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Abstract. While learning ensembles have been widely used for various
pattern recognition tasks, surprisingly, they have found limited applica-
tion in problems related to medical image analysis and computer-aided
diagnosis (CAD). In this paper we investigate the performance of several
state-of-the-art machine-learning methods on a CAD method for detect-
ing prostatic adenocarcinoma from high resolution (4 Tesla) ex vivo MRI
studies. A total of 14 different feature ensemble methods from 4 different
families of ensemble methods were compared: Bayesian learning, Boost-
ing, Bagging, and the k-Nearest Neighbor (kNN) classifier. Quantitative
comparison of the methods was done on a total of 33 2D sections obtained
from 5 different 3D MRI prostate studies. The tumor ground truth was
determined on histologic sections and the regions manually mapped onto
the corresponding individual MRI slices. All methods considered were
found to be robust to changes in parameter settings and showed signifi-
cantly less classification variability compared to inter-observer agreement
among 5 experts. The kNN classifier was the best in terms of accuracy
and ease of training, thus validating the principle of Occam’s Razor1. The
success of a simple non-parametric classifier requiring minimal training is
significant for medical image analysis applications where large amounts
of training data are usually unavailable.

1 Introduction

Learning ensembles (Bagging [2], Boosting [3], and Bayesian averaging [4]) are
methods for improving classification accuracy through aggregation of several
similar classifiers’ predictions and thereby reducing either the bias or variance of
the individual classifiers [1]. In Adaptive Boosting (AdaBoost) proposed by Fre-
und and Schapire [3] sequential classifiers are generated for a certain number of
trials and at each iteration the weights of the training dataset are changed based
on the classifiers that were previously built. The final classifier is formed using a
weighted voting scheme. With the Bagging [2] algorithm proposed by Brieman,
many samples are generated from the original data set via bootstrap sampling

1 One should not increase, beyond what is necessary, the number of entities required
to explain anything.
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and then a component learner is trained from each of these samples. The predic-
tions from each of these learners is then combined via majority voting. Another
popular method of generating ensembles is by combining simple Bayesian clas-
sifiers [5]. The class conditional probabilities for different attributes or features
can be combined using various different rules (e.g., median, max, min, major-
ity vote, average, product, and weighted average). The drawback of Boosting,
Bagging, and Bayesian learners, however, is that they require training using
labeled class instances. This is an issue in most medical image analysis appli-
cations where training data is usually limited. Consequently there still remains
considerable interest in simple fusion methods such as the k-Nearest Neighbor
(kNN) classifier for performing general, non-parametric classification [5] which
have the advantages of (1) being fast, (2) having the ability to learn from a small
set of examples, and (3) can give competitive performance compared to more
sophisticated methods requiring training.

While several researchers have compared machine learning methods on real
world and synthetic data sets [1,7,8,9,10], these comparison studies have usually
not involved medical imaging data [11]. Warfield et al. proposed STAPLE [6]
to determine a better ground truth estimate for evaluating segmentation algo-
rithms by combining weighted estimates of multiple expert (human or machine
learners) segmentations. Other researchers have attempted to combine multiple
classifiers with a view to improving classification accuracy. Attempts to com-
pare learning ensembles have often lead to contradictory results, partly due to
the fact that the data sets used in these comparisons tend to be application spe-
cific. For instance Wei et al. [11] found that Support Vector Machines (SVMs)
outperformed Boosting in distinguishing between malignant and benign micro-
calcifications on digitized mammograms. Martin et al. [10], however, found that
Boosting significantly outperformed SVMs in detecting edges in natural images.
Similarly, while Quinlan [1] found that Boosting outperformed Bagging, Bauer
and Kohavi [8] found that in several instances the converse was true.

In [4] we presented a computer-aided diagnosis (CAD) method for identifying
lesions on high-resolution (4 Tesla (T)) ex vivo MRI studies of the prostate. Our
methodology comprised of (i) extracting several different 3D texture features at
multiple scales and orientations, (ii) estimating posterior conditional Bayesian
probabilities of malignancy at every spatial location in the image, and (iii) com-
bining the individual posterior conditional probabilities using a weighted linear
combination scheme. In this paper we investigate the performance of 14 differ-
ent ensembles from 4 families of machine learning methods, Bagging, Boosting,
Bayesian learning, and kNN classifiers for this important CAD application. The
motivations for this work were (1) to improve the performance of our CAD al-
gorithm, (2) to investigate whether trends and behaviors of different classifiers
reported in the literature [1,7,8] hold for medical imaging data sets, and (3) to
analyze the weaknesses and strengths of known classifiers to this CAD problem,
not only in terms of their accuracy but also in terms of training and testing
speed, feature selection methods, and sensitivity to system parameters. These
issues are important for (i) getting an understanding of the classification process
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and (ii) because the trends observed for this CAD application may be applicable
to other CAD applications as well.

