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Abstract. Recognizing humans, estimating their pose and segmenting their body
parts are key to high-level image understanding. Because humans are highly ar-
ticulated, the range of deformations they undergo makes this task extremely chal-
lenging. Previous methods have focused largely on heuristics or pairwise part
models in approaching this problem. We propose a bottom-up growing, similar to
parsing, of increasingly more complete partial body masks guided by a composi-
tion tree. At each level of the growing process, we evaluate the partial body masks
directly via shape matching with exemplars (and also image features), without re-
gard to how the hypotheses are formed. The body is evaluated as a whole, not the
sum of its parts, unlike previous approaches. Multiple image segmentations are
included at each of the levels of the growing/parsing, to augment existing hy-
potheses or to introduce ones. Our method yields both a pose estimate as well as
a segmentation of the human. We demonstrate competitive results on this chal-
lenging task with relatively few training examples on a dataset of baseball players
with wide pose variation. Our method is comparatively simple and could be easily
extended to other objects. We also give a learning framework for parse ranking
that allows us to keep fewer parses for similar performance.

1 Introduction

Recognition, pose estimation and segmentation of humans and their body parts remain
important unsolved problems in high-level vision. Action understanding and image
search and retrieval are just a few of the areas that would benefit enormously from
this task. There has been good previous work on this topic, but significant challenges
remain ahead. We divide the previous literature on this topic into three main areas:

Top-down approaches: [4] developed the well-known pictorial structures (PS)
method and applied it to human pose estimation. In the original formulation, PS does
probablistic inference in a tree-structured graphical model usually with the torso as the
root. PS recovers locations, scales and orientations of rigid rectangular part templates
that represent an object. Pairwise potentials were limited to simple geometric relations
(relative position and angle), while unary potentials were based on image gradients or
edge detection. The tree structure is a limitation since many cues (e.g., symmetry of
appearance of right and left legs) cannot be encoded. [13] extended the original model
to encode the fact that symmetric limb pairs have similar color, and that parts have
consistent color or colors in general, but how to incorporate more general cues seems
unclear. [14] track people by repeatedly detecting them with a top-down PS method.
[17] introduced a non-parametric belief propagation (NBP) method with occlusion rea-
soning to determine the pose. All these approaches estimate pose, and do not provide an



underlying segmentation of the image. Their ability to utilize more sophisticated cues
beyond pixel-level cues and geometric constraints between parts is limited.

Search approaches: [12] utilized heuristic-guided search, starting from limbs de-
tected as segments from Normalized Cuts (NCut) ([3]), and extending the limbs into
a full-body pose and segmentation estimate. A follow up to this, [11], introduced an
Markov-Chain Monte Carlo (MCMC) method for recovering pose and segmentation.
[7] developed an MCMC technique for inferring 3-D body pose from 2-D images, but
used skin and face detection as extra cues. [18] utilized a combination of top-down,
MCMC and local search to infer 2-D pose.

Bottom-up/Top-down approaches [15] used bottom-up detection of parallel lines
in the image as part hypotheses, and then combined these hypotheses into a full-body
configuration via an integer quadratic program. [18] also fit into this category, as they
use bottom-up cues such as skin pixel detection. Similarly, [6] integrated bottom-up skin
color cues with a top-down, NBP process. [11] use superpixels to guide their search.
While [2] estimate only segmentation and not pose for horses and humans in upright,
running poses, they best utilize shape and segmentation information in their frame-
work. [16] use bottom-up part detectors to detect part hypotheses, and then piece these
hypotheses together using a simple dynamic programming (DP) procedure in much the
same way as [4]. Lastly, our approach is similar to that described in [19], where bottom-
up proposals are grouped hierarchically to produce a desired shape; unlike, [19] we use
more sophisticated shape modelling than small groups of edges.

