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Abstract

We present an approach that combines bag-of-words andkpatiels to perform
semantic and syntactic analysis for recognition of an dlijased on its internal
appearance and its context. We argue that while object néttmig requires mod-
eling relative spatial locations of image features witlia bbject, a bag-of-word
is sufficient for representing context. Learning such a rhisden weakly labeled

data involves labeling of features into two classes: fayagd(object) or “infor-

mative” background(context). We present a “shape-awam@lehwhich utilizes

contour information for efficient and accurate labeling edtures in the image.
Our approach iterates between an MCMC-based labeling amwobased la-
beling of features to integrate co-occurrence of featunelsshape similarity.

1 Introduction

Understanding the meaning of a sentence involves both&ymtnd semantic analysis. A bag-of-
words approach applied locally over a sentence would bdfioigunt to understand its meaning. For
example, “Jack hit the bar” and “The bar hit Jack” have ddférmeanings even though the bag-of-
words representation is the same for both. In many cases,nti@ing meaning also requires word
sense disambiguation using contextual knowledge. For pkardoes “bar” represents a rod or a
place where drinks are served? While a combined semanticyemidcsical model could be used

for representation and application of context as well, illddoe expensive to apply. Syntactical
rules are generally not required for extracting knowledgeua context - a topic model is generally
sufficient for contextual analysis in text [14, 15].

We use analogous reasoning to suggest a similar dichotomgpiesenting object structure and
context in vision. Our approach combines bag-of-words galial models to capture semantics
and syntactic rules, respectively, that are employed foogrizing an object using its appearance,
structure and context. We treat an object and a scene anealdgaa sentence and a document
respectively. Similar to documents, object recognitiomatural scenes requires modeling spatial
relationships of image features(words) within the objaedtfor representing context in a scene, a
bag-of-words approach suffices (See Figure 1 (a) and (b)).

Learning such a model from weakly labeled data requireditapéhe features in an image as be-
longing to an object or its context (informative backgroun8patial models, such as constellation
or star models, compute a sparse representation of ohjéttis{ fixed number of parts) by se-
lecting features which satisfy spatial constraints. Tlsp@rse representation reduces their utility
in the presence of occlusion. Approaches for learning aalbag-of-features model with spatial
constraints from weakly labeled data have also been prop&ech approaches (based on marginal-
izing over possible locations of the object), however, leagoor foreground segmentation if the
training dataset is small, the images have significantetitor if some other object in the back-
ground has a strong and consistent spatial relationshiptivi object to be learned throughout the

A dataset of less cluttered images would fail to provide enough conterfoaination to be learned for a
model that simultaneously learns object model and its contextual relaipmns
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Figure 1:(a) An example of the importance of spatial constraints locally. The riat sbows the features on
the foreground car. A bag of words approach fails to capture spatimitsre and thus combines the front and
rear of different cars. (b) We use a spatial model of the object dadjeof-words approach for context repre-
sentation. (c) Importance of using contour information: Objects sudigas become part of the foreground
since they occur at consistent relative location to the car. If shapeamndur information is combined with
co-occurrence and spatial structure of image features, then sudhbrlings can be reduced. For example,
in the above case since there are strong intervening contours betwdeattives on the car(foreground) and
the features on signs, and there is a lack of strong contours betwderefean signs and features on trees
(background), it is more likely that features on the signs should be ldlasleackground.

Problem:
Learn the parameters of object model given the imddes.., I p), object labelgO1, .., Op)
and Object Model Shapé).

Approach:

Simultaneous localization the object in training images and estimation of madehpters. This

is achieved by integrating cues from image features and contours.ritéreadncludes following terms:

1. Feature Statistics: The image features satisfy the co-occurrence and spatial statistics of the.mo
2. Shape Similarity: The shape of the foreground object is similar to the shape of the sketoh afbjict.
3. Separation: The object and background features should be separated by the bbjgudary contours.

Table 1: Summary of “Shape Aware” Model

training dataset. We overcome this problem by applying shegsed constraints while constructing
the foreground model.

Figure 1(c) shows an example of how contours provide importaformation for fore-
ground/background labeling. We add two constraints to #feling problem using the contour
information: (a) The first constraint requires the presesfcgtrong intervening contours between
foreground and background features. (b) The second camtsteguires the shape of boundary con-
tours be similar to the shape of the exemplar/sketch proweth the weakly labeled dataset. This
allows us to learn object models from images where theregisifidant clutter and in which the
object does not cover a significant part of the image. We peoain iterative solution to integrate
these constraints. Our approach first labels the imagerfsabhased on co-occurrence and spatial
statistics - the features that occur in positive images ahibé strong spatial relationships are la-
beled as foreground features. Based on the labels of imag&és, object boundaries are identified
based on how well they separate foreground and backgroatarés. This is followed by a shape
matching step which identifies the object boundary contbased on their expected shape. This
step prunes many contours and provides a better estimatgexftdoundaries. These boundaries
are then be used to relabel the features in the image. Thigdesoan initialization point for the next
iteration of Gibbs sampling. Figure 2 shows the system flomuwf‘Shape Aware” approach.