This paper is organized as follows. Section 2 briefly describes the different
classification methods investigated in this paper. In Section 3 we describe the
experimental setup, while in Section 4 we present and discuss our main results.
Concluding remarks and future directions are presented in Section 5.

2 Description of Feature Ensemble Methods

2.1 Notation

Let D={(xi,ωi) | ωi ∈ {ωT , ωNT }, i∈{1, .., N}} be a set of objects (in our case
image voxels) x that need to be classified into either the tumor class ωT or the
non-tumor class ωNT . Each object is also associated with a set of K features fj ,
for j ∈ {1, .., K}. Using Bayes rule [5] a set of posterior conditional probabilities
P (ωT |x, fj), for j∈{1, .., K}, that object x belongs to class ωT are generated.
A feature ensemble f(x) assigns to x a combined posterior probability of be-
longing to ωT , by combining either (i) the individual features f1, f2, ..., fK , or
(ii) the associated posterior conditional probabilities P (ωT |x, f1), P (ωT |x, f2),..,
P (ωT |x, fK) associated with x, or (iii) other feature ensembles.

2.2 Bayesian Learners

Employing Bayes rule [5], the posterior conditional probability P (ωT |x, f) that
an object x belongs to class ωT given the associated feature f is given as

P (ωT |x, f) =
P (ωT )p(x, f |ωT )

P (ωT )p(x, f |ωT ) + P (ωNT )p(x, f |ωNT )
, (1)

where p(x, f |ωT ), p(x, f |ωNT ) are the a-priori conditional densities (obtained
via training) associated with feature f for the two classes ωT , ωNT and P (ωT ),
P (ωNT ) are the prior probabilities of observing the two classes. Owing to a
limited number of training instances and due to the minority class problem2

we assume P (ωT )=P (ωNT ). Further since the denominator in Equation 1 is
only a normalizing factor, the posterior conditional probabilities P (ωT |x, f1),
P (ωT |x, f2),..., P (ωT |x, fK) can be directly estimated from the corresponding
prior conditional densities p(x, f1|ωT ), p(x, f2|ωT ),..., p(x, fK |ωT ). The individ-
ual posterior conditional probabilities P (ωT |x, fj), for j ∈ {1,2,..,K}, can then
be combined as an ensemble (f(x)=P (ωT |x, f1, f2, ..., fK)) using the rules de-
scribed below.

A. Sum Rule or General Ensemble Method (GEM): The ensemble fGEM (x) is a
weighted linear combination of the individual posterior conditional probabilities

fGEM (x) =
K∑

j=1

λjP (ωT |x, fj), (2)

2 An issue where the instances belonging to the target class are a minority in the data
set considered.



28 A. Madabhushi et al.

where λj , for j∈{1, 2, .., K}, corresponds to the individual feature weights. In [4]
we estimated λj by optimizing a cost function so as to maximize the true pos-
itive area and minimize the false positive area detected as cancer by the base
classifiers fj . Bayesian Averaging (fAV G) is a special case of GEM, in which all
the feature weights (λj) are equal.

B. Product rule or Naive Bayes: This assumes independence of the base clas-
sifiers and hence sometimes called Naive Bayes on account of the unrealistic
assumption. For independent classifiers P (ωT |x, fj), for 1≤j≤K, the probabil-
ity of the joint decision rule is given as

fPROD(x) =
K∏

j=1

P (ωT |x, fj). (3)

C. Majority Voting: If for a majority of the base classifiers, P (ωT |x, fj) > θ,
where θ is a pre-determined threshold, x is assigned to class ωT .

D. Median, Min, Max: According to these rules the combined likelihood that x
belongs to ωT are given by the median (fMEDIAN (x)), maximum (fMAX(x)),
and minimum (fMIN (x)) of the posterior conditional probabilities P (ωT |x, fj),
for 1≤j≤K.