2 Overview of Our Method

Our method shares the same goal with traditional image parsing: explain an image in
terms of a set of parse rules. It produces body part hypotheses in a bottom-up fashion
and propogates them up a parsing tree for simultaneous detection and parsing of an en-
tire body (excluding the arms). Our formulation is also similar to an AND-OR graph[5].
However, in our framework scoring depends only on the parse at the root node, while
in the AND-OR graph it is a function of the entire set of rules for the parse. Further,
we allow image-level features to participate at all levels of the parsing hierarchy, while
AND-OR graph parsing typically restricts these features to leaf nodes.

Our approach has two important differences from traditional parsing (not including
AND-OR graph parsing) approaches. First, we do not assume the whole is just the sum
of its parts. Traditional parsing relies on a subtree independence property between the
different levels of the parse tree to ensure efficient (polynomial time) computation of
the best parse. Given the state of a node in the parse tree, the scores of subtrees rooted
at the node’s children are independent. While we also have tree structured parse rules,
the goal is to streamline the parsing process, not to impose subtree independence. We
discriminate our parse hypotheses based solely on their geometrical shapes. Traditional
parsing assumes an additive decomposition of parse score across the parse rule applied
and the scores of the parses used in the rule. In our framework, the score given to
hypotheses at each node is a global shape matching score against a set of exemplar
shapes. This shape score does not factorize over the parses that were grouped together
and the parse rule applied.



Second, we allow the image features, in this case multiple image segmentations, to
participate in all levels of the parse tree, not just at the leaves. Most parsing algorithms
consider local hypotheses generated from the image only at the leaves of the parse tree.
Such a requirement is too restrictive when we have a good (but not perfect) segmen-
tation. Often, segments represent a large piece of the body containing several different
parts (according to the parse tree). We introduce segmentation into the parse tree at all
levels, either by merging with an existing hypothesis, or as a new hypothesis.

Define S, the set of initial shapes, which were detected in the image, and F a shape
scoring function (larger is better). Then we wish to solve:

max
T∈2S

F (
|T |⋃
i=1

Ti) (1)

⋃
represents shape composition. In our case, we represent shape with binary masks

and it is simply the pixel-wise OR operator. We make the assumption that the shape
we are looking for is distinctive enough that is unlikely to appear by as a collection of
shapes by random chance. For human bodies, this seems to be a reasonable assumption.

Note that F depends solely on the composition of multiple shapes, not on the in-
dividual masks themselves, scores associated with the shapes, or how the shapes were
chosen. In traditional parsing, the score of a parse is usually defined in terms of the
applied parse rule, and the scores of the children, allowing for efficient DP methods for
computing an optimal parse.

However, if the function F does not contain special structure, solving (1) may be
intractable; |2S | is large even when |S| is small. We restrict the set of shapes to be
considered by introducing a shape composition tree; we a give an example of such a tree
in Figure 1. The root node of the tree represents the desired shape we wish to construct
(a full body, with the exception of the arms), and we associate with it shape scoring
function F . The other nodes represent shapes that are likely to be useful in constructing
a mask m such that F (m) is large, such as legs and the lower body. Finding these
smaller parts can obviously help with finding the entire body.

For the root node, we would like to determine a set of good hypotheses that are
likely to have high F score. Intuitively, a good set of hypotheses for the children (or
child) of the root, can be used to find good hypotheses for the root. For example, a good
lower body can help us locate the torso, giving us the lower body + torso, and in turn
we can extend this to find the head, giving us the lower body + torso + head as shown
in Figure 1.

Nodes always draw hypotheses directly from S in addition to their children. In
addition, the parent-child relationships encoded in the tree restrict the sources of shapes
that a node can draw from in generating shape hypotheses for itself (aside from S). This
serves to control the computational complexity; if a node has at most 2 children with
each at most n hypotheses, and we restrict composition to one shape from each child,
we generate at most n2 hypotheses from the children. However, we must prune these
hypotheses along with those from S in order to prevent exponential growth in the the
number of hypotheses at the root. This necessitates the association of a scoring function
Fi (based on either shape, or shape with image features; see sections 2.2 and 3.1) with
each node i, in addition to the root, for pruning. Shapes with low Fi value can be pruned
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Fig. 1. Our shape composition tree,
shown with an exemplar shape from
our training set for each node; the ex-
emplars are used for shape scoring.
Shape composition begins at the leaf
nodes of thigh and lower leg and pro-
ceeds upwards. Note that in addition to
composing hypotheses from children
nodes, hypotheses can always come
from the initial shapes S.

away, as well as shapes that are redundant (highly similar to each other), resulting in a
set of hypotheses of size n that are propogated up the tree.

