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Abstract

We introduce a novel topological formulation for contour
grouping. Our grouping criterion, called untangling cycles,
exploits the inherent topological 1D structure of salient con-
tours to extract them from the otherwise 2D image clut-
ter. To define a measure for topological classification ro-
bust to clutter and broken edges, we use a graph formula-
tion instead of the standard computational topology. The
key insight is that a pronounced 1D contour should have
a clear ordering of edgels, to which all graph edges ad-
here, and no long range entanglements persist. Finding
the contour grouping by optimizing these topological cri-
teria is challenging. We introduce a novel concept of circu-
lar embedding to encode this combinatorial task. Our so-
lution leads to computing the dominant complex eigenvec-
tors/eigenvalues of the random walk matrix of the contour
grouping graph. We demonstrate major improvements over
state-of-the-art approaches on challenging real images.

1. Introduction
Objects with salient contours tend to stand out from an

image – they are nice to look at. Aside from their esthet-
ics, salient contours help invoke our object shape memory,
and speed up our visual perception [8]. In computer vision,
good bottom-up salient contour detection can be extremely
useful for object recognition. It provides global shape in-
formation, and simplifies object recognition by alignment.

Contour grouping methods often start with edge detec-

(a) Gaps (b) Distractions (c) 2D clutter
Figure 1. Challenges for contour grouping. (a) Contours have gaps
to bridge. (b) Sporadic distractions mislead contour tracing. (c)
2D clutter confuses grouping when topology is not considered.

tion, followed by linking edgels to optimize a saliency mea-
sure. Finding salient contours is easy when the image is
clean, and contours are well separated. Gestalt factors of
grouping, such as proximity and curvilinear continuity, de-
fine local likelihood of grouping two nearby edgel. Locally
greedy search, such as shortest path, guided by the group-
ing measure can compute an optimal contour grouping effi-
ciently. However, existing contour grouping algorithms are
extremely unstable. They fail on natural images where im-
age clutters are mixed with gaps on contours. Fundamen-
tally it is difficult to distinguish gaps with clutter locally
(see Fig. 1). A common mistake is finding too many false
contours in a cluttered textured region.

We study contour grouping from a novel perspective of
topology. We ask a harder question: does the image con-
tain any 1D curve-like structure, and if so, can we show
that it is topologically 1D? By topologically 1D, we mean
a set of edgels that have a well defined ordering, and the
connections between them strictly follow that ordering. By
looking at the topology, we explicitly exclude 2D clutter or
region-like structure from our contour search.

A key notion we introduce for this topological curve
finding task is entanglement. Intuitively, a set of edges are
entangled if we can not put them in an ordering without
breaking many locally strongly linked edge pairs. We pro-
vide a graph formulation with a topological curve grouping
score evaluating both separation from the background and
disentanglement within the curve. Computationally, finding
such curves requires simultaneously determining a subset of
edgels and their ordering in the graph. We translate it to a
circular embedding in the complex domain, where disentan-

(a) Clique (b) Chain (c) Cycle
Figure 2. Distinction between 1D vs 2D topology. (a) 2D topology
assumes a clique model. (b)(c) 1D topology assumes a chain or
cycle model. A ring has 1D topology but 2D geometry.
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Figure 3. Directed graph for contour grouping. (a) Horse image. (b) Edge map extracted from Pb [10]. (c) Zoom-in view of graph
connection in window A. Each edge node is duplicated in two opposite orientations. Oriented nodes are connected according to elastic
energy and their orientation consistency. Here Wij À Wik. Salient contours form 1D topological chain or cycle in this graph. (d) In
window B, adding W back to duplicated nodes i, i turns a topological chain into a cycle.

glement can be easily encoded and checked. We seek the
desired circular embedding by computing complex eigen-
vectors of the graph weight matrix.

In Section 2, we review the related work. In Section 3,
we define a directed graph for contour grouping using three
untangling cycle criteria. The novel circular embedding is
introduced in Section 4. We present the computational so-
lution in Section 5, and experimental results in Section 6.

