
Graph Embedding to Improve Supervised
Classification and Novel Class Detection:

Application to Prostate Cancer

Anant Madabhushi1, Jianbo Shi2, Mark Rosen2,
John E. Tomaszeweski2, and Michael D. Feldman2

Rutgers University, Piscataway, NJ 08854,
University of Pennsylvania, Philadelphia, PA 19104

anantm@rci.rutgers.edu

Abstract. Recently there has been a great deal of interest in algorithms
for constructing low-dimensional feature-space embeddings of high di-
mensional data sets in order to visualize inter- and intra-class relation-
ships. In this paper we present a novel application of graph embedding
in improving the accuracy of supervised classification schemes, especially
in cases where object class labels cannot be reliably ascertained. By re-
fining the initial training set of class labels we seek to improve the prior
class distributions and thus classification accuracy. We also present a
novel way of visualizing the class embeddings which makes it easy to ap-
preciate inter-class relationships and to infer the presence of new classes
which were not part of the original classification. We demonstrate the
utility of the method in detecting prostatic adenocarcinoma from high-
resolution MRI.

1 Introduction

The aim of embedding algorithms is to construct low-dimensional feature-space
embeddings of high-dimensional data sets [1–4]. The low-dimensional represen-
tation is easier to visualize and helps provide easily interpretable representations
of intra-class relationships, so that objects that are closer to one another in the
high dimensional ambient space are mapped to nearby points in the output em-
bedding. Recently researchers have begun exploring the use of embedding for
solving different problems. Dhillon [1] employed embedding for visually under-
standing the similarity of different classes, distance between class clusters, and
to evaluate the coherence of each of the class clusters. Iwata et al. [2] described
a parametric embedding method to provide insight into classifier behavior. Eu-
clidean embedding of co-occurrence data has also been successfully applied to
classifying text databases [3] and for detecting unusual activity [4]. In this paper
we demonstrate a novel application of graph embedding in (i) improving the
accuracy of supervised classification tasks and (ii) for identifying novel classes,
i.e. classes not included in the original classification.

In [5] we presented a computer-aided detection (CAD) methodology for de-
tecting prostatic adenocarcinoma from high resolution MRI, which in several
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(a) (b) (c) (d) (e)

Fig. 1. (a) Original MR image of the prostate, (b) ground truth for tumor (in green)
determined manually from the corresponding histology [5]. Three expert segmenta-
tions (Fig. 1(c)-(e)) based on visual inspection of Fig. 1(a) without the accompanying
histologic information. Note the low levels of inter-expert agreement.

instances outperformed trained experts. It was found that the false positive er-
rors due to CAD were on account of,

• Errors in tumor ground truth labels on MRI, since the tumor labels
were established by manually registering the corresponding histologic
and MR slices (both MR and histologic slices being of different slice)
thickness) and due to the difficulty in identifying cancer (Fig. 1).

• The presence of objects with characteristics between tumor and
non-tumor (e.g. pre-cancerous lesions). Since the system is not
trained to recognize these novel classes, the classifier forces these
objects into one of the original classes, contributing to false positives.

In order to detect novel classes, we need to first eliminate true outliers due to
human errors from the training set. The implications of outlier removal from the
training set are two fold.

(1) It can significantly improve the accuracy of the original classification, and
(2) It ensures that objects that now lie in the overlap between the object classes
after outlier removal, truly represent the novel classes.

We borrow a graph embedding technique used in the computer vision do-
main [4] for improving classification accuracy and for novel class detection. How-
ever, while in [4] both the object and its representative class are co-embedded
into the low-dimensional space, in our case, the embedding algorithm takes as
input the a-posteriori likelihoods of objects belonging to the tumor class. Note
that graph embedding differs from data reduction techniques like PCA [7] in
that the relationship between adjacent objects in the higher dimensional space
is preserved in the co-embedded lower dimensional space. While we have focused
on one specific CAD application in this paper [5], we emphasize that our meth-
ods are applicable to most supervised or semi-supervised classification tasks,
especially those in which class labels cannot be reliably ascertained.