We show a set of composition rules for our tree in Figure 2. The triangle and di-
amond symbols indicate two different types of hypothesis composition methods from
children, to be discussed later. Implicitly, all nodes can draw on S for hypotheses. The
leaf nodes are Thigh and Lower leg; shape composition starts at the leaves, and contin-
ues upwards to the root.

– {Lower leg, Thigh} → Leg
– {Thigh, Thigh} → Thighs
– {Thighs, Lower leg} → Thighs+Lower leg
– {Thighs+Lower leg, Lower leg} → Lower body
– {Leg, Leg} → Lower body
– {Lower body} → Lower body+torso
– {Lower body+torso} → Lower body+torso+head

Fig. 2. Our composition
rules. We write them in
reverse format to emphasize
the bottom-up nature of the
shape composition.

2.1 Multiple Segmentations

To initialize our bottom-up composition process, we need a set of intial shapes S. [12]
noted that human limbs tend to be salient regions that NCut segmentation often isolate
as a single segment. To make this initial shape hypothesis generation method more
robust, we consider not one segmentation as in [12], but 12 different segmentations
provided by NCut. We vary the number of segments from 5 to 60 in steps of 5, giving
a total of 390 initial shapes per image. This allows us to segment out large parts of the
body that are themselves salient, e.g. the lower body may appear as a single segment, as
well as smaller parts like individual limbs or the head. Figure 3 shows for an image 2 of



the 12 segmenations with overlaid boundaries. Segments from different segmentations
can overlap, or be contained within another. In our system, these segments are all treated
equally. These initial shapes could be generated by other methods besides segmentation,
but we found segmentation to be very effective.

Fig. 3. Two segmentations of an image, 10 and 40 seg-
ments. Red lines indicate segment boundaries for 10 seg-
ments, green lines indicate boundaries for 40 segments,
and yellow indicates boundaries common to both segmen-
tations (best viewed in color).

2.2 Shape Comparison

For each node i, we have an associated shape comparison function Fi. For the root
node, this ranks the final hypotheses for us. For all other nodes, Fi ranks hypotheses so
that they can be pruned. All the shape comparison functions operate the same way: we
match the boundary contour of a mask against boundary contours of a set of exemplar
shapes using the inner-distance shape context (IDSC) of [8].

The IDSC is an extension of the original shape context proposed in [1]. In the orig-
inal shape context formulation, given a contour of n points x1, ..., xn, a shape context
was computed for point xi by the histogram

#(xj , j 6= i : xj − xi ∈ bin(k)) (2)

Ordinarily, the inclusion function xj − xi ∈ bin(k) is based on the Euclidean dis-
tance d =‖ xj − xi ‖2 and the angle acos((xj − xi)/d). However, these measures are
very sensitive to articulation. The IDSC replaces these with an inner-distance and an
inner-angle.

The inner-distance between xi and xj is the shortest path between the two points
traveling through the interior of the mask. This distance is less sensitive to articulation.
The inner-angle between xi and xj is the angle between the contour tangent at the point
xi and tangent at xi of the shortest path leading from xi to xj . Figure 4 shows the
interior shortest path and contour tangent.

