of Random Walk Cyclégi, T')
can be computed by the eigenvalues of transition matrix
AT
Zj Re( 1:)\;
Zj Re( 1_1,\j

R(i,T) (17)

~Ui;Vij)

R(i,T) = TV
ij Vij

(18)

Proof. See Appendix. O

Theorem 2shows thatR(i,T) is the “average” of
)\T
f(A,T) = Re( - UiiVij) [Re(1=x; - Ui Vij). For

J
1-AT
real \;, f(\;,T) < 1/T. For complex)\;, f(\;,T) can
be large. For example, wheky = s - ™7 s — 1,
Uij =Vij =a €R, f(\;,T) — oo. Hence it is the com-

plex eigenvalue with proper phase angle and magnitude that
leads to repeated peaks. Complex eigenvalues and eigen-

vectors of P indeed carry important information on persis-
tent 1D cycles.

7. Computational solution

The complex eigenvector is an approximation of the op-
timal circular embedding and will not produce exact 1D cy-
cles. Therefore, we still need to search for 1D cycles in this
space. We introduce a discretization method and give the
overall untangling cycle procedure in this section.

7.1. Discretization

For each of the top complex eigenvectors, we seek dis-
crete topological cycle(s) separated from background. First,
we can read off the tube size directly from the phase angle
of its corresponding eigenvalue. This determines the “thick-
ness”k of our cycle. Since we prefer thin 1D cycles, we will
only examine eigenvectors with small phase angles.

Once we know a 1D cycle exists, we search for it in its
complex eigenvector whose componentsare..us,. The
topological graph cycles are mapped to the geometric cycles
in this embedding space. The larger the cycle is geometri-
cally, the better the 1D graph cycle is topologically. There-
fore, we should search for a sequengess, ..., Sp, Sh+1 =
s1 such thatus, |, ..., |us, | are large and(us, ), ..., 0(us, )
are in anincreasing order. This can be tackled by finding the
sequence enclosing the largest area in the complex plane:

h

Z A(“Sj ) u5j+1)

Jj=1

(19)

max
81;--38h

Because the random walk will eventually converge to the Here A(u,;, us,,,) = %Im(u:j - us,, ) is the signed area

steady statePr (i, T') converges to a constant. This means
thatR(:,T7') — 1/T no matter what the graph structure is.

We can alleviate this technical issue by multiplying a decay By, ...

of the triangle spanned hy,, , u,,, ando.
To simplify the search, we can pack; into bins
, By, according to their phase angles. Suppose there



is an edge(i, 7) in the original graph. Ifu; is in a prop-
erly ordered cycle, the phase angle differef@e;) — 6(u;)

will, on average, equal tAf. Hence, we can safely assume
that all its neighbors,; are at most one bin apart from if

the bin size is chosen properly.¢ 2A6). Furthermore, we
group nodes within the same bin by their spatial connectiv-
ity. This greatly reduces the computational cost.

The maximal enclosed area problem can be solved by
Notice that the sequence

the shortest path algorithm.
Ugyy ooy Usy, » Us, ,, = Us, Produces a closed loop around the
origin. Suppose it only wraps around the origin once. For
each pair ofi, j in neighboring bins, set;; = 2[0(u;) —
0(u;)] - R?* — A(u;,u;). R is chosen sufficiently large to
guaranted;; > 0 for all 4,j. Then Eq. (19) can be reduced
to

TR? —

min
S15--38h+1

(20)

h
E :Zsjsjﬂ
j=1

This shortest cycle problem can be broken into two parts:
the first shortest path from, in bin B, to a nodes,, in
bin By, and the second one from, back tos;. Hence,
Ming, s,y Yoy ls;s,., N EQ. (20) becomes

h
gSijH + E :gsjsj“]
Jj=u

u—1

>

Jj=1

(21)

min
$1€B1,8,EB2
S15--38h+1

where each summation itself is a shortest path.