2.3 k-Nearest Neighbor

For a set of training samples S={(xα,ωα) | ωα ∈ {ωT , ωNT }, α ∈ {1, .., A}} the
k-Nearest Neighbor (kNN) [5] decision rule requires selection from the set S of
k samples which are nearest to x in either the feature space or the combined
posterior conditional probability space. The final decision for the class label of
x is to choose among the class label that appears most frequently among the k
nearest neighbors of x. Instead of making a hard (in our case binary) decision
with respect to x, as in the traditional kNN approach [5], we instead assign a
soft likelihood that x belongs to class ωT . Hence we define the classifier as

fNN (x) =
1
k

k∑

γ=1

e
−||Φ(x)−Φ(xγ )||

σ , (4)

where Φ(x) could be the feature vector [f1(x), f2(x), ..., fK(x)] or posterior con-
ditional probability vector [P (ωT |x, f1), P (ωT |x, f2), ..., P (ωT |x, fK)] associated
with x, ||·|| is the L2 norm or Euclidean distance, and σ is a scale parameter
that ensures that 0 ≤ fNN (x) ≤ 1.

2.4 Bagging

The Bagging algorithm (Bootstrap aggregation) [2] votes classifiers generated
by different bootstrap samples (replicates). For each trial t ∈ {1,2,..,T }, a train-
ing set St ⊂ D of size A is sampled with replacement. For each bootstrap training
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set St a classifier f t is generated and the final classifier fBAG is formed by aggre-
gating the T classifiers from these trials. To classify new instance x, a vote for
each class (ωT , ωNT ) is recorded by every classifier f t and x is then assigned to
the class with most votes. Bagging however improves accuracy only if perturbing
the training sets can cause significant changes in the predictor constructed [2].
In this paper Bagging is employed on the following base classifiers.

A. Bayes: For each training set St the a-priori conditional density pt(x, fj |ωT ),
for j ∈ {1, 2, .., K}, is estimated and the corresponding posterior conditional
probabilities P t(ωT |x, fj) using Bayes rule (Equation 1) calculated. P t(ωT |x, fj),
for j ∈ {1, 2, .., K}, can then be combined to obtain f t(x) using any of the fusion
rules described in Section 2.2.The Bagged Bayes classifier is then obtained as,

fBAG,BAY ES(x) =
1
T

T∑

t=1

(f t(x) > θ), (5)

where θ is a predetermined threshold, and fBAG,BAY ES(x) is the likelihood
that the object belongs to class ωT . Note that, for class assignment based on
fBAG,BAY ES(x) > 0.5 we obtain the original Bagging classifier [2].

B. kNN: The stability of kNN classifiers to variations in training set makes
ensemble methods obtained by bootstrapping the data ineffective [2]. In order
to generate a diverse set of kNN classifiers with (possibly) uncorrelated errors we
sample the feature space F={f1, f2, ..., fK} to which the kNN method is highly
sensitive [12]. For each trial t={1,2,..,T }, a bootstrapped feature set F t ⊂ F
of size B≤K is sampled with replacement. For each bootstrap feature set F t a
kNN classifier f t,NN is generated (Equation 4). The final bagged kNN classifier
fBAG,kNN is formed by aggregating f t,NN , for 1≤t≤T , using Equation 5.

2.5 Adaptive Boosting

Adaptive Boosting (AdaBoost) [3] has been shown to significantly reduce the
learning error of any algorithm that consistently generates classifiers whose per-
formance is a little better than random guessing. Unlike Bagging [2], Boosting
maintains a weight for each instance - the higher the weight, the more the in-
stance influences the classifier learned. At each trial the vector of weights is
adjusted to reflect the performance of the corresponding classifier. Hence the
weight of misclassified instances is increased. The final classifier is obtained as
a weighted combination of the individual classifiers votes, the weight of each
classifier’s vote being determined as a function of its accuracy.