The inner-distances are normalized by the mean inner-distance between all pairs
{(xi, xj)}, i 6= j of points. This makes the IDSC scale invariant, since angles are also
scale-invariant. The inner-angles and normalized log inner-distances are binned to form
a histogram, the IDSC descriptor. For two shapes with points x1, ..., xn and y1, .., yn,
IDCSs are computed at all points on both contours. For every pair of points xi, yj ,
a matching score between the two associated IDCSs is found using the Chi-Square



score ([1]). This forms an n-by-n cost matrix, which is used as input to a standard
DP algorithm for string matching, allowing us to establish correspondence between the
points on the two contours. The algorithm also permits occlusion of matches with a
user-specified penalty. We try the alignment at several different, equally spaced starting
points on the exemplar mask to handle the cyclic nature of the closed contours, and keep
the best scoring alignment (and the score). Because the DP algorithm minimizes a cost
(smaller is better), we negate the score since our desire is to maximize F and all Fi.
The complexity of the IDSC computation and matching is dominated by the matching;
with n contour points and s different starting points, the complexity is O(sn2).

If s is chosen as n, then the complexity is O(n3). However, we instead use a coarse-
to-fine strategy for aligning two shapes; based on the alignment of a subsampling of the
points, we can narrow the range of possible alignments for successively larger number
of points, thereby greatly reducing the complexity. We use a series of 25, 50 and 100
points to do the alignment.

Fig. 4. IDSC Computation. Left: We show:
shortest interior path (green) from start (blue
dot) to end (blue cross); boundary contour points
(red); contour tangent at start (magenta). The
length of interior path is the inner-distance; the
angle between contour tangent and the start
of the interior path is the inner-angle. Center:
Lower body mask hypothesis; colored points
indicate correspondence established by IDSC
matching with exemplar on right.

2.3 Composition Rule Application Procedure

Our composition process consists of five basic steps that can be used to generate the
hypotheses for each node. For a particular node A, given all the hypotheses for all
children nodes, we perform the following steps:

Segment inclusion: applies to all nodes We include by default all the masks in S as
hypotheses for A. This allows us to cope with an input image that is itself a silhouette,
which would not necessarily be broken into different limbs, for example. A leg will
often appear as a single segment, not as separate segments for the thigh and lower leg;
it is easier to detect this as a single segment, rather than trying to split segments into two
or more pieces, and then recognize them separately. This is the only source of masks
for leaf nodes in the composition tree.

Grouping: {B,C} → A For binary rules, we can compose hypotheses from two
children such as grouping two legs into a lower body, e.g. {Leg, Leg} → Lower body.
For each child, based on the alignment of the best matching exemplar to the child, we
can predict which part of the segment boundary is likely to be adjacent to another part.



A pair of masks, b from B and c from C, are taken if the two masks are within
30 pixels of each other (approximately 1/10th of the image size in our images), and
combined with the pixel-wise OR operator. Because we need a single connected shape
for shape comparison, if the two masks are not directly adjacent we search for a mask
from the segmentations that is adjacent to both, and choose the smallest such mask m.
m is then combined with b and c into a single mask. If no such mask m exists, we keep
the larger of a and b. Figure 5 provides an example of the composition rule, {Leg,Leg}
→ LowerBody.

Extension: {B} → A For unary rules we generate hypotheses by projecting an
expected location for an additional part based on correspondence with exemplars. This
is useful when bottom-up detection of a part by shape, such as the torso or head, is
difficult due to wide variation of shape, or lack of distinctive shape. Once we have a
large piece of the body (at least the lower body), it is more reliable to directly project a
position for hypotheses. Given a hypothesis of the lower body and its correspondence
to a lower body exemplar shape, we can project the exemplar’s quadrilateral (quad)
representing the torso on to the hypothesis (we estimate a transform with translation,
rotation and scale based on the correspondence of two contour points closest to the two
bottom vertices of the torso quad).

Similarly, given a mask for the lower body and torso, and its correspondence to
exemplars, we can project quads for the head. With these quads, we look for all masks
in S which have at least half their area contained within the quad, and combine them
with the existing mask to give a new hypothesis. For each hypothesis/exemplar pair,
we compose a new hypothesis. We sumamrize the general parsing process with the
recursive algorithm presented in Algorithm 1.