2. Background
The use of graph formulation for contour grouping has a

long history, and we have drawn ideas from many of them
[9, 16, 11, 2, 1, 14, 18]. The most related work is [9]
by Mahamud et al. who use a similar directed graph for
salient contour detection. However, they compute the top
real eigenvectors of the un-normalized graph weight ma-
trix. As we will show, the relevant topological information
is encoded in the complex eigenvectors/eigenvalues of the
normalized random walk matrix. This is an important dis-
tinction because the real eigenvectors contain no topologi-
cal information of the graph. The works of [4, 7, 17] also
seek salient contours. In contrast, we seek closed topolog-
ical cycles which can include open contours, and are more
robust to clutter. We are also motivated by the work of [6]
which showed classical pairwise grouping is insufficient for
contour detection. However, their solution of using short-
est path is very sensitive to clutter. Our approach computes
not only the parametrization, but also the segmentation si-
multaneously. Searching for subgraphs with the specified
topology is a much harder combinatorial problem.

3. Untangling Cycle Formulation
In this section, we formulate the topological requirement

of 1D structures as Untangling Cycle Cut Score. The cut
score is defined on a directed contour grouping graph. We
start by introducing the construction of the graph.

3.1. Directed graph and contour grouping
For contour grouping, we first threshold the output of

edge detector (e.g. Pb [10]) to obtain a discrete set of edgels.
We define a directed graph G = (V,E,W) as follows.

Graph nodes V correspond to all edgels. Since the edge
orientation is ambiguous up to π, we duplicate every edgel
into two copies i and i with opposite directions θ, θ + π.

Graph edges E include all the pairs of edgels within
some distance re: E = {(i, j) : ‖(xi, yi)−(xj , yj)‖ ≤ re}.
Since every edgel is directed, we connect each edgel i only
to the neighbors in the its direction.

Graph weights W measure directed collinearity using
the elastic energy between neighboring edgels, which de-
scribes how much bending is needed to complete a curve
between i and j:

Wij = e−(1−cos(|φi|+|φj |))/σ2
if i → j (1)

Here i → j means that j is in forward direction of i. Wij >
0 implies that Wji = 0. φi and φj denote the turning angles
of i and j w.r.t. the line connecting them (see Fig. 3(c)).

In this graph, an ideal closed contour forms two directed
cycles, one for each duplicated direction. Similarly, an ideal
curve leads to two chains. On the other hand, random clut-
ter produces fragmented clusters in the graph. Our task is
to detect such topological differences, and extract 1D topo-
logical structures only.

To simplify the topological classification task and reduce
the search to only cyclic structures, we transform two dupli-
cated chains into a cycle by adding a small amount of con-
nection W back between the duplicated nodes i and i. For
open contours, W back connects the termination points back
to the opposite direction to create a cycle (see Fig. 3(d)).

Image clutter presents a challenge by creating leakages
from a contour to the background. This is a classical prob-
lem in 2D segmentation as well. To prevent leakages, we
borrow the concept from random walk interpretation of
Normalized Cut [12]. We define the random walk matrix:

P = D−1W (2)

where D is diagonal with Dii =
∑

i Wij . This amounts to
normalizing connection from each node by its total outward
connections. Such normalization has two good side-effects:
it boosts W back connection at termination points of a chain,
making the returning links there as strong as the interior of
the contours; it also enhances connections for jagged salient
contours which do not fit our curvilinear model.
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3.2. Criteria for 1D topological grouping

Graph topology highlights the key difference between
salient 1D curves and 2D clusters. The ideal model of a 2D
cluster is a graph clique. In contrast, the ideal model for a
1D curve is a graph cycle or chain – it requires that the intra-
group connections must be strictly ordered (see Fig. 2).

Ordering plays an important role in distinguishing 1D
topological grouping. We define entanglement as connec-
tion of nodes violating a given ordering. Any 1D topolog-
ical structure can be put into a specific ordering, such that
each graph node connects to exactly one successor and is
connected to exactly one predecessor (see Fig. 2 (b)(c)). In
2D topological structures, it is impossible to find a good or-
dering without entanglement (see Fig. 2 (a)). Entanglement
is a tell-tail sign of 2D topological structure.

It is important to generalize the notion of strictly topo-
logical 1D to a coarser level. In real images, most image
curves have missing edges, i.e. gaps. In order to bridge
gaps without including clutter, each node needs to connect
multiple neighboring nodes. These neighbors will contain
multiple (k) nodes in the forward direction of ordering. As
a result, its underlying graph topology is no longer strictly
1D. We need to relax the topologically 1D to a coarser level
k – allowing up to k forward connections for each node (see
Fig. 4). One can think that k defines a “thickness” factor on
the 1D topology. As the number k increases, the topological
structure gradually changes from 1D to 2D. When k equals
the length of the contour, the group becomes 2D.

