

Goal: object specific segmentation given a few hand-segmented images of that category Main challenge: integrate bottom-up segmentation cues with top-down model cues

Recognizing objects by piecing together the Segmentation Puzzle Jianbo Shi **Timothee Cour**

- correlation score
- linear time detection

space complexity: $O(|\partial Y|)$ using compression based on Run Length Encoding \Rightarrow 8,000 large templates fit in 2MB

reranking using higher complexity methods

time complexity: $O(|\partial Y|)$ per translation using Green's theorem, and O(npixels) per template across translations using coarse to fine \Rightarrow 0.01 seconds per template

Results on Weizmann horse dataset

training/testing: 20/308 images average pixel consistency: 94.2% (using the oracle best out of 10) same with articulated model: 95.2% (using the oracle best out of 10 for each part)

segmentation/detection with whole template

Contribution: efficient shape detection/segmentation based on 3 ideas: 1) exhaustive search over superpixel combinations can be decoupled 2) a discrete version of Green's theorem is used to compute the

3) coarse to fine scheme (with conditions for optimality) allows for

segmentation/detection with articulated template