Algorithm 1: PA = Parse(A,S): for a particular image, given initial segments S
and part name A, produce ranked and pruned parses for A.

Input: Part name A and initial shapes S
Output: PA: set of ranked and pruned parses for A
PA = S; // Initialize parses for A to intial segments S
foreach rule {Bi, Ci} → A (or Bi → A) do

PBi = Parse(Bi, S); // Recurse
PCi = Parse(Ci, S); // If binary rule, recurse
PA = PA∪ Group(PBi , PCi ) (or Extend(PBi )); // Add to parses of A

end
PA = RankByShape(PA) or RankByImageFeatures(GetFeatures(FA), wA);
// GetFeature gets parse features, wA is classifier
PA = Prune(PA); // Prune redundant/low scoring parses
return PA; // Return parses

Scoring Once hypotheses have been composed, they are scored by matching to
the nearest exemplar with IDSCs and DP. Correspondence is also established with the
exemplar, providing an estimate of pose.
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Fig. 5. Left: composition rule application. For binary rules, all pairs of child hypotheses within 30
pixels are grouped, with hole filling provided by segments if needed. For unary rules, hypotheses
undergo extension using projected quads and segment proposals. Shape matching is performed
on both the original segments as well as the composed/extended hypotheses. For leaf nodes,
shape matching is performed only on the segments. After shape matching, the hypotheses are
consolidated, pruned and ranked. Right: Grouping: two legs, on the left, are grouped into a lower
body parse, on the right. While recognizing legs alone from shape is not that robust, when they are
combined into one shape, the distinctive shape of the lower body becomes apparent: the whole is
not the sum of the parts. Extension: the leftmost image shows a lower body parse with multiple
torso quads projected from exemplars on to the image using the correspondence between the
lower body hypothesis and the lower body exemplars; the center image shows the exemplar with
its torso quad that yielded the best torso hypothesis, seen in the right image. Shape matching:
two examples of shape matching. The lower body on the right was detected directly from the
segments S, underscoring the importance of injecting the shapes from S into all levels of the
composition tree.



Algorithm 2: Train(A,S): trains part classifiers and returns parses for part A and
all descendants; uses input of initial segments S.

Input: Part name A and initial segments S = {S1, ..., Sn} for all images
Output: PA = {P 1

A, ..., P n
A}: set of parses for A across all images; wA: WLR for A

PA = S; // Initialize parses for A to intial segments S
foreach rule {Bi, Ci} → A (or Bi → A) do

[PBi , wBi ] = Train(Bi, S); // Recurse to train child
[PCi , wCi ] = Train(Ci, S); // If binary rule
foreach image j do

P j
A = P j

A∪ Group(P j
Bi

, P j
Ci

) (or Extend(P j
Bi

));
end

end
FA = GetFeatures(PA); // Get features for each parse
GA = GetGroundTruthOverlapScores(PA); // Get ground truth scores
wA = WLR(FA, GA); // Do WLR on parses; get classifier wA

foreach image j do
P j

A = Prune(RankByImageFeatures(F j
A, wA)); // Rank and prune

end
return [PA, wA]; // Return parses and classifer

Pruning Many hypotheses are either low-scoring, redundant or both. We prune
away these hypotheses with a simple greedy technique: we order the hypotheses by
their shape score, from highest to lowest (best to worst). We add the best hypothesis
to a representative set, and eliminate all other hypotheses which are similar to the just
added hypothesis. We then recurse on the remaining hypotheses until the representative
set reaches a fixed size. For mask similarity we use a simple mask overlap score O be-

tween masks a and b: O(a, b) =
area(a

⋂
b)

area(a
⋃

b)
, where

⋂
performs pixel-wise AND, and

the area is the number of “1” pixels. If O(a, b) is greater than a threshold, a and b are
considered to be similar. After this step, we have a set of hypotheses that can be passed
higher in the tree, or to evaluate in the end if the node A is the root. Figure 5 illustrates
the stages of the parsing process for generating the hypotheses for a single node. Also
included are examples of grouping, extension, and shape matching/scoring.