Given the directed graph G = (V, E,W ), we seek a
group of vertices S ⊆ V and an ordering on it such that
they maximize the following score:

Untangling Cycle Cut Score (Max over S,O, k)

Cu(S,O, k) =
1− Ecut(S)− Icut(S,O, k)

T (k)
(3)

S: Subset of graph nodes V , i.e. S ⊆ V .
O: Cycle ordering on S.
k: Cycle thickness.

External cut (Ecut)
First, we need to measure how strongly S is separated

from its surrounding background. We define a cut on the
random walk matrix P that separates S from V :

Ecut(S) =
1
|S|

∑

i∈S,j∈(V−S)

Pij (4)

We call it external cut, reflecting that we are cutting off ex-
ternal background nodes from vertex set V . This cost is
closely related to cut(S,V−S)

V ol(S) , which is a “1-sided” Normal-
ized Cut. This cut criterion is resistant to accidental leak-
ages from background clutter to foreground. In contrast to
the standard Normalized Cut cost [15], our contour group-

k steps

v0v1

v2

v3

v5

v4

internal
cut

external
cut

Figure 4. Criteria of untangling cycles for contour grouping. Even
salient contour (red) might have gaps and distracting clutter (blue).
To bridge gaps, we allow k > 1 steps of forward connections:
v1v2, v1v3, v1v4. We define external cut as links from foreground
to background nodes: v1v0. 1D contours should have perfect or-
dering. We define internal cut as out-of-order connections: v5v3,
v5v4. We seek 1D topological structures minimizing all three.

ing does not care about the cut from background clutter to
foreground; hence it is “1-sided”.
Internal cut (Icut)

A key distinguishing factor of a 1D structure is that it
has a clear node ordering. It requires minimal entanglement
between nodes far away in the ordering. We define the node
ordering as a one-to-one mapping:

O : S 7→ S = {1, 2, ..., |S|} (5)

where O introduces a permutation of the nodes in S.
The “thickness” factor k measures maximal step size

defining how much each link can violate the ordering O.
Edge (i, j) is forward if 0 < O(j)−O(i) ≤ k; backward if
−|S|/2 ≤ O(j)−O(i) ≤ 0; fast forward otherwise. A per-
fect 1D cycle requires all the links to be forward (see Fig. 4)
up to k steps ahead. No backward and fast forward links
should exist. Backward and fast forward links are entangle-
ment since they make the group tangle into a 2D structure.
Untangling 1D cycles amounts to reducing such links.

Given a subset S, O and k, we define internal cut as the
total entangled random walk transition probability:

Icut(S,O, k) =
1
|S|

∑

(O(i)≥O(j))∨(O(j)>O(i)+k)

Pij (6)

Here O(i) ≥ O(j) counts for backward links and O(j) >
O(i) + k for fast forward links. For simplicity, we assume
that S is circular, i.e. the successor of |S| wraps back to 1.
Tube size (T )

The maximal step size k is a crucial factor involved with
internal cut. In the ideal case of 1D cycle, we only allow
connection with k = 1 step forward. As stated before, we
need to measure 1D topology at a coarser scale to resist
clutter and tolerate gaps. Therefore we want k to be as small
as possible while keeping the internal and external cut low.

A physical analogy is very useful for understanding
our task. Imagine we are asked to pull out string-like (1D)
and ball-like (2D) interconnected particles through a tube.
As long as the tube is narrow, we have to pull things out
little by little, and we must untangle the strings to prevent
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(a) Image (b) Graph (c) Weight matrix (d) Circular embedding
Figure 5. Circular embedding in complex space for finding 1D topological cycles. Three canonical cases are shown: a perfect cycle (green)
shown in row 1, a cycle with sporadic distracting edges (red) in row 2, and with 2D clutter (red) in row 3. Column (a) Canonical image
cases. Column (b) Directed graph constructed from edgels. Column (c) Random walk transition matrix P (white for strong links). Column
(d) The optimal circular embedding. Distracting edges and 2D clutter are embedded into the origin.

jamming up in the tube. In contrast, it is impossible to pull
out ball-like structures through the narrow tube.

We define tube size to measure how much entanglement
is allowed in topological 1D structures as:

T (k) = k/|S| (7)

Note that tube size T (k) is independent of cycle length. In-
tuitively, the tube size describes how ‘thick’ the cycle is: the
thinner the cycle is, the easier to pull it out through the tube.
T (k) reaches minimum of 1/|S| when k = 1.

Finally, we combine minimization of all the above three
criteria into maximization of score (3).

