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Abstract

Segmentation and recognition have long been treated as two separate pro-
cesses. We propose a mechanism based on spectral graph partitioning
that readily combine the two processes into one. A part-based recogni-
tion system detects object patches, supplies their partial segmentations
and knowledge about the spatial configurations of the object. The goal
of patch grouping is to find a set of patches that conform best to the
object configuration. This process is integrated with the pixel group-
ing based on low-level feature similarity, through pixel-patch interac-
tions and patch competition that is encoded as constraints in the solution
space. The globally optimal partition is obtained by solving a constrained
eigenvalue problem. We demonstrate that the resulting object segmenta-
tion eliminates local false positives at the high level of part detection,
while overcoming occlusion and weak contours at the low level of edge
detection.

1 Introduction

A good image segmentation must single out meaningful structures such as objects from
a cluttered scene. Most current segmentation techniques take a bottom-up approach [5],
where image properties such as feature similarity (brightness, texture, motion etc), bound-
ary smoothness and continuity are used to detect perceptually coherent units. Segmentation
can also be performed in a top-down manner from object models, where object templates
are projected onto an image and matching errors are used to determine the existence of the
object [1]. Unfortunately, neither approach alone produces satisfactory results.

Without utilizing any knowledge about the scene, image segmentation gets lost in poor data
conditions: weak edges, shadows, occlusions and noise. Missed object boundaries can then
hardly be recovered in subsequent object recognition. Gestaltlists have long recognized this
issue, circumventing it by adding a grouping factor called familiarity [6].

Without subject to perceptual constraints imposed by low level grouping, an object detec-
tion process can produce many false positives in a cluttered scene [3]. One approach is to
build a better part detector, but this has its own limitations, such as increase in the complex-



ity of classifiers and the number of training examples required. On the other hand, another
approach which we adopt in this paper, is based on the observation that the falsely detected
parts are not perceptually salient (Fig. 1), thus they can be effectively pruned away by
perceptual organization.

Right arm: � Right leg: � Head: � Left arm: � Left leg: �
Figure 1: Human body part detection. A total of ��� parts are detected, each labeled by one of the
five part detectors for arms, legs and head. False positives cannot be validated on two grounds. First,
they do not form salient structures based on low-level cues, e.g. the patch on the floor that is labeled
left leg has same features as its surroundings. Secondly, false positives are often incompatible with
nearby parts, e.g. the patch on the treadmill that is labeled head has no other patches in the image to
make up a whole human body. These two conditions, low-level image feature saliency and high-level
part labeling consistency, are essential for the segmentation of objects from background. Both cues
are encoded in our pixel and patch grouping respectively.

We propose a segmentation mechanism that is coupled with the object recognition pro-
cess (Fig. 2). There are three tightly coupled processes. 1) Top-level: part-based object
recognition process. It learns classifiers from training images to detect parts along with
the segmentation patterns and their relative spatial configurations. A few approaches based
on pattern classification have been developed for part detection [9, 3]. Recent work on
object segmentation [1] uses image patches and their figure-ground labeling as building
blocks for segmentation. However, this is not the focus of our paper. 2) Bottom-level:
pixel-based segmentation process. This process finds perceptually coherent groups using
pairwise local feature similarity. 3) Interactions: linking object recognition with segmenta-
tion by coupling patches and corresponding pixels. When a part is detected, it back projects
foreground-background constraints onto the image data. When a pixel group is formed, it
validates parts of the object model. With such a representation, we create a parallel ob-
ject recognition and image segmentation process, the goal of which is to yield mutually
consistent high-level part configuration and low-level self-coherent segmentation results.

We formulate our object segmentation task in a graph partitioning framework. We repre-
sent low-level grouping cues with a graph where each pixel is a node and edges between the
nodes encode the affinity of pixels based on their feature similarity [4]. We represent high-
level grouping cues with a graph where each detected patch is a node and edges between
the nodes encode the labeling consistency based on prior knowledge of object part config-
urations. There are also edges connecting patch nodes with their supporting pixel nodes.
We seek the optimal graph cut in this joint graph, which separates the desired patch and
pixel nodes from the rest nodes. We build upon the computational framework of spectral
graph partitioning [7], and achieve patch competition using the subspace constraint method
proposed in [10]. We show that our formulation leads to a constrained eigenvalue problem,
whose global-optimal solutions can be obtained efficiently.