Let wt
xγ

denote the weight of instance xγ ∈ S, where S ⊂ D, at trial t. Initially
for every xγ , we set w1

xγ
= 1

A , where A is the number of training instances. At
each trial t ∈ {1, 2, .., T}, a classifier f t is constructed from the given instances
under the distribution wt

xγ
. The error εt of this classifier is also measured with

respect to the weights, and is the sum of the weights of the instances that it
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mis-classifies. If εt ≥ 0.5, the trials are terminated. Otherwise, the weight vector
for the next trial (t+1) is generated by multiplying the weights of instances
that f t classifies correctly by the factor βt= εt

1−εt and then re-normalizing so that∑
xγ

wt+1
xγ

=1. The Boosted classifier fBOOST is obtained as

fBOOST (x) =
T∑

t=1

f tlog(
1
βt

) (6)

In this paper the performance of Boosting was investigated using the following
base learners.

A. Feature Space: At each iteration t, a classifier f t is generated by selecting
the feature fj , for 1≤j≤K, which produces the minimum error with respect to
the ground truth over all training instances for class ωT .

B. Bayes: At each iteration t, classifier f t is chosen as the posterior conditional
probability P t(ωT |x, fj), for j∈{1, 2, .., K}, for which P t(ωT |x, fj) ≤ θ results
in the least error with respect to the ground truth, where θ is a predetermined
threshold which.

C. kNN: Since kNN classifiers are robust to variations of the training set, we
employ Boosting on the bootstrap kNN classifiers f t,NN generated by varying
the feature set as described in Section 2.4. At each iteration t the kNN classi-
fier with the least error with respect to the ground truth is chosen and after T
iterations the selected f t,NN are combined using Equation 6.

3 Experimental Setup

3.1 Data Description and Feature Extraction

Prostate glands obtained via radical prostatectomy were imaged using a 4 T
Magnetic Resonance (MR) imager using 2D fast spin echo at the Hospital at
the University of Pennsylvania. MR and histologic slices were maintained in the
same plane of section. Serial sections of the gland were obtained by cutting with
a rotary knife. Each histologic section corresponds roughly to 2 MR slices. The
ground truth labels for tumor on the MR sections were manually generated by
an expert by visually registering the MR with the histology on a per-slice basis.
Our database comprised of a total of 5 prostate studies, with each MR image
volume comprising between 50-64 2D image slices. Ground truth for the cancer
on MR was only available on 33 2D slices from the 5 3D MR studies. Hence
quantitative evaluation was only possible on these 33 2D MR sections.

After correcting for MR specific intensity artifacts [4], a total of 35 3D tex-
ture features at different scales and orientations and at every spatial location in
the 3D MRI scene were extracted. The 3D texture features included: first-order
statistics (intensity, median, standard and average deviation), second order Har-
alick features (energy, entropy, contrast, homogeneity and correlation), gradient
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(directional gradient and gradient magnitude), and a total of 18 Gabor features
corresponding to 6 different scales and 3 different orientations. Additional details
on the feature extraction are available in [4].

3.2 Machine Training and Parameter Selection

Each of the classifiers described in Section 2 are associated with a few model pa-
rameters that need to be fine-tuned during training for best performance. For the
methods based on Bayesian learning we need to estimate the prior conditional
densities p(x,fj | ωT ), for 1 ≤ j ≤ K, by using labeled training instances. Changes
in the number of training instances (A) can significantly affect the prior condi-
tional densities. Other algorithmic parameters include (1) an optimal number of
nearest neighbors (k) for the kNN classifier, (2) an optimal number of iterations
(T ) for the Bagging and Boosting methods, and (3) optimal values for the feature
weights for the GEM technique which depends on the number of training samples
used (A). These parameters were estimated via a leave-one-out cross validation
procedure. Except for the Bagging and Boosting methods on the kNN classi-

fiers where each kNN classifier was trained on 1
6
th (6) and 1

3
rd (12) of the total

number of extracted features (35), all other classifiers were trained on the entire
feature set. The Bayesian conditional densities were estimated using 5 training
samples from the set of 33 2D MR slices for which ground truth was available.
In Table 1 are listed the values of the parameters used for training the 14 differ-
ent ensemble methods. The numbers in the parenthesis in Table 1 indicate the
number of ensembles employed for each of the 4 families of learning methods.