One way to visualize the three criteria is to observe the
structures of matrix P (Fig. 5(c)). Selecting S amounts to
choosing a sub-block of P . External cut removes all the
links outside the sub-block. After permutation O, internal
cut removes all the links outside the sub-band of P ’s diag-
onals. k is exactly the width of this sub-band. Therefore,
Eq. (3) boils down to finding a sub-block of P , a permuta-
tion and a bandwidth k, such that the fewest links are left
outside the sub-band. Note that standard graph cut algo-
rithms (e.g. [15]) only consider external cut, but do not take
internal cut and cycle thickness into account.

4. Circular embedding
Optimizing Eq. (3) essentially performs segmentation

and parametrization on the graph simultaneously. We only

cut out a subset of nodes with a good parametrization, i.e.
ordering. This is a hard combinatorial task. Our strategy is
to embed the graph into a circular space, such that the three
criteria in (3) can be encoded and checked effectively.
Definition Circular embedding is a mapping from the vertex
set V of the original graph to a circle plus the origin:

Ocirc : V 7→ (r, θ) : Ocirc(i) = xi = (ri, θi) (8)

Here ri is the circle radius which can only take a positive
fixed value r0 or 0. θi is the angle associated with each
node. Circular embedding can easily encode both the cut
and the ordering of graph nodes. S = {vi : ri = r0} spec-
ifies the nodes being cut out, as in Eq. (4). Angle θi speci-
fies the ordering. We simplify the embedding by restricting
θi = 2πi/|S| (see Fig. 5), i.e. xi is distributed uniformly
on the circle. It is important to force xi to spread out in the
circular embedding. If xi’s all map to the same point, no
order information can be obtained.
Average jumping angle In order to express tube size, we
define the average jumping angle of the links as:

∆θ = θj − θi (9)

Note that the average only counts (i, j) where there is an
edge (i, j) in the original contour grouping graph. Since an-
gle θ encodes the ordering, ∆θ describes how far one node
is expected to jump through the links.

We seek a circular embedding such that 1D topologi-
cal structure is mapped to the circle while background is

4



mapped to the origin. The optimal circular embedding max-
imizes the following score:

Circular Embedding Score (Max over r, θ, ∆θ )

Ce(r, θ, ∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0, rj>0

Pij/|S| · 1
∆θ

(10)

r: Circle indicator with ri ∈ {r0, 0}.
θ: Angles on the circle specifying an ordering.

∆θ: Average jumping angle.

The equivalence of the circular embedding and untan-
gling cycles is established by the following lemma:

Lemma 1. Circular Embedding Score (Eq. (10)) is equiva-
lent to Untangling Cycle Cut Score (Eq. (3)) assuming that
the angle difference θj − θi is distributed uniformly.

The derivation of Lemma 1 includes interpretation of the
three criteria in the embedding space, shown as follows.

1) External cut requires that there are minimal links from
the circle to the origin. Because S = {vi : ri = r0} speci-
fies foreground nodes and V − S = {vi : ri = 0} specifies
background nodes, all links involved in Ecut are those from
the circle to the origin (see Fig. 6).

2) Internal cut requires angles spanned by links on the
circle to be small. Edges in the original graph is mapped
to chords on the circle. The angle spanned by the chord is
θi − θj = 2π

|S| (i − j). Therefore, links involved in Icut are
those with either negative angle (backward links) or large
positive angle (fast forward links).

3) Tube size is given by the average jumping angle ∆θ.
Recall that k gives the upper bound determining which links
are forward. In circular embedding, it means the angle dif-
ference of forward links does not exceed k · 2π

|S| . If the jump-
ing angles are distributed uniformly within k · 2π

|S| , then

∆θ = (2π/|S|) · (k/2) = π · k/S = π · T (k) (11)

This seems to be a crude approximation to ∆θ at the first
glance. However, in contour grouping, it is reasonable be-
cause we set up the graph with multiple forward links for
each node and the weights for these links tend to be similar.

Now we can rewrite the score function (3) in circular em-
bedding, expressed by (r, θ) and the average jumping angle
∆θ. Because Pij is row normalized (Eq. (2)),

∑
i Pij/|S| =

1. Since non-forward links are either included in Ecut(S)
or Icut(S,O, k), 1−Ecut(S)− Icut(S,O, k) is essentially
counting how many forward links are left. The numerator
of Eq. (3) can be expressed in terms of r, θ and ∆θ:

1− Ecut(r)− Icut(r, θ, ∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0,rj>0

Pij

|S| (12)

1

2

3 T (k)
Ecut

Icut

1

2

3

1

2

3

θj

θi r

∆θ

r ↔ Ecut

θ ↔ Icut

∆θ ↔ T (k)

(a) Untangling cycle criteria (b) Circular embedding
Figure 6. Interpretation of the three untangling cycle criteria Ecut,
Icut and T (k) in circular embedding.