2 Segmentation model

We illustrate our method through a synthetic example shown in Fig. 3a. Suppose we are
interested in detecting a human-like configuration (Fig. 3b). Furthermore, we assume that
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Figure 2: Model of object segmentation. Given an image, we detect edges using a set of oriented
filter banks. The edge responses provide low-level grouping cues, and a graph can be constructed
with one node for each pixel. Shown on the middle right is affinity patterns of five center pixels
within a square neighbourhood, overlaid on the edge map. Dark means larger affinity. We detect a
set of candidate body parts using learned classifiers. Body part labeling provides high-level grouping
cues, and a consistency graph can be constructed with one node for each patch. Shown on the middle
left are the connections between patches. Thicker lines mean better compatibility. Edges are noisy,
while patches contain ambiguity in local segmentation and part labeling. Patches and pixels interact
by mutual ownerships based on object knowledge and data coherence, as shown in the middle image.
A global partitioning on the coupled graph outputs an object segmentation that has both pixel-level
saliency and patch-level consistency.



some object recognition system has labeled a set of patches as object parts (Fig. 3c). Every
patch has a local segmentation according to its part label (Fig. 3d). The recognition system
has also learned the statistical distribution of the spatial configurations of object parts.
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Figure 3: Object segmentation with part detection. Given � ������� ��� image in a), we want to detect
the human-like configuration in b). ��� patches of various sizes are detected in c). They are labeled as
head( � ), left-upper-arm( � , � ), left-lower-arm( 	 , �
� ), left-leg ( ��� ), left-upper-leg( � ), left-lower-leg( � ),
right-arm(  ), right-leg( � , � ). Each patch has a partial local segmentation as shown in d). Dark pixels
for figure, light for ground, and gray for no preference. The goal of segmentation is to find the best
patch-pixel combinations that conform to the object knowledge and data coherence.

Given such information, we need to address two issues. One is the cue evaluation problem,
i.e. how to evaluate low-level pixel cues, high-level patch cues and their correspondence.
The other is the integration problem, i.e. how to fuse partial and imprecise object knowl-
edge with most often unreliable low-level cues to segment out the object of interest.

2.1 Representations in graphs

We build coupled graphs for the object segmentation model (Fig.2). Formally, we denote a
graph by �������������
��� . Let � be the number of pixels in the image, � the number of
patches in the model. The complete node set is ��� �! ��"�"�"#�$�%�&��'  ��"�"�"#�&��'(� � . The
weight matrix for pairwise edge set � is:�)�+*,�$-��
.0/21435�21768�9� : *�;,<=; 1 6 "�.�>;,<@?1 6 "�.A?%<=; 1 3 "�-�?%<B?DC � (1)

where * is the pixel-pixel affinity matrix, - is the patch-patch affinity matrix, and . is the
patch-pixel affinity matrix. 1 3 and 1 6 are scalars reflecting the relative importance of -
and . with respect to * . All the weights are nonnegative.

Object segmentation corresponds to a node bipartitioning problem, where �)�E��FHG%�8I
and � F@J � I �LK . We assume � F contains a set of pixel and patch nodes that correspond to
the object, and � I is the rest of the background pixels and patches that correspond to false
positives and alternative labelings. Let MNF be an �O�P'Q���5R  vector, with MSFT�OUB�,�  
if node UWVX� F and Y otherwise. It is convenient to introduce the indicator for � I , whereM I ��ZH[WM F and Z is the vector of ones.

We only need to process the image region enclosing all the detected patches. The rest
pixels are associated with a virtual background patch, which we denote as patch �\']� ,
in addition to �^[  detected object patches. Restriction of segmentation to this region of
interest (ROI) helps binding irrelavent background elements into one group [10].

2.2 Initial evaluation of affinity matrices

Our initial estimation of the pixel affinity matrix *`_ is based on edge detection. We first
convolve the image with quadrature pairs of oriented filters to extract the magnitude of
edge responses a�b [4]. Let i

¯
denote the location of pixel c . Pixel affinity * _ is inversely



correlated with the maximum magnitude of edges crossing the line connecting two pixels:

* _ ��c
���!�9������� � [  	�
 I� " :��� ����������� F�� a�b�� i '̄�� " j �̄�� ��� a�b�� k �̄ C I��� 
(2)

*5_ ��c
���!� is low if c , � are on the two sides of a strong edge.

For object patches, we evaluate their position compatibility according to learned statistical
distributions. For object part labels ! and " , in principle, we can model their spatial dis-
tribution using a Gaussian, with mean #%$�& and variance '($�& estimated from training data.
Let )* be the object label of patch * . Let p

¯
be the center location of patch * . Given patches* and + , their affinity - _ :- _ � * �,+T�8�-�����/.#[  	 � p

¯
[ q [̄0#213 14 � > '65 F13 14 � p [̄ q

¯
[7#213 14 �98  (3)-�_ � * �:+T� is low if * , + form rare configurations for their part labels )* and )+ . We manually

set these values for our image examples.

