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Many problems in 
computer vision can be 
formulated as the 
matching between two 
graphs

Contribution 1: bistochastic normalization 
enhances distinctive matches. 
Focus matching on salient points, without 
explicit saliency detection.

Contribution 2: SMAC
Spectral method for graph Matching with 
Affine Constraints

A general graph matching cost:

Step 1.

Affine Constraint:

Solution

EQUIVALENT to IQP for x binary

Linear Constraint:

Inequality Constraint ?                                       NP-HARD (cf AISTATS 07, submitted)

Yu and Shi, 2001

Optimality bounds (cf AISTATS 07, submitted)

1. rewrite as linear, but ill defined: denominator is not

2. introduce

3. solve

Spectral Matching with Affine Constraints

Efficient computation with 
Shermann-Morrison formula

Experiments on 1-1 matchings with random graphs 

Comparison of matching performance with normalized and unnormalized W
Running on 

GA, SDP, SM, SMAC
Representative cliques for graph matching. 
Blue arrows indicate edges with high similarity, showing 2 groups:

edges 12, 13 are uninformative: spurious 
connections of strength sigma to all edges

Edge 23 is informative and makes a single 
connection to the second graph, 2 ’3 ’.

Dual representation: Matching Compatibility W vs. edge Similarity S

W encodes how well a match (i,i’) betw een 2  graphs G ,G ’ is 
compatible to another match (j,j’)  (see figure below)

In image matching, W(ii’,jj’) is high if 
1) feature point i is similar toi’, j is similar toj’, and
2) Spatial distance dist(i,j) ~= dist(i’,j’)

W(ii’,jj’) can be reordered (permuting indexes) into S(ij,i’j’) 
to reflect the similarity between edges (ij) and (ij’’) 

Step 4. apply SMAC (or SDP, GA, or your favorite) to W

Step 2.

Step 3.

same entries

representation of S,W as a 
clique potential on i, i’, j, j’.

Theorem: iterated row & column normalization  converges to unique balancing 
weights (D ,D ’) s.t. D S D ’ rectangular bistochastic

Given matching compatibility W, we want to S to be bistochastic

Balanced Graph Matching

Integer Quadratic Programming (IQP) formulation: 

: degree constraint (1-1, 1-m any,… )

for a match

compatibility matrices W margin as a function of noise (difference 
between correct matching score and best 
runner-up score).
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cliques of type 1 (pairing 
common edges in the 2 images) 
are uninformative

cliques of type 2 (pairing salient 
edges) are distinctive

normalization decreases
their influence

normalization increases 
their influence

eigenvectors (soft 
solution to SMAC)

matches (discretized 
solution to SMAC)

normalized 

unnormalized 

Graduate Assignment SMAC

Semidefinite Programming
Spectral Matching 

Axes are error rate vs. noise level

all normalized 

error rate across algorithms 