3 Learning With Other Features

Besides shape, we also investigated using SIFT [9] and Probability of Boundary (PB)
[10] features for ranking of parses. Traditional maximum-likelihood learning (similar
to that for AND-OR graphs) would require an explicit specification of the best parse for
each rule. Unfortunately, this is difficult to specify a-priori due to the exponential num-
ber of different possible parses (as combinations of the initial input shapes). Instead, for
each part we train a weighted logistic regression (WLR) classifier to rerank the parses
according to a variety of features. These parses are then pruned and passed up to other
rules. We summarize our training procedure in Algorithm 2. It is essentially the same as



the original parsing procedure in Algorithm 1, but after generating the set of parses for
a part, a WLR is trained to re-rank the parses. During testing, instead of ranking parses
by shape score, they are ranked by the learnt WLR.

3.1 Features

For PB, we simply computed the average PB value along the boundary of the mask.
For SIFT features, we created a SIFT codebook and computed codebook histograms for
each mask as additional features. We extracted SIFT features from a dataset of 450 addi-
tional baseball images, using the code from http://vision.ucla.edu/ vedaldi/code/sift/sift.html
with the default settings. These features were clustered via k-means into a 200 center
codebook. For a test image and a given mask, SIFT features are extracted, associated
with the nearest center in the codebook, and then a histogram over the frequency of
each center in the mask is computed. This gives a 200 dimension vector of codebook
center frequencies.

3.2 Learning the classifiers

The result is a 202 dimensional feature vector (texture: 200, shape: 1, PB: 1). Given
these features, for each part we can learn a scoring function that best ranks the masks
for that part. We also need ground truth scores for each part; from the ground truth
segmentation of the parts in the image, we compute the overlap score between the mask
and the ground truth labeling, giving a score in [0, 1].

We optimize a WLR energy function that more heavily weights examples that have
a high ground-truth score; a separate classifier is learnt for each part. f j

i is the feature
vector associated with the ith mask of the jth image, sj

i is its ground truth score, and w
parametrizes the energy function we wish to learn. For m images with nj parses each,
we have

E(w) = (
m∏

j=1

nj∏
i=1

(
exp(wTf j

i )∑nj

i=1 exp(wTf j
i )

)sj
i )(exp(

−wTw

σ2
)) (3)

log E(w) =
m∑

j=1

(
nj∑
i=1

sj
i (w

Tf j
i ))− (

nj∑
i=1

sj
i )(log(

nj∑
i=1

exp(wTf j
i )))− wTw

σ2
(4)

where we have added a regularization term exp(−wTw
σ2 ) that is a zero-mean isotropic

Gaussian with variance σ2. If, for each image j, exactly one of the ground truth scores
sj

i were 1 and the rest 0, this would be exactly logistic regression (LR). But since there
may be several good shapes, we modify the LR. We can maximize this convex function
via a BFGS quasi-newtonian solver using the function value above and the gradient
below:

∂w log E(w) = (
m∑

j=1

((
nj∑
i=1

sj
if

j
i )− (

nj∑
i=1

sj
i )

∑nj

i=1 f j
i exp(wTf j

i )∑nj

i=1 exp(wTf j
i )

))− 2
w

σ2
(5)



Given a classifier wp for each part p, we can rank a set of part hypotheses by simply
evaluating wp

Tf j
i and ranking the scores in descending order. We use the same parsing

process, but with a different ranking function (a learned one), as opposed to using just
shape. Algorithm 2 provides a pseudocode summary of this training procedure.