The forward links are chords with spanning angles no more
than 2∆θ. Combining Eq. (11), (12), maximizing Eq. (3)
reduces to the maximizing Eq. (10) in circular embedding.

5. Computational solution
Now we are ready to derive a computational solution.

We generalize the discrete circular embedding (8) by map-
ping the graph into the continuous complex plane. The opti-
mal continuous circular embedding turns out to be the com-
plex eigenvectors of the random walk matrix.

5.1. A continuous relaxation solution
First we relax both r and θ in Eq. (10) to continuous

values. Our goal is to find the optimal mapping Ocmpl :
V 7→ C, Ocmpl(vj) = xj = rje

iθj , which approximates
the optimal r and θ in Eq. (10). Here rj = ‖xj‖ and θj are
magnitude and phase angle of the complex number xj .

In the desired embedding with a fixed ∆θ, the term
∑

i,j

Pij cos(θj − θi −∆θ) =
∑

i,j

PijRe(x∗i xj · e−i∆θ)/r2
0

is a good approximation of the sum of forward links (nu-
merator in Eq. (12)). When the angle difference θj − θi

equals average jumping angle ∆θ, the weight reaches the
maximum of 1. When θj − θi deviates from ∆θ, the weight
gradually dies off. Then the score function (12) becomes:

∑
ij PijRe(x∗i xj · e−i∆θ) · t0∑

i |xi|2 (13)

where the denominator is exactly |S| in the discrete case.
Here t0 = 1/∆θ relates to x as well.

Expressed in a matrix form, Eq. (13) becomes

max
∆θ∈R,x∈Cn

Re(xHPx · t0e−i∆θ)
xHx

(14)

Solving Eq. (14) is not an easy task. Moreover, we are
not only interested in the best solution of Eq. (14), but all
the locally optimal solutions. These local optima will give
all the 1D structures in the graph. We find a relaxation by
setting u = x, v = u · e−i∆θ. We set c = t0e

−i∆θ to
be a constant. Eq. (14) can be rewritten as maximizing
Re((uHPv · c)/(uHv)) with u, v ∈ Cn. Furthermore, it
is equivalent to the following optimization problem:

5
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(a) Image (b) Eigenvalues (c) One eigenvector (d) Maximum circular cover
Figure 7. Illustration of computational solution. (a) An elephant with a detected contour grouping (green) and endpoints (yellow) on its
tusk. (b) The top nc eigenvalues sorted by their real components. Their phase angles relate to the 1D thickness of cycles. We look for
complex ones with large magnitudes but small phase angles indicating the existence of thin 1D structures. (c) The complex eigenvector
corresponding to the selected eigenvalue in (b) (red circle) is plotted. The detected tusk contour is embedded into a geometric cycle plotted
in red. We find discretization in this embedding space by seeking the maximum circular cover shown in (d). See text for more details.

max
u,v∈Cn

Re(uHPv) s.t. uHv = c (15)

This problem leads exactly to P ’s complex eigenvectors.

Theorem 1. All the critical points (local maxima)
(umax, vmax) of the optimization problem (15) are given
by the left and right eigenvectors of P respectively, i.e.,
Pvmax = λvmax and PT u∗max = λu∗max. Furthermore,
the corresponding maximal value is maxλ(Re(λ ·c)) where
λ is one eigenvalue of P .

Proof. Please see [19].

The complex eigenvectors gives us the ordering of 1D
cycles, encoded in the phase angle of u. The average jump-
ing angle ∆θ is given by the phase angle of λ because
Re(λ · c) reaches its maximum when the phase angles of λ∗

and c = t0e
−i∆θ are most similar. Notice that the complex

eigenvector is only an approximation of the optimal circular
embedding and will not produce exact 1D cycles. There-
fore, we still need to search for 1D cycles in this space.

5.2. Discretization

For each of the top complex eigenvectors, we seek dis-
crete topological cycle(s) separated from background. First,
we can read off the tube size directly from the phase angle
of its corresponding eigenvalue. This determines the “thick-
ness” k of our cycle. Since we prefer thin 1D cycles, we will
only examine eigenvectors with small phase angles.