This paper is organized as follows. Section 2 provides a brief description of
our methodology, and a detailed description of the individual modules is given
in Section 3. In Section 4 we present the results of quantitative evaluation of
our methodology on a CAD system for prostate cancer. Concluding remarks are
presented in Section 5.
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2 System Overview for Prostate Cancer Detection

Fig. 2 shows the main modules and pathways comprising the system. Fig. 3
shows the results of graph embedding on a high resolution MR study of the
prostate (Fig. 3(a)). Fig. 3(c) is a map of the posterior likelihood of every voxel
belonging to the tumor class; the posterior likelihood being derived from the prior
distribution (dashed line in Fig. 3(f)), obtained with the initial set of tumor class
labels (Fig. 3(b)) and Fig. 3(e) shows the corresponding probability image using
the refined prior distribution after graph embedding (solid line in Fig. 3(f)).
The plot of graph embedding (Fig. 3(d)) shows considerable overlap (ellipse 3)
between the tumor (red circles) and non-tumor (black dots) classes. Using the
refined probability map in Fig. 3(e), the resultant embedding (Fig. 3(f)) shows
a clear separation between the two classes (ellipses 1, 2). The increased class
separation is also reflected in the increased image contrast of Fig. 3(e) over
Fig. 3(c). Fig. 3(g) shows a novel way of visualizing the graph embeddings in
Fig. 3(f), with objects that are adjacent in the embedding space being assigned
similar colors. Objects that lie in the overlap of the class clusters after outlier
removal (ellipse 3 in Fig. 3(f)) correspond to the apparent false positive area
(marked as FP) in Fig. 3(g). This region is actually inflammation induced by
atrophy (confirmed via the histology slice in Fig. 3(h)).

Graph
Embeddingoutlierstraining

Removing

Discovering
new classes

Training

ExtractionFeature
Classification&

Fig. 2. Training distributions for individual
features are generated using existing class
labels, and each voxel assigned a posterior
likelihood of being tumor. Graph embed-
ding on the posterior likelihoods is used
to remove training outliers and (i) improve
the prior distributions and (ii) identify new
classes.

3 Methodology

3.1 Notation

We represent a 3D image or scene by a pair C = (C, g), where C is a fi-
nite 3-dimensional rectangular array of voxels, and g is a function that as-
signs an integer intensity value g(c) for each voxel c ∈ C. The feature scenes
F i = (C, f i) are obtained by application of K different feature operators, for
1≤i≤K. The tumor class is denoted by ωt and Sωt denotes the true ground
truth set, such that for any voxel d ∈ Sωt , d ↪→ ωt where ↪→ denotes the “be-
longs to” relationship. Ŝωt is the surrogate of ground truth Sωt obtained by
experts by visually registering the MR and the histologic slices [5]. ŜT

ωt
⊂ Ŝωt

is the training set used for generating the prior distributions p̂(f i|c↪→ωt) for
each feature f i. Given p̂(f i|c↪→ωt), the a-posteriori probability that voxel c ↪→
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. (a) Original MR scene C, (b) surrogate of ground truth (in green) for cancer
(Ŝωt) superposed on (a), (c) combined likelihood scene showing tumor class probability
before outlier refinement via embedding, (d) graph embedding of tumor/non-tumor
class likelihoods in (c), (e) combined likelihood scene showing tumor class probabilities
after outlier removal, (f) graph embedding of tumor/non-tumor class likelihoods in
(e), (g) RGB representation of graph embeddings in (f), and (h) the histology slice
corresponding to the MR slice in (a). Note the greater contrast between intensities in
(e) compared to (c), reflecting the increased separation between the tumor and non-
tumor clusters after outlier removal. This is also reflected in the overlap of the tumor
(red circles) and non-tumor (black dots) clusters in the embedding plot before outlier
removal (ellipse 3 in (d)) and the more distinct separation of the two clusters after
outlier removal (3(f)). Note that the objects that now occupy the overlap between
class clusters (ellipse 3 in (f)), constitute the intermediate class (between tumor and
non-tumor). Also note the tighter envelope of the prior distribution of feature f i (3(i))
after embedding (solid line) compared to before (dashed line). The embedding scene
in 3(g) also reveals that an apparent false positive area (FP on 3(g) actually corresponds
to a new object class not included in the original classification (inflammation induced
by atrophy, confirmed via the histology slice (h)).
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ωt for f i is given as P̂ (c↪→ωt|f i). P̂ (c↪→ωt|f), for f = [f i|i∈{1, ..., K}], is the
combined posterior likelihood obtained by combining P̂ (c↪→ωt|f i), for 1≤i≤K.
p̃(f i|c↪→ωt), P̃ (c↪→ωt|f i), and P̃ (c↪→ωt|f) denote the corresponding prior, pos-
terior, and combined posterior likelihoods obtained after refinement by embed-
ding. L̂ = (C, l̂) denotes the combined likelihood scene (Fig. 3(d)), such that
for c∈C, l̂(c)=P̂ (c↪→ωt|f). L̃ = (C, l̃), where for c∈C, l̃(c)=P̃ (c↪→ωt|f), similarly
denotes the corresponding likelihood scene (Fig. 3(e)) after refinement by graph
embedding.