Table 1. Values of parameters used for training the different ensemble methods and
estimated via the leave-one-out cross validation procedure

Method kNN (2) Bayes Bagging (2) Boosting (3)
Features Bayes (7) kNN Bayes kNN Features Bayes

Parameter k=8 k=8 - T=50,k=8 T=10 T=50,k=8 T=50 T=50
No. of features 35 35 35 6,12 35 6,12 35 35

3.3 Performance Evaluation

The different ensemble methods were compared in terms of accuracy, execution
time, and parameter sensitivity. Varying the threshold θ such that an instance
x will be classified into the target class if f(x) ≥ θ leads to a trade-off between
sensitivity and specificity. Receiver operating characteristic (ROC) curves (plot
of sensitivity versus 100-specificity), were used to compare classification accuracy
of the different ensembles using the 33 MR images for which ground truth was
available. A larger area under the ROC curve implies higher accuracy of the
classification method. The methods were also compared in terms of time required
for classification and training. Precision analysis was also performed to assess
possible over-fitting and parameter sensitivity of the methods compared against
the inter-observer agreement of 5 human experts.
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4 Results and Discussion

4.1 Accuracy

In Figure 1(a) are superposed the ROC curves for Boosting using (i) all 35 fea-
tures, (ii) the posterior conditional probabilities associated with the features in
(i), and (iii) the kNN classifiers trained on subsets of 6 and 12 features. Boost-
ing all 35 features and the associated Bayesian learners results in significantly
higher accuracy compared to Boosting the kNN classifiers. No significant dif-
ference was observed between Boosting the features and Boosting the Bayesian
learners (Figure 1(b)), appearing to confirm previously reported results [8] that
Boosting does not improve Bayesian learners.

Figure 2(a) reveals that Bagging Bayes learners performs better compared
to Bagging kNN classifiers trained on reduced feature subsets. Figure 2(b), the
ROC plot of 50 kNN classifiers trained on a subset of 6 features, with the cor-
responding Bagged and Boosted results overlaid, indicates that Bagging and

(a) (b)

Fig. 1. ROC plots of (a) Boosting features, Bayesian learners, and kNN classifiers,
(b) Boosting features and Bayesian learners. The first set of numbers (1,5,10) in the
parenthesis in the figure legends indicate the number of training samples and the second
set of numbers (6,12) shows the number of features used to form the kNN classifiers.

(a) (b) (c)

Fig. 2. ROC plots of (a) all Bagging methods, (b) 50 individual kNN classifiers trained
using 6 features with the corresponding Bagged and Boosted results overlaid, and (c)
different rules for combining the Bayesian learners
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Boosting still perform worse than the best base kNN classifier. Figure 2(c)
shows the ROC curves for the different rules for combining the Bayesian learn-
ers trained using 5 samples. Excluding the product, min, and max rules which
make unrealistic assumptions about the base classifiers, all the other methods
have comparable performance, with the weighted linear combination (GEM)
and Boosting methods performing the best. Further, both methods outper-
formed Bagging. Figures 2(b), (c) suggest that on average Boosting outper-
forms Bagging, confirming similar trends observed by other researchers [1].
Figure 3(a) which shows kNN classifiers built using Bayesian learners per-
form the best, followed by kNN classifiers built using all features, followed
by Boosting, and lastly Bagging. In fact Figure 3(b) which shows the ROC
curves for the best ensembles from each family of methods (Bagging, Boosting,
Bayes, and kNN) reveals that the kNN classifier built using Bayesian learn-
ers yields the best overall performance. This is an extremely significant re-
sult since it suggests that a simple non-parametric classifier requiring minimal
training can outperform more sophisticated parametric methods that require
extensive training. This is especially pertinent for CAD applications where
large amounts of training data are usually unavailable. Table 2 shows Az val-
ues (area under ROC curve) for the different ensembles.

Table 2. Az values for different ensembles from the 4 families of learning methods

Method kNN Bayes Bagging Boosting
Features Bayes (GEM) kNN Bayes kNN Features Bayes

Az .943 .957 .937 .887 .925 .899 .939 .936

(a) (b)

Fig. 3. ROC curves for (a) ensembles of kNN classifiers, and (b) the best ensemble
methods from each of the 4 families of classifiers: Bagging, Boosting, Bayes, and kNN
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(a) (b) (c) (d)

Fig. 4. ROC curves for (a) GEM for 3 sets of training data (5, 10, 15 samples), (b)
Boosting on the feature space (T ∈ {20,30,50}), (c) Bagging on kNN classifiers (T ∈
{20,30,50}, number of features=12), and (d) kNN on feature space (k ∈ {8,10,50,100})

