AND DO THE OWNER

Part of the later

#### Shape from Shading: Recognize the Mountains through a Global View

Qihui Zhu Oct 26, 2005 In preparation for CVPR 2006



### Outline

AND THE ADDRESS

Constanting of

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



# Outline

AND THE ADDRESS

Constraints and

#### Introduction

- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



#### Introduction

- A very old problem(dating back to 70's)
- Problem definition
  - Shape recovery from a single image
  - Many other assumptions







AND DO THE OWNER

The state of the second

# **Shading image formulation**

Shading image formulation

$$\begin{split} I(p) &= \rho \operatorname{l} \cdot \operatorname{n}(p) \\ I(p) &= \frac{\rho(l_1 z_x + l_2 z_y + l_3)}{\sqrt{z_x^2 + z_y^2 + 1}} \end{split}$$

- I(p) intensity
- p albedo
- 1 light source direction
- n(p) surface normals





ALC: NOT THE OWNER

A DECEMBER OF THE OWNER.

# **Different assumptions**

- <u>Classical assumptions</u>
  - Lambertian
  - Point light source at infinity, known
  - Orthogonal view
  - Smooth surface
  - No shadows

- <u>Recent concerns</u>
  - Perspective view
  - $1/r^2$  Effect
  - With shadows

- Real image conditions(difficulties!)
  - Multiple light sources, diffuse Shadows
  - Light directions unknown
  - Albedo unknown

Occluding contours



AND ADDRESS OF

Contraction of the local division of the loc

# **Previous methods**

- Minimization
  - A whole family of methods...
- Propagation
  - Characteristic strip
  - Fast marching
  - Viscosity solutions for PDE
- Others
  - Spectral graph
  - Belief propagation...



# Outline

AND THE ADDRESS

A STATISTICS.

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



AND THE ADDRESS

#### - THE REAL PROPERTY.

# **Fast marching algorithm**

Shading image formulation

$$\begin{split} I(p) &= \rho \ \mathbf{l} \cdot \mathbf{n}(p) \\ I(p) &= \frac{\rho(l_1 z_x + l_2 z_y + l_3)}{\sqrt{z_x^2 + z_y^2 + 1}} \end{split}$$

• If  $\mathbf{l} = (0, 0, 1)^T$ , this reduces to

$$||\nabla z|| = \sqrt{z_x^2 + z_y^2} = \sqrt{\frac{1}{I^2} - 1}$$



ALL DO LONG

### Fast marching algorithm

- How to solve this Partial Derivative Equation (PDE)?  $||\nabla z|| = \sqrt{z_x^2 + z_y^2} = \sqrt{\frac{1}{I^2} - 1}$
- Propagate from a singular point
- This is equivalent to computing the shortest path from the singular point, with weight  $\sqrt{\frac{1}{I^2}-1}$  on every node.



ALC: NO.

The state of the s

# The shortest path

# $\begin{aligned} ||\nabla z|| &= \sqrt{z_x^2 + z_y^2} = \sqrt{\frac{1}{I^2} - 1} \\ z(r) - z(r + \Delta s) &\leq \Delta s ||\nabla z(r)|| \end{aligned}$





and the same

A STATE OF A STATE OF

# **Fast marching algorithm**

- What if the light source is not vertial?
  - Assume  $l_2 = 0$
  - Propagate in the new coordinate system

 $\widetilde{l} = (0, 0, 1)^T, \widetilde{p} = (\widetilde{x}, \widetilde{y}) = (-l_3 \widetilde{x} + l_1 \widetilde{z}, y), \widetilde{z} = l_1 x + l_3 z$ 





# Outline

AND THE ADDRESS

Constraints and

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



- Fast marching is good, but not solving everything
- Venus' nose





• Different results...







-----

The second second

- What remains unknown after shortest path?
  - How far you can travel?
  - Are you going up or down?
  - Convex or concave?
- Common problems for propagation methods, not just for fast marching
- Let's see some simple cases...



• How far you can travel?



• Left or right?



and the same

The state of the s

AND ADDRESS OF

A STATE OF TAXABLE

### Local uncertainties

• Are you going up or down?



• Left or right?



• Convex or concave?



• Left or right?



ALL PLANE

A STATE OF A STATE

- What remains unknown after shortest path?
  - How far you can travel?
  - Are you going up or down?
  - Convex or concave?
- Unsolvable locally!



# Outline

Constraints and

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



AND THE OWNER

A STATISTICS

# **Exploiting global constraints**

- Global integrability constraints
  - Continuous surface, no sudden 'jumps'
  - Local estimation of height differences
  - Integration along a loop must be 0, or different paths should have the same height difference.



- Smoothness constraints
  - Use propagation to generate local patches
  - Boundaries between patches must be smooth



# Outline

AND THE ADDRESS

Constraints and

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



#### ALL DE LESS

A DECEMBER OF THE OWNER.