3.3 Results using shape only

We present results on the baseball dataset used in [12] and [11]. This dataset contains
challenging variations in pose and appearance. We used 15 images to construct shape
exemplars, and tested on |I| = 39 images. To generate the IDSC descriptors, we used
the code provided by the authors of [8]. Boundary contours of masks were computed
and resampled to have 100 evenly-spaced points. The IDSC histograms had 5 distance
and 12 angle bins (in [0, 2π]). The occlusion penalty for DP matching of contours was
0.6 * (average match score). For pruning, we used a threshold of 0.95 for the overlap
score to decide if two masks were similar (a, b are similar ⇐⇒ O(a, b) ≥ 0.95) for the
lower body+torso and lower body + torso + head, and 0.75 for all other pruning. In all
cases, we pruned to 50 hypotheses.

Because we limit ourselves to shape cues, the best mask (in terms of segmentation
and pose estimate) found by the parsing process is not always ranked first; although
shape is a very strong cue, it alone is not quite enough to always yield a good parse.
Our main purpose was to investigate the use of global shape features over large portions
of the body via shape composition. We evaluate our results in two different ways: seg-
mentation score and projected joint position error. To the best of our knowledge, we are
the first to present both segmentation and pose estimation results on this task.

Fig. 6. Left: We plot the average (across all images) of the maximum overlap score as a function
of the top k parses. Right: We focus on the top 10 parses, and histogram the best overlap score
out of the top 10 for each image and region.

3.4 Segmentation Scoring

We present our results in terms of an overlap score for a mask with a ground truth
labeling. Our composition procedure results in 50 final masks per image, ranked by



their shape score. We compute the overlap score O(m, g) between each mask m and
ground truth mask g. We then compute the cumulative maximum overlap score through
the 50 masks. For an image i with ranked parses pi

1, ...p
i
n, we compute overlap scores

oi
1, ..., o

i
n. From these scores, we compute the cumulative maximum Ci(k) = max(oi

1, ..., o
i
k).

The cumulative maximum gives us the best mask score we can hope to get by taking
the top k parses.

To understand the behavior of the cumulative maximum over the entire dataset, we
compute M(k) = 1

|I|
∑|I|

i=1C
i(k), or the average of the cumulative maximum over all

the test images for each k = 1, ..., n (n = 50 in our case). This is the average of the best
overlap score we could expect out of the top k parses for each image. We consider this a
measure of both precision and recall; if our parsing procedure is good, it will have high
scoring masks (recall) when k is small (precision). On left in Figure 6, we plot M(k)
against k for three different types of masks composed during our parsing process: lower
body, lower body+torso, and lower body + head + torso. We can see that in the top 10
masks, we can expect to find a mask that is similar to the ground truth mask desired,
with similarity 0.7 on average. This indicates that our parsing process does a good job
of both generating hypotheses as well as ranking them.

While the above plot is informative, we can obtain greater insight into the overlap
scores by examining all Ci(k), i = 1, ..., |I| for a fixed k = 10. We histogram the
values of Ci(10) on the right in Figure 6. We can see that most of the values are in fact
well over 0.5, clustered mostly around 0.7. This confirms our belief that the composition
process is effective in both recalling and ranking hypotheses, and that shape is a useful
cue for segmenting human shape.

Fig. 7. Left: We plot the average (across all images) of the minimum average joint error in the
top k parses as a function of k. Right: Taking the top 10 parses per image, we histogram the
minimum average joint errors across all the images. We can see that the vast majority of average
errors are roughly 20 pixels or less.

3.5 Joint Position Scoring

We also examinine the error in joint positions predicted by the correspondence of a
hypothesis to the nearest exemplar. We take 5 joints: head-torso, torso-left thigh, torso-



right thigh, left thigh-left lower leg, right thigh-right lower leg. The positions of these
joints are marked in the exemplars, and are mapped to a body hypothesis based on the
correspondence between the two shapes. For a joint with position j in the exemplar,
we locate the two closest boundary contour points p, q in the exemplar that have corre-
sponding points p′, q′ in the shape mask. We compute a rotation, scaling and translation
that transforms p, q to p′, q′, and apply these to j to obtain a joint estimate j′ for the
hypothesis mask. We compare j′ with the ground truth joint position via Euclidean
distance. For each mask, we compute the average error over the 5 joints. Given these
scores, we can compute statistics in the same way as the overlap score for segmentation.
On the left in Figure 7 we plot the average cumulative minimum M(k), which gives the
average best-case average joint error achieveable by keeping the top k masks. We see
again that in the top 10 masks, there is a good chance of finding a mask with relatively
low average joint error. On the right in Figure 7, we again histogram the data when
k = 10.