3.2 Feature Extraction and Classification

A total of 35 3D texture feature scenes F i = (C, f i), for 1≤i≤35, are obtained
from the MR scene C. The extracted features include 7 first order statistical
features at two scales, 8 Haralick features at two scales, 2 gradient features, and
18 Gabor features corresponding to 6 different scales and 3 different orienta-
tions. A more detailed description of the feature extraction methods has been
previously presented in [5]. The a-posteriori likelihoods P̂ (c↪→ωj|f i) for each
feature f i can be computed using Bayes Theorem [6] as, P̂ (c ↪→ ωj |f i)=P̂ (c ↪→
ωj)

p̂(fi|c↪→ωj)
p̂(fi) , where P̂ (c↪→ωj) is the a-priori probability of observing the class

ωj , p̂(f i)=
∑B

j=1p̂(f
i|c ↪→ωj)P̂ (c↪→ωj), where B refers to the number of classes.

The combined posterior likelihood P̂ (c↪→ωj |f), for f=[f i|i∈{1, ..., K}], can be ob-
tained from P̂ (c↪→ωj |f i), by using any of the various feature ensemble methods,
e.g. ensemble averaging, GEM [5], majority voting.

3.3 Graph Embedding for Analyzing Class Relationships

Our aim is to find a placement (embedding) vector X̂(c) for each voxel c ∈ C and
the tumor class ωt such that the distance between c and class ωt is monotonically
related to the a-posteriori probability P̂ (c↪→ω|f) in a low-dimensional space [2].
Hence if voxels c, d ∈ C both belong to class ωt, then [X̂(c)-X̂(d)]2 should be
small. To compute the optimal embedding, we first define a confusion matrix W
representing the similarity between any two objects c, d ∈ C in a high dimensional
feature space.

W (c, d) = e−||P̂(c↪→ωt|f)−P̂ (d↪→ωt|f)|| ∈ R|C|×|C| (1)

Computing the embedding is equivalent to optimization of the following function,

EW (X̂) =

∑
(c,d)∈C W (c, d)(X̂(c) − X̂(d))2

σ2
X̂

. (2)

Expanding the numerator of (2) we get 2X̂T(D−W )X̂, where D(c, d) ∈ R|C|×|C|

is a diagonal matrix with D(c, c)=
∑

dW (c, d). Using the fact that

σX̂
2 =

∑

c∈C

X̂2(c)P̂ (c ↪→ ωt|f) − (
∑

c∈C

X̂(c)P̂ (c ↪→ ωt|f ))2, (3)
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it can be shown that P̂ (c ↪→ ωt|f)≈ 1
γ D(c, c), where γ=|C|−1, and |C| represents

the cardinality of set C. Centering the embedding around zero (i.e. X̂Tγ=0), we
get σ2

X̂
= 1

γ X̂T DX̂ . Putting all these together we can rewrite (2) as,

EW (X̂) = 2γ
X̂T(D − W )X̂

X̂TDX̂
. (4)

The global energy minimum of this function is achieved by the eigenvector cor-
responding to the second smallest eigenvalue of,

(D − W )X̂ = λDX̂. (5)

For voxel c ∈ C, the embedding X̂(c) contains the coordinates of c in the em-
bedding space and is given as, X̂(c)=[êa(c)|a∈{1, 2, · · · , β}], where êa(c), are the
eigen values associated with c.