7.2. Algorithm

In summary, our untangled cycle algorithm has 3 steps:

Algorithm 1 Untangling cycles

1: Graph setupConstruct the directed grapgh and com-
pute transition matriX° by Eq. (1) and (2).

2: Complex embeddingompute the firstn, complex
eigenvectors of”. Each complex eigenvector produces
a complex circular embedding , us, ...us, € C.

3: Cycle tracingFor uy,us, ...us,, use shortest path to
find a cycleS C {1, ..., 2n} minimizing (Eq. (20)).

8. Experiments

We test ouruntangling cyclealgorithm on a variety of
challenging real images, including Berkeley Segmentation

—&-0Our work

—S—Min cover
0.9

0.8

07F

Precision

0.6

051

04

L L L L L |
0.4 05 06 0.7 0.8 09

Recall
Figure 9. Precision recall curve on the Berkeley benchmark, with
comparison to Pb [10], CRF [14] and min cover [5]. We use prob-
ability boundary [10] with low threshold to produce graph nodes,
and seek untangling 1D topological cycles for contour grouping.
The same set of parameters are used to generate all the results.

L L L
0 0.1 0.2 03

experiments are performed using the same set of parameters
and we show all the detected contours without any postpro-
cessing. Extensive tests show that our algorithm is effec-
tive in discovering one-dimensional topological structures
in real images.

Our results are significantly better than those of state-of-
the-art, particularly on cluttered images. To quantify our
performance, we compare our precision-recall curve on the
Berkeley benchmark set with two top algorithms: CRF [14]
and min cover [5] on this test. Our result is well above these
approaches by abott% in the medium to high precision
part. Visually our results produce much cleaner contours.
Many of the false positives are shading edges, which are
not labelled by humans. However, once they are grouped,
they could be easy to prune in later recognition process.
These are the advantages not reflected by the metric in the
Berkeley benchmark, which counts matched pixels inde-
pendently.

9. Conclusion

To our knowledge, this is the first major attack on con-
tour grouping using topological formulation. Our grouping
criterion, untangling cycles, exploits the inherent 1D topo-
logical structure of salient contours to extract them from the
otherwise 2D image clutter. We made this precise by defin-
ing a directed graph linking local edgels. We encode the
untangling cycle criterion by circular embedding. Compu-
tationally, this reduces to finding the top complex eigenvec-

Dataset [10] (see Fig. 13), Weizmann horse database [3[°"S of the random walk matrix. We demonstrate significant
(see Fig. 11) and Berkeley baseball player dataset [13] (sedMProvements over state-of-the-art approaches on challeng-

Fig. 12). Our untangling cycle algorithm is capable of find-
ing one-dimensional contours even when many of the im-

ages have significant clutter (see Fig. 10). We output con-

ing real images.
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Figure 10. Contour grouping result on real images. All detected binary edges are shown (right). Our method prunes clutter edges (dark),
and groups salient contours (bright). We use no edge magnitude information for grouping, and can detect faint but salient contours under

significant clutter. We focus on graph topology, and detect contours that are either open or closed, straight or bended.
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Appendix

A. Proof of Theorem 1
Theorem 1 All the critical points (local maxima)
(Umaz, Vmaz) Of the following optimization problem is
given by the left and right eigenvectors Bfrespectively,

.., PUpaz = ANUnae and PTul, =

max*

H
Jmax, Re(u™ Pv) (22)
st uflvo=c (23)
Furthermore, the corresponding maximal value is

maxy (Re()\ - ¢)) where is one eigenvalue d?.