Lastly, we show several example segmentations/registrations of images in Figure
8. Note that with the exception of the arms, our results are comparable to those of
[11] (some of the images are the same), and in some cases our segmentation is better.
As noted in [11], although quantitative measures may seem poor (e.g., average joint
position error), qualitatively the results seem good.

4 Results with learning

Figure 9 shows plots of comparisons of shape only and shape, SIFT, and PB. For train-
ing, we used an additional 16 baseball images to train the WLR classifiers since training
directly on the same images from which the shape exemplars were taken would likely
have emphasized shape too much in the learning. 10 fold cross validation was per-
formed with a range of different regularization values σ2 to avoid overfitting. We tested
on 26 baseball images.

We use the same type of plot as in the segmentation scoring previously described,
and plot the results over all parts used in the parsing process. We can see that the use
of additional features, particularly for the smaller parts, results in substantially better
ranking of hypotheses. Even for larger regions, such as the lower body, the additional
features have impact; the average cumulative maximum overlap score while keeping
the top 10 parses with learning is approximately equal to the score when using only
shape and keeping the top 20 parses, implying that we could keep half as many parses
to obtain the same quality of result. For the largest regions, shape is clearly the most
important cue, since performance is very similar. This also validates our choice of shape
as a primary cue.

5 Conclusion

In summary, we present a shape composition method that constructs and verifies shapes
in a bottom-up fashion. In contrast to traditional bottom-up parsing, our scoring func-
tions at each node do not exhibit a subtree independence property; instead, we score
shapes against a set of exemplars using IDSCs, which convey global shape information



Fig. 8. Body detection results. Ssegmentation has been highlighted and correspondence to the
best matching exemplar indicated by colored dots. All parses were the top scoring parses for that
image (images are ordered row-major), with the exception of images 4 (2nd best), 8 (3rd best),
6 (3rd best). Some images were cropped and scaled for display purposes only. Full body overlap
scores for each image (images are ordered row-major): 0.83, 0.66, 0.72, 0.74, 0.76, 0.70, 0.44,
0.57 and 0.84. Average joint position errors for each image: 12.28, 28, 27.76, 10.20, 18.87, 17.59,
37.96, 18.15, and 27.79.

over both small and large regions of the body. We also infuse the process with multiple
image segmentations as a pool of shape candidates at all levels, in contrast to typical
parsing which only utilizes local image features at the leaf level.

We demonstrated competitive results on the challenging task of human pose esti-
mation, on a dataset of baseball players with substantial pose variation. To the best of
our knowledge, we are the first to present both quantitative segmentation and pose esti-
mation results on this task. Note that in general, we need not start composition with the
legs only; it would be entirely feasible to add other nodes (e.g. arms) as leaves.

Further, we use larger shapes (composed of multiple body limbs) than typical pose
estimation methods. The notion of layers may also be useful in handling occlusion, as
well as describing the shape relation of arms to the torso, since the arms often overlap
the torso. Better grouping techniques (ones that introduce fewer hypotheses) are a good
idea, since this would save substantial computation.

We also studied the introduction of more traditional features such as PB and SIFT
codebook histograms and demonstrated that these features can make an important con-
tribution. Our learning framework is well-suited to the parsing problem since unlike
traditional maximum likelihood estimation, we do not explicitly require the best parse
for each image. Instead, we simply require a function to provide a ground truth score
for each parse hypothesis.



Fig. 9. Average cumulative maximum overlap scores for parsing with and without learning, across
all parts. Red curves indicate performance with learning, green represents without learning. Plot
methodology is same as that used for left plot in Figure 6.
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