3.4 Improving Training Distributions by Refining Ground Truth

In several classification tasks (especially in medical imaging), Sωt , the set of true
ground truth class labels is not available. For the CAD problem tackled in this
work, only an approximation of the ground truth (Ŝωt) is available, so that there
exist objects d ∈ Ŝωt which do not belong to class ωt. Consequently the prior dis-
tributions p̂(f i|c↪→ωt), for 1≤i≤K, and the posterior probabilities P̂ (c↪→ωt|f i)
reflect the errors in Ŝωt , since p̂(f i|c↪→ωt) is generated from a training set ŜT

ωt
⊂

Ŝωt . Clearly a more accurate estimate (S̃ωt) of Sωt would result in more accurate
prior distributions p̃(f i|c↪→ωt), for 1≤i≤K, and consequently a more accurate
posterior likelihoods P̃ (c↪→ωt|f i). To obtain S̃ωt we proceed as follows,

(1) The embedding of all voxels c ∈ C, X̂(C) is determined.
(2) The K-means algorithm is applied on the embedding coordinates X̂(C) to
cluster objects c∈C into Z disjoint partitions {P1, P2, · · ·, PZ}.
(3) We obtain the union of those disjoint partitions Pz, for 1≤z≤Z, sizes of
which are above a pre-determined threshold θ. The rationale behind this is that
outliers will be partitioned into small sets. S̃ωt is then obtained as,

S̃ωt = Ŝωt

⋂
[
⋃

z

Pz], where |Pz|≥θ, for z∈{1, 2, · · ·, Z}. (6)

The intuition behind Equation 6 is that we only consider objects in Ŝωt for inclu-
sion into S̃ωt . This avoids inclusion of potentially new outliers. Note that, since
this procedure is only for the training step, we are not concerned with including
every object in class ωt into S̃ωt . Instead, our aim is to ensure as far as possible
that for every object c ∈ S̃ωt , c↪→ωt.
(4) New a-priori distributions p̃(f i|c↪→ωt), for 1≤i≤K, are then generated from
training set S̃T

ωt
⊂ S̃ωt and the new posterior likelihoods P̃ (c↪→ωt|f i) and com-

bined likelihood P̃ (c↪→ωt|f), for f = [f i|i∈{1, .., K}], are computed.



Graph Embedding to Improve Supervised Classification 735

Fig. 3(c), (e) correspond to the likelihood scenes (L̂, L̃) obtained from distri-
butions p̂(f i|c↪→ωt) and p̃(f i|c↪→ωt) respectively. The intensity at every voxel
c ∈ C in Fig. 3(c), (e) is given by the a-posteriori likelihoods P̂ (c↪→ωt|f) and
P̃ (c↪→ωt|f), for f = [f i|i∈{1, .., K}], respectively. While Fig. 3(e) is almost a bi-
level image, suggesting distinct separation between the tumor and non-tumor
classes, Fig. 3(c) is more fuzzy, indicating considerable overlap between the
two classes. This is reflected in the plot of class embeddings X̂(C) obtained
from P̂ (c↪→ωt|f) in which considerable overlap (ellipse 3) exists between the two
classes (Fig. 3(d)), while in the plot of X̃(C), the graph embedding obtained
from P̃ (c↪→ωt|f) (Fig. 3(f)), there is a more distinct separation of class clusters.

