Bottom-up Recognition and Parsing of the Human Body

Praveen Srinivasan Jianbo Shi

GRASP Laboratory, University of Pennsylvania

2-D Image: Segmentation, Pose

 Challenge: Large variation in appearance and pose

Previous work

- Top-down methods: Pictorial structures (Felzenszwalb 2005), (Ramanan 2006), nonparametric belief propagation (Isard 2003), (Sigal 2006)
- Top-down/bottom-up (Mori 2004), (Ren 2005), (Forsyth 1997), (Ioffe 1999)

Parsing: We start with segments

- Multiple NCut segmentations provide initial shapes
- 5,10,...,60 segments

GRASP

 How to group segments into a human figure?

Parsing: Segment groupings

- Given body subparts, can group into whole body
- Need proposals for body subparts
- Recursive nature yields bottom-up formulation

Parsing: proposal and evaluation

- Parsing begins at leaves, continues upwards
- Parse rules create proposals for each part (proposal)
- Proposals scored according to shape, ranked/pruned (evaluation)

Parsing: rules guide search

- {Lower leg, Thigh} \rightarrow Leg
- ${Thigh, Thigh} \rightarrow Thighs$
- {Thighs, Lower leg} \rightarrow Thighs+Lower leg
- {Thighs+Lower leg, Lower leg} \rightarrow Lower body
- $\{Leg, Leg\} \rightarrow Lower body$
- {Lower body} \rightarrow Lower body+torso
- {Lower body+torso} \rightarrow Lower body+torso+head

Figure 2. Our parse rules. We write them in reverse format to emphasize the bottom-up nature of the parsing.

Proposal vs. Evaluation

- Proposals are evaluated as a whole by shape matching to exemplars
- Proposal and evaluation are disjoint
- Evaluation is as a whole and independent of proposal

Evaluation: why as a whole? Shape is locally ambiguous, globally distinctive

Evaluation: why independent of proposal? Whole *≠* sum of its parts

- Shapes B, C alone do not appear disk-like
- Viewed together, disk perception is clear
- Shape needs to be evaluated in large context
- Want evaluation of A to depend only on A

Evaluation: Inner-distance shape context (Ling 2007)

- IDSC used for shape comparison
- Invariant to scale, rotation
- Robust to articulation
- Used to evaluate proposals against exemplar shapes

Proposal: mechanisms

- Proposals from individual segments (applies to all parts)
- Proposals from a pair of subparts (B,C -> A, e.g. Leg,Leg->Lower body)
- Proposals from a single subpart (B->A, e.g. Lower body -> Lower body+torso)

Proposal: segments

Multiple segmentations

Proposals from segments

Proposal: binary rule (Leg,Leg->Lower body)

Final ranked Leg proposals

Final ranked Leg proposals

Lower body proposals

Grouping example

Proposal: unary rule (Lower body-> Lower body+torso

Evaluation: scoring, ranking, pruning

 After all proposals generated for a part, they are shape scored, ranked, pruned to a constant # of proposals

Results

- End result of parsing: 50 ranked proposals for each part
- Shape only cue; typically find good proposal in top 10
- Exclude arms could add separate layers for arms (self-occlusion)

Quantitative results – pose estimation

- For full body proposals, projected positions of 5 joints (knees, hips, neck)
- Computed average error in pixels
- For top k proposals in an image, took minimum error
- Plot average of minimum error as k varied
- Histogram of minimum errors for k = 10

Quantitative results - segmentation

- For top k proposals, computed overlap score with ground truth mask
- Took maximum over top k proposals in each image
- Plotted average of max values across all images
- Histogram of max values for k = 10

Evaluation with additional features

- Shape is not the only meaningful feature
- Boundary information
- Internal texture
- Can rank proposals by a variety of different features

Learning a ranking function for each part

- Given images j = 1, ...m, feature vector f_i^j and score $s_i^j \ge 0$ for each proposal i
- Learn ranking function $F(f_i^j) = w^{\mathsf{T}} f_i^j$
- Want $s_a^j > s_b^j \Rightarrow F(f_a^j) > F(f_b^i)$
- Ranking function trained using proposals generated by previously learned ranking functions

Learning a ranking function

 w for Leg trained using proposals for lower leg, thigh ranked using respective w

Energy function (weighted multinomial logistic regression)

Learning methodology

- Texture:
 - Built a 200 entry codebook of SIFT features from ~400 additional baseball images via K-Means
 - For each proposal, computed histogram of SIFT codebook occurrences inside
- Boundary: Average PB along boundary
- Shape: IDSC distance to best matching exemplar

Learning methodology, cont.

- In addition to previous 15 training images, used an additional 16 images for learning w for each part
- 10-fold cross validation was performed to select sigma (in regularizer) for each part
- Tested on 26 more images

Learning results

With learning

Shape only

Future work

- Phrase search in A* framework
- Incorporate contour cues into grouping, extension and scoring
- Explore other shape scoring cues
- Incorporate other features

Summary and conclusion

- Shape needs to be evaluated in larger context
- Proposal and evaluation can be separated to improve parsing