Every object part label also projects an expectation of pixel segmentation within the patch
window. We create pixel-patch association matrix . _ . Each column of . _ corresponds to� pixels, with '  for the object pixels, [  for non-object pixels, Y for uncertain pixels.

As to the virtual background patch node, it only has affinity of
 

to itself in - _ , and
 

to a
set of pixels outside of ROI in . _ . With these initial affinities, shown in Fig. 4, we couple
their interactions to derive the final affinity matrices * , - and . .

a) * _ b) -�_ c) .A_ d) a�b
Figure 4: Initial affinities and edges. * _ is evaluated for pixels within a distance of ; units
based on the edge responses in d). The affinity patterns of < pixels within their square
neighbourhoods are superimposed on edges in a), with darker pixels for larger affinity.
Patch graph - _ is drawn in b), with thicker lines for larger affinity. A summary of pixel-
patch affinity . _ is shown in c), with object pixels marked black and non-object pixels
white. The virtual background patch is associated with a set of pixels in the periphery.

2.3 Interactions between affinity matrices

Let =%> and = 3 be integration weighting factors. Let ? be a rectifying function: ? �A@7� �B@
for @DC�Y and Y otherwise. Let EGF be the degree matrix of affinity matrix � . It is a
diagonal matrix with EHFW�+c
�2c �9�JI-K �)��c
�L� � , M7c . With these notations, we define (Fig.5):* � ? �+* _ 'N=O>("�.A_7- _7. >_ � � (4)- � ? �+- _ 'N= 3 " . >_ * _ . _ � � (5). � ? �+* _7.A_PE 3RQ=�  (6)
Their explanations are as follows. For pixel affinity matrix * , we need to encode top-
down feedback that can correct data by either breaking local coherence, e.g. enhancing
weak contours (Fig. 3c patches

 
and < ), or promoting local coherence, e.g. ignoring

occluding edges (Fig. 3c patch
 
). This expected pixel affinity from object models is



captured by . _ - _ .�>_ . The final pixel affinity is thus a weighted average between the
affinity computed from data and that expected from object models. Likewise, for patch
affinity matrix - , we need to encode bottom-up feedforward evidence to corroborate or
weaken the patch compatibility. The resulting patch affinity induced by the pixel affinity is
captured by .`>_ * _ . _ . The final patch affinity is a weighted average between the affinity
computed from object models and that expected from data. The pixel-patch affinity matrix. is obtained by averaging -`_ through pixel and patch affinity, and then sorting out object
pixels according to their signs. This operation takes both pixel affinity and patch affinity
into account, so that the initial top-down projected segmentation is propagated and refined.
The use of E 3 Q instead of - _ is to keep each patch interacting with a small set of pixels,
while having their strengths modulated by the overall patch affinity.

a) * b) - c) . d) �
Figure 5: Final affinities and exclusion constraints. a,b,c)Same conventions as in Fig. 4.
d)Four linked pairs of patches compete to enter the object group.

The corrections made to initial pixel and patch affinities are restricted to local neighbour-
hoods of pixels and patches. With the pixel-patch affinity, patches of good configurations
bring their pixels into one group. Such long-range binding is essential for popping out the
object of interest among many equally good low-level segmentations.

The choice of these parameters dictates what we desire in the optimal object segmentation.
For the integration parameters = > and = 3 , we simply set them to be unit-compatible. For
the weighting factors we want 1�3 to balance the total weights between pixel and patch
grouping so that the smaller number of patch nodes does not render patch grouping in-
significant, while we want 1 6 to be large enough so that the results of patch grouping can
bring their associated pixels along with them:=%>W� �� � * _�� �A.A_4- _�. >_ � = 3 � �� �A- _�� �A. >_ *5_7.A_ / 143 ��Y  Y   > *   > -  � 176 � 1 3�� �H.  (7)

2.4 Encoding exclusion for patch competition

The formulation presented so far does not prevent the desired pixel and patch group from
including falsely detected patches and their pixels, nor does it favor the true object pixels
to be away from unlabeled background pixels. We need further constraints to restrict a
feasible grouping. This is done by constraining the partition indicator M .