3.5 Discovering Novel Classes

Even after removing outliers from the ground truth, there exist objects that oc-
cupy the transition between tumor and non-tumor clusters (observe ellipse 3 in
Fig. 3(f)), suggesting that the characteristics of these objects are between that
of the tumor and benign classes. In Fig. 3(g) is shown a novel way of visualizing
and identifying objects from these intermediate classes. Since X̃(c) contains the
embedding coordinates of voxel c, we can represent X̃(C), the embedding over
scene C, as a RGB image in which the value at voxel c is given by the three
principal eigen values associated with c. Objects that are adjacent to each other
in the embedding space have a similar color (Fig. 3(g)). The apparent false posi-
tive area (labeled as FP on Fig. 3(g)), on inspecting the corresponding histology
slice (Fig. 3(h)) was found to be inflammation induced by atrophy on account of
a prior needle insertion. This new class had not been considered in our original
two class classification paradigm.

3.6 Algorithm

• For each scene we compute the corresponding feature scenes for each fea-
ture f i.
• Prior distributions p̂(f i|c↪→ωt) for each feature f i for class ωt are obtained
using training set ŜT

ωt
⊂ Ŝωt .

• Bayes Theorem [6] is used to compute posterior likelihoods P̂ (c↪→ωt|f i),
for 1≤i≤K. Combined likelihood P̂ (c↪→ωt|f), for f = [f i|i∈{1, .., K}] is then
computed from P̂ (c↪→ωt|f i) using any standard ensemble method.
• Confusion matrix W is computed for c, d ∈ C as W (c, d) =
e−||P̂(c↪→ωt|f)−P̂ (d↪→ωt|f)|| ∈ R|C|×|C|. Solve for the smallest eigen vectors of
(D − W )X̂=λDX̂ where the rows of the eigen vectors are the coordinates
for the object c in the embedding space X̂(C).
• Partition X̂(C) into disjoint regions Pz, for 1≤z≤Z, and compute new set
of tumor class objects S̃ωt = Ŝωt

⋂
[
⋃

zPz], where |Pz|≥θ.
• Generate new prior distributions p̃(f i|c↪→ωt), for 1≤i≤K, from new train-
ing set S̃T

ωt
⊂ S̃ωt and compute new posterior likelihoods P̃ (c↪→ωt|f i) and

combined posterior likelihood P̃ (c↪→ωt|f), for f = [f i|i∈{1, .., K}].
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4 Evaluating CAD Accuracy for Prostate Cancer on MRI

The likelihood scene L̂ is thresholded to obtain binary scene L̂B = (C, ˆlB) so
that for c ∈ C, l̂B(c)=1 iff l̂(c)≥δ, where δ is a pre-determined threshold. L̃B is
similarly obtained. L̂B and L̃B are then compared with Ŝωt and S̃ωt respectively
to determine Sensitivity and Specificity values for different values of δ. Receiver
operating characteristic (ROC) curves (plot of Sensitivity versus 100-Specificity)
provide a means of comparing the performance of detection tasks. A larger area
under the ROC curve implies higher accuracy. A total of 33 MR images of the
prostate were used for quantitatively comparing L̃ and L̂ for different values
of δ. Fig. 4(a) and (b) show the ROC curves for L̂ (dashed line) and L̃ (solid
line) for two different feature combination methods (ensemble averaging and
majority voting) using 5 and 10 training samples respectively. The accuracy of
L̃ was found to be significantly higher compared to L̂ for both classification
methods and different sets of training samples, as borne out by the larger area
under the ROC curves in Fig. 4(a) and (b). All differences were found to be
statistically significant.

(a) (b)

Fig. 4. ROC analysis of L̂ (dashed line) and L̃ (solid line) using (a) ensemble averaging
and 5 training samples, and (b) majority voting and 10 training samples

5 Concluding Remarks

In this paper we have presented a novel application of graph embedding in (i)
improving the accuracy of supervised classification schemes, especially in cases
where object class labels cannot be reliably ascertained, and (ii) for identifying
novel classes of objects not present in the original classification. We have suc-
cessfully employed this method to improve the accuracy of a CAD system for
detecting prostate cancer from high resolution MR images. We were also able to
identify a new class (inflammation due to atrophy). The method could be simi-
larly used to detect pre-cancerous lesions, the presence of which has significant
clinical implications.
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