Once we know a 1D cycle exists, we search for it in its
complex eigenvector whose components are u1, ...u2n. The
topological graph cycles are mapped to the geometric cycles
in this embedding space. The larger the cycle is geometri-
cally, the better the 1D graph cycle is topologically. There-
fore, we should search for a sequence s1, s2, ..., sh, sh+1 =
s1 such that |us1 |, ..., |ush

| are large and θ(us1), ..., θ(ush
)

are in an increasing order. This can be tackled by finding the

sequence enclosing the largest area in the complex plane:

max
s1,...,sh

h∑

j=1

A(usj
, usj+1) (16)

Here A(usj
, usj+1) = 1

2 Im(u∗sj
· usj+1) is the signed area

of the triangle spanned by usj , usj+1 and 0.
To simplify the search, we can pack ui into bins

B1, ..., Bm according to their phase angles. Suppose there
is an edge (i, j) in the original graph. If ui is in a prop-
erly ordered cycle, the phase angle difference θ(uj)−θ(ui)
will, on average, equal to ∆θ. Hence, we can safely assume
that all its neighbors uj are at most one bin apart from ui if
the bin size is chosen properly (e.g. 2∆θ). Furthermore, we
group nodes within the same bin by their spatial connectiv-
ity. This greatly reduces the computational cost.

The maximal enclosed area problem can be solved by
the shortest path algorithm. Notice that the sequence
us1 , ..., ush

, ush+1 = us1 produces a closed loop around the
origin. Suppose it only wraps around the origin once. For
each pair of i, j in neighboring bins, set `ij = 1

2 [θ(uj) −
θ(ui)] · R2 − A(ui, uj). R is chosen sufficiently large to
guarantee `ij > 0 for all i,j. Then Eq. (16) can be reduced
to

πR2 − min
s1,...,sh+1

h∑

j=1

`sjsj+1 (17)

This shortest cycle problem can be broken into two parts:
the first shortest path from s1 in bin B1 to a node su in
bin B2, and the second one from su back to s1. Hence,
mins1,...,sh+1

∑h
j=1 `sjsj+1 in Eq. (17) becomes

min
s1∈B1,su∈B2

s1,...,sh+1

[
u−1∑

j=1

`sjsj+1 +
h∑

j=u

`sjsj+1 ] (18)

where each summation itself is a shortest path.

5.3. Algorithm

In summary, our untangled cycle algorithm has 3 steps:
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Algorithm 1 Untangling cycles
1: Graph setup Construct the directed graph G and com-

pute transition matrix P by Eq. (1) and (2).
2: Complex embedding Compute the first nc complex

eigenvectors of P . Each complex eigenvector produces
a complex circular embedding u1, u2, ...u2n ∈ C.

3: Cycle tracing For u1, u2, ...u2n, use shortest path to
find a cycle S ⊆ {1, ..., 2n} minimizing (Eq. (17)).

6. Experiments
We test our untangling cycle algorithm on a variety of

challenging real images, including Berkeley Segmentation
Dataset [10], Weizmann horse database [3] and Berkeley
baseball player dataset [13]. Our results are significantly
better than those of state-of-the-art, particularly on clut-
tered images. To quantify our performance, we compare our
precision-recall curve on the Berkeley benchmark set with
two top algorithms: CRF [13] and min cover [5] on this
test. Our result is well above these approaches by about 7%
in the medium to high precision part. Visually our results
produce much cleaner contours. Many of the false positives
are shading edges, which are not labelled by humans. How-
ever, once they are grouped, they could be easy to prune
in later recognition process. These are the advantages not
reflected by the metric in the Berkeley benchmark, which
counts matched pixels independently.

7. Conclusion
To our knowledge, this is the first major attack on con-

tour grouping using topological formulation. Our grouping
criterion, untangling cycles, exploits the inherent 1D topo-
logical structure of salient contours to extract them from the
otherwise 2D image clutter. We made this precise by defin-
ing a directed graph linking local edgels. We encode the
untangling cycle criterion by circular embedding. Compu-
tationally, this reduces to finding the top complex eigenvec-
tors of the random walk matrix. We demonstrate significant
improvements over state-of-the-art approaches on challeng-
ing real images.
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Figure 9. Contour grouping result on real images. All detected binary edges are shown (right). Our method prunes clutter edges (dark),
and groups salient contours (bright). We use no edge magnitude information for grouping, and can detect faint but salient contours under
significant clutter. We focus on graph topology, and detect contours that are either open or closed, straight or bended.
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