# **Proposed approach**

- Configuration graph G=(V, E, W)
  - V Singular points n = |V|
  - E Edges connecting neighboring vertices m = |E|
  - W Height difference estimation by fast marching

 $W = \operatorname{diag}(w_1, w_2, \dots, w_m)$ 

- Representing configurations
  - d +1/-1 defined on edges

 $\boldsymbol{d} = (d_1, d_2, ..., d_m)^T$  with  $d_i = \pm 1 (i = 1, 2, ..., m)$ 



# **Configuration graph**

- How do d solve the local uncertainties?
  - Are you going up or down?
    - easy, simply +1 for up, -1 for down
  - Convex or concave?
    - peaks: all edges going out +1, convex
    - valleys: all edges going out -1, concave
  - How far you can travel?
    - only start from peaks
    - always go down as far as you can



Contraction of the local division of the loc

# **Constraints on the graph**

- A little more definition
  - A Adjacency matrix  $A \in \mathbb{R}^{m \times n}$

 $A_{ij} = \left\{ \begin{array}{ll} +1 & e_i = (v_j, v_k) \text{ for some } k \\ -1 & e_i = (v_k, v_j) \text{ for some } k \\ 0 & \text{otherwise} \end{array} \right.$ 

• H Heights at vertices  $h = (h_1, h_2, ..., h_n)^T$ 



and the same

A STATE OF A STATE OF

# **Constraints on the graph**

• Height difference constraints

$$Ah = Wd$$

- What are the constraints doing?
  - Check triangles & loops
  - Assume edge monotonous
  - V<sub>2</sub> should not be a peak or a valley
  - Why?
  - Global integrability constraints!
  - Check for every loop





AND DESCRIPTION OF

Constanting of the

# **Optimal configuration**

• Optimize  $||Ah - Wd||_2$ 

$$d_{opt} = \arg\min_{d, h} ||Ah - Wd||_2$$

• For a fixed d  $h = A^+Wd$   $A^+ = [A^TA]^{-1}A^T$ 

• Finally

$$d_{opt} = \arg\min_{d,h} ||Ah - Wd||_2$$
$$= \arg\min_{d} d^T E d$$

$$E = W^T (AA^+ - I)^T (AA^+ - I)W$$



#### **Max-cut problem**

• Optimizing  $d^T E d$  is simply a Max-cut!

 $d^{T}Ed = \sum_{d_{i}d_{j}=1} E_{ij}d_{i}d_{j} + \sum_{d_{i}d_{j}=-1} E_{ij}d_{i}d_{j} = 2\sum_{i} E_{ij} - \sum_{d_{i}d_{j}=-1} E_{ij}$ 

$$\arg\min_{d} d' Ed = \arg\max_{d} \sum_{d_i d_j = -1} E_i$$

- Min-cut, N-cut is polynomial
- Max-cut is NP-hard (2)
- But the graph is small...



-----

A STATE OF LESS

### **Numerical approach**

• Semi-Definite Programming(SDP)

$$\begin{array}{ll} \mbox{minimize} & tr(CX) \\ \mbox{subject to} & tr(A_iX) = b_i, \quad i = 1, 2, ..., p \\ & X \in S^n_+ \end{array}$$

• Our problem

$$\begin{split} \dot{X} &= dd^T \\ \text{minimize} \quad d^T E d = tr(EX) \\ \text{subject to} \quad X_{ii} = tr(A_i X) = 1, \quad i = 1, 2, ..., m \\ \quad X \in S^m_+, A_i = e_i e_i^T \end{split}$$



- We know  $d_{opt}$  then  $h = A^+ W d_{opt}$
- Also know which vertices are peaks P
- Build patches around peaks
  - Fast marching
- Stitch the patches together

$$z(q) = \max_{p \in \mathcal{P}} \{ z(p) - D(p,q) \}$$

• Why does this work?



and a state of the state of the

MARCH.

and the second

A STATISTICS IN COMPANY





19 58 F3-

-----

A DECEMBER OF THE OWNER.





19 58 F3-

and the second

A DECEMBER OF THE OWNER.





19 58 F3-

-----

A DECEMBER OF THE OWNER.





AND ADDRESS OF

Torrest and the second

# **Algorithm overview**

- Singular point detection
- Fast marching
- Graph formulation
  - Delaunay triangulation
  - Remove invalid edges
- Optimize  $d^T E d$  by SDP
- Postprocessing
  - Identify peaks
- Shape recovery
  - Combine patches



# Outline

AND THE ADDRESS

Constraints and

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



and the same

The state of the s

# **Preliminary results**

#### Matlab PEAKS

#### Ground truth

#### Reconstruction

-----

A DECEMBER OF THE OWNER.

# **Preliminary results**

#### Vase



#### Ground truth



#### Reconstruction



### **Preliminary results**

AND THE ADDRESS

The state of the second

#### Venus

#### Reconstructions





### **Preliminary results**

AND THE ADDRESS

Part Part Internet

#### Ancient woman

#### Reconstructions





### **Preliminary results**

-----

The state of the second

#### **Relief of Athena**

#### Reconstruction







# Outline

AND THE ADDRESS

A STATISTICS.

- Introduction
- Fast marching algorithm
- Local uncertainties
- Exploiting global constraints
- Proposed approach
- Preliminary results
- Conclusion and future work



### Conclusion

- Global constraints are important and powerful
- Pros & Cons of our approach
  - + Address ambiguities directly
  - + Make decisions on structures, not pixels
  - + Also solve the self-shadow problem
  - + Simple and fast
    - Smoothness not in the framework
  - Mixing little peaks with global, big peaks
  - Relying on singular points



#### **Future work**

AND THE ADDRESS

Contraction of the

- Work on real images
- Consider multiple light sources
- Combine with shadows and occluding contours
- Combine with object models
- ...



ALL AND ADDRESS

Torrest the second

# **Shape from Shading**

# Comments...