In Fig. 5d, there are four pairs of patches with the same object part labels. To encode mutual
exclusion between patches, we enforce one winner among patch nodes in competition. For
example, only one of the patches

	
and � can be validated to the object group: M F �+� '	 ��'XMSFT�+� ' � �9�  . We also set an exclusion constraint between a reliable patch and the

virtual background patch so that the desired object group stands out alone without these
unlabeled background pixels, e.g M F �+� '  � '�M F �+� ' ���`�  

. Formally, let � be a
superset of nodes to be separated and let � "�� denote the cardinality of a set. We have:�� � _�� M F �OUB�9�  ���\�  	� � �
�  (8)



2.5 Segmentation as an optimization problem

We apply the normalized cuts criterion [7] to the joint pixel-patch graph in Eq. (1) and
formulate a constrained optimization problem:�� ��� ��M F �8� I� ��� F M >� � M �M >� E M � � s.t.

�� � _ � M F � UB�8�  � �\�  � � � �  (9)

Let @ � M F [ ������ � �	 � � 	 . By relaxing the constraints into the form of

 > @N� Y [10], we can

show [10] that Eq. (9) becomes a constrained eigenvalue problem, the maximizer of which
is given by the nontrivial leading eigenvector:@�� � ���� �� � @4> � @@ > E�@ � s.t.


 > @N��Y  (10)
� E 5 F � @ � � � @ � � (11)� � �`[0E 5 F 
 � 
 > E 5 F 
 � 5 F 
 >  (12)

Once we get the optimal eigenvector, we compare
 Y thresholds uniformly distributed

within its range and choose the discrete segmentation that yields the best criterion � . Below
is an overview of our algorithm.

1: Compute edge response a�b and calculate pixel affinity *`_ , Eq. (2).
2: Detect parts and calculate patch affinity -`_ , Eq. (3).
3: Form initial pixel-patch affinity . _ .
4: Formulate constraints



among competing patches.

5: Compute * , - , . by coupling interactions between *`_ , -�_ and .A_ , Eq. (4, 5, 6, 7).
6: Form � and calculate its degree matrix E , Eq. (1).
7: Solve

� E 5 F � @ � ��� @ � , Eq. (12).
8: Threshold @ � to get a discrete segmentation.

We avoid computing
�

directly by taking advantage of its low rank. It can be shown that
the increase in computational complexity is negligible given ��� � .

3 Results and conclusions

In Fig. 6, we show results on the synthetic image. Image segmentation alone gets lost in
a cluttered scene. Even given pixel-patch interactions, a large object group can still not be
formed without patch grouping cues. Given both patch grouping and patch-pixel interac-
tions, a subset of false-positive patches form a group against other patches and background
pixels. Only when exclusion constraints are used, the object of interest can be segmented
out. With feedback from object models, unwanted edges (caused by occlusion) and weak
edges (illusory contours) are corrected in the final segmentation.

We apply our method to human body detection in a single image. We manually label five
body parts (both arms, both legs and the head) of a person walking on a treadmill in all
32 images of a complete gait cycle. Using the magnitude thresholded edge orientations
in the hand-labeled boxes as features, we train linear Fisher classifiers [2] for each body
part. In order to account for the appearance changes of the limbs through the gait cycle, we
use two separate models for each arm and each leg, bringing the total number of models
to � . Each individual classifier is trained to discriminate between the body part and a
random image patch. We iteratively re-train the classifiers using false positives until the
optimal performance is reached over the training set. In addition, we train linear color-
based classifiers for each body part to perform figure-ground discrimination at the pixel
level. Alternatively a general model of human appearance based on filter responses as in
[8] could be used.



�D�Q*5_ �)�+* ���4�$.`� �)�+* �&-S�$.`� �)�+* �&-S�$.`� , 


� � s � � s
	 � s

 
� s

Figure 6: Eigenvectors and their segmentations for Fig. 3. From left to right are: 1) pixel group-
ing alone; 2)pixel grouping with pixel-patch interactions (patch affinity set to the identity matrix);
3)pixel-patch grouping with their interactions; 4)pixel-patch grouping with interactions and exclu-
sion constraints. Computation times are obtained in MATLAB on a PC with � GHz CPU.

In Fig. 2, we show the results on a test image. Though the pixel-patch affinity matrix . ,
derived from the color classifier, is neither precise nor complete, and the edges are weak
at many object boundaries, the two processes complement each other in our pixel-patch
grouping system and output a reasonably good object segmentation.

Finally, we point out that it takes less time to compute the solutions in pixel-patch grouping
since the size of the solution space is greatly reduced. This provides an explanation for the
speed of biological vision systems given their slow neurochemical substrates.
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