Proof. Let u = u, + iu, andv = v, + iv.. By splitting

into real and imaginary parts, the original problem can be

written as

max  u! Pv, +ul P, (24)
sit. ulv, +ulv. = Re(c) (25)
uFv, — ulv, = Im(c) (26)

uT'? u(,‘7 U7'7 Ve € Rn (27)

Hence, the Lagrangian has the following form wjitlandw
as the multipliers:
L =ul Pv, +ul Pv. + p[ulv, + ulv. — Re(c)]

+ v[uFv. — ulv, — Im(c)]

By taking derivatives of the Lagrangian, we have

L
0 = Pv, + Hor + Ve (28)
ou,

L
0 = Pv. + pve — vo, (29)
Ou.
oL = PTu, + pu, — vu, (30)
ov,
oL = PTu, + e + Vi, (32)
v,

Setting the above derivativesaives all the local max-
ima of the original problem (22). After combining the equa-
tions, we obtain

P(UT + Z"UC> = (_:u' + Z.V)(/UT + ivc)
PT (u, + iu,)

(32)
(33)

(—p — ) (up + ue)

SinceP is real, Eq. (33) is equivalent tB87 (u, — iu.) =
(—p +v)(u, —iu.). This means that all the critical points
(u*,v) = (u, —iuc, v, +iv.) are left and right eigenvectors
of P. Let A\ = —u + iv. By substitutingPv = \v into the
objective function, we conclude that the optimal value is
maxy (Re(A - ¢)).

O

11

B. Proof of Theorem 2
First we prove the following lemma:

Lemma 1 Pr(i,m) can be expressed in terms of eigenval-
ues and eigenvectors of transition matfx':

>

Aj complex

Pr(i,m)= Y XUV +

Aj real

Re(A]'Ui;Vij)

(34)
where); is thej'" eigenvalues of andU;; is thei'" entry
of the 5" right eigenvector and’;; is thei" entry of the
jth left eigenvector.

Proof. By simple induction one can prove that

Pr(i,m) = (P™); (35)
Here(P™),; represents the entry at ravand columny.
Consider the eigenvalue decompositionfof
P=UxU! (36)
Here¥ = diag(A1,...,A,) andU is a nonsingular com-
plex matrix whose columns are corresponding eigenvectors
uy, ..., Uy. SiNCe eigenvectors are not necessarily orthog-
onal, U1 is not equal to/* in general. However, rows
of U1 are left eigenvectors aP, i.e. (U~1)T = V. The
power of P can be easily computed by

P =UxmU! (37)

We can write( P™);; as
(P™)i = (US™U )i (38)
= (39)

> Ui AP Vi
j

Z )\;-nUijVij +

Aj real

Aj complex

(40)

Eq (40) comes from the fact thaf; andV;; are all real if
A; is real and all complex eigenvalues appear in pair§l

With Lemma 1we can easily prov&heorem 2

Theorem 2(Peakness of Random Walk Cycl&g), T") can
be computed by the eigenvalues of transition mafix

AT
> Re(ﬁ -UijVij)
5, Rel e Uy

R(i,T) = (41)

1To simplify the analysis, we assume thais diagonalizable iC™*™
and achieve this by perturbing. For anye € R, there exists diagonaliz-
able@ such thaf| P — Q|| < e.



Proof. FromLemma litis straight forward to get

i Pr(i,kT) => Re(A]/(1-X])-UyVy;) (42)
k=1 j

oo

J
Pr(i,k) =Y Re(1/(1=X;)-UyVy)  (43)
k=1 j

Finally we have

AT
RG.T) > Re(1=5r - UiVig) ”
i,T) =
5, Rel O ¥h)
O
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Figure 11. Contour grouping result on Weizmann horse database. All detected binary edges are shown (right). Our method prune clutter
edges (dark), and groups salient contours (bright). We use no edge magnitude information for grouping, and can detect faint but salient
contours under significant clutter. We focus on graph topology, and detect contours that are both open or closed, straight or bent.
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Figure 12. Contour grouping result on Berkeley baseball player dataset. See the caption of Figure 11 for description.
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Figure 13. Contour grouping result on Berkeley Segmentation Dataset. See the caption of Figure 11 for description.
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