4.2 Parameter Sensitivity

The following parameter values were used for the different ensembles: (a) kNN -
k ∈ {8,10,50,100}, (b) Bayes - 4 different training sets comprising 1, 5, 10, and
15 images from the set of 33 2D image slices for which ground truth was avail-
able, and (c) Boosting/Bagging - T ∈ {20,30,50} trials. The results in Table 3
which list the standard deviation in Az values for the 4 families of methods for
different parameter settings and the plots in Figure 4 suggest that all ensembles
considered are robust to changes in parameter settings, and to training. Table 3
and Figure 5 further reveal the high levels of disagreement among five human
experts who independently segmented tumor on the MR slices without the aid
of the corresponding histology.

Table 3. Columns 2-5 correspond to standard deviation in Az values for the different
ensembles for different parameter settings, while column 6 corresponds to the average
standard deviation (%) in manual segmentation sensitivity for 5 human experts

Method kNN Bayes Bagging Boosting Experts
Std. Deviation 1.3×10−3 6.1×10−3 2.7×10−3 7.1×10−6 20.55

Figures 5(a) corresponds to slice of a prostate MRI study and 5(b corresponds
to ground truth for tumor in (a) slices obtained via histology. Figures 5(c) which
represents the overlay of 5 human expert segmentations for tumor on 5(a) clearly
demonstrate (i) high levels of disagreement among the experts (only the bright
regions correspond to unanimous agreement), and (ii) the difficulty of the prob-
lem since all the expert segmentations had significant false negative errors. The
bright areas in Figure 5(d) which represents the overlay of the kNN classifica-
tion on the feature space for k ∈ {10,50,100} (θ=0.5) reveals the precision of the
ensemble for changes in parameter settings.
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(a) (b) (c) (d)

Fig. 5. Slices from (a) a 4 T MRI study, (b) tumor ground truth on (a) determined
from histology, (c) 5 expert segmentations of cancer superposed on (a), (d) result of
kNN classifier for k ∈ {10,50,100} (θ=0.5) superposed on (a). Note (i) lower parameter
sensitivity of ensemble methods compared to inter-expert variability and (ii) higher
accuracy in terms of the crucial false negative errors.

4.3 Execution Times

Table 4 shows average execution times for the ensembles for a 2D image slice
from a 3D MRI volume of dimensions 256×256×50. Feature extraction times
are not included. The parameter values used were: k=10, number of features
K=35, training samples for Bayesian learners (A=5), and number of iterations
for Bagging and Boosting T=30. All computations were performed on a 3.2 GHz
Pentium IV Dell desktop computer (2 GB RAM). The kNN methods required no
training, while Boosting Bayesian learners required the most amount of time to
train. In terms of testing, the Boosting and kNN methods were the fastest while
the Bayesian methods were the slowest. Note however that the time required
to estimate the Bayesian posterior class conditional probabilities is a function
of the dynamic intensity range of the different features employed, which in our
case was 0-4095. Note also that columns 3, 6, and 9 do not include the time for
computing the posterior class conditional probabilities.

Table 4. Execution times (training and classification) for the different ensemble meth-
ods. For brevity only one of the Bayesian methods (GEM) has been shown.

Method kNN Bayes Bagging Boosting
Features Bayes (GEM) kNN Bayes kNN Features Bayes

Training - - 0.86 18.15 25.65 18.15 35.33 77.82
Classification 0.98 1.59 131.21 16.71 34.99 1.59 1.09 0.60

5 Concluding Remarks

In this paper we compared the performance of 14 ensembles from 4 families
of machine learning methods: Bagging, Boosting, Bayesian learning, and kNN,
for detecting prostate cancer from 4 T ex vivo MRI prostate studies. The kNN
classifier performed the best, both in terms of accuracy and ease of training, thus
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validating Occam’s Razor. This is an especially satisfying result since an accurate
non-parametric classifier requiring minimal training is ideally suited to CAD
applications where large amounts of data are usually unavailable. All classifiers
were found to be robust with respect to training and changes in parameter
settings. By comparison the human experts had a low degree of inter-observer
agreement. We also confirmed two trends previously reported in the literature, (i)
Boosting consistently outperformed Bagging [1] and (ii) Boosting the Bayesian
classifier did not improve performance [8]. Future work will focus on confirming
our conclusions on larger data sets and with other CAD applications.
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