1.1 Related Work

Many graphical models for object recognition [11] have bempired by models of text documents
such as LDA [6] and pLSA [7]. These models are computatignefiicient because they ignore
the spatial relationships amongst image features (or)pans use a dense object representation.
However, ignoring spatial relationships between featleads to problems (See Figure 1(a)). In
contrast, approaches that model spatial relationshipS][Petween object parts/features are com-
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Figure 2: Shape-Aware Learning (Overview): We first compute feature lal@teguthe Gibbs sampling ap-
proach on the Spatial Author Topic model. The features labeled faradrand background are drawn in red
and yellow respectively. This is followed by object boundary extractiime object boundaries are identified
based on how well they separate foreground and backgrounddeatiikely object boundary contours are then
matched to the sketch using a voting-based approach and the contosist@at with the shape of the sketch
are identified. These contours are then used to relabel the featurgsthusisame separation principle. The
new labels and topics from the previous time step are used as a new initialigatirior the next iteration.

putationally expensive and therefore employ only sparatifes representation. These approaches
fail under occlusion due to their sparse representatiortlagid stringent requirement of a one-one
correspondence between image and object features.

There has been recent work in applying spatial constraintegic models which enforce neigh-

boring features to belong to similar topics [10, 2] for thegmse of segmentation. Our work is
more related to classification based approaches [8, 3] tbdehspatial locations of detected fea-
tures based on a reference location in the image. Suddertd ] presented such a model that
can be learned in a supervised manner. Fergus et. al [8] pedpan approach to learn the model
from weakly labeled data. This was achieved by marginalizibject locations and scale. Each
object location hypothesis provides a foreground segrtientavhich can be used for learning the
model. Such an approach, however, is expensive unlessaithangy images are not highly cluttered.
Additionally, they are subject to modeling errors if the etij of interest is small in the training

images.

Our goal is to simultaneously learn an object model and itdeod model from weakly labeled
images. To learn context we require real world scenes ofcoljed their natural surrounding en-
vironment (high clutter and small objects). We present afhaware” feature based model for
recognizing objects. Our approach resolves the foregractiground labeling ambiguities by re-
quiring that the shapes of the foreground object acrosg#lirrg images to be similar to a sketch
exemplar. Shape based models [1] have been used previausbpject recognition. However,
contour matching is an expensive(exponential) problemtddlee need to select the best subset of
contours from the set of all edges that match the shape mdgegiroximate approaches such as
MCMC are not applicable since matching is very closely cedpkith selection. We propose an
efficient approach that iterates between an co-occurersezrlidabeling and contour based labeling
of features.

2 Our Approach - Integrating feature and contour based cues

We assume the availability of a database of weakly labeled)é@s which specify the presence of an
object, but not its location. Similar to previous approachased on document models, we vector



guantize the space of image features into visual words tergém a discrete image representation.
Each visual word is analogous to a word and an image is treatgidgous to a document.

Each word is associated with a topic and an author (the gbjddte topic distribution depends
on the associated author and the word distribution dependbe assigned topic (Section 2.1).
We start with random assignments of words to topics and asithdhis is followed by a Gibbs
sampling step which simultaneously estimates the hiddeahlas (topic and author) and also the
parameters of the generative model that maximizes theHiketl(Section 2.2). These assignments
are then used to obtain a set of likely object boundary caostmueach image. These contours are
subsequently analyzed to identify the object “centers” fimal object contours by matching with
the shape exemplar(Section 2.3). Using the new set of boyrdatours, the authors corresponding
to each word are reassigned and the model is retrained usnetv assignment.

2.1 Generative Model - Syntax and Semantics

Author-Topic Model: Our model is motivated by the author-topic model [13] andrtiael pre-
sented in [4]. We first provide a brief description of the auttopic model, shown in figure 3(a).
The author-topic model is used to model documents for whishtaf authors is given. For each
word in the document, an authat;§ is chosen uniformly at random from the set of authatg.(A
topic (z;) is chosen from a distribution of topics specific to the seld@uthor and a worduf) is
generated from that topic. The distribution of topi@sfor each author is chosen from a symmetric
Dirichlet(c) prior and the distribution of wordssj for a topic is chosen from symmetric Dirichlet

(6) prior.
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Figure 3: (a) Author-Topic Model (b) Our Model (Spatial AothTopic Model). Our model extends
the author topic model by including the spatial(syntad}icelationship between features.

Spatial-Author Topic Model: Our model is shown in figure 3(b). Our goal is not only to model t
distribution of type of features but also to model the digttion of spatial locations of the subset of
these features that are associated with the foregroundtobje model this as follows: A feature in
the image is described by its type and locatiori;. Each featuréw;, ;) is ‘authored’ by an author
x; which is described by its type; 2 and its location-;. For each feature, the authey is chosen
from a distribution,n, which can be either uniform or generated using availakilergfrom other
sources. Topie; for each word is chosen from a distribution of topic specifit¢tte type of object
0; and a wordw; is generated from that topic. The distribution of topi€sfor each object type is
chosen from a symmetric Dirichlet) distributior? . The distribution of a word for each topic is
chosen from a symmetric Dirichleg) prior.

The location of each featurg, is sampled from the distribution(l;|o;, z;, r;) using the following
distribution:

- ZL — T 2 0:.2:
p(li‘oiyziyri) = emp(%) 7>1.“ I(Z'L) (1)

s

2For an image with label car, the possible object types are car, and taftear. The differentiation
between “informative” and “non-informative” background is captiiby the probability distributions.

3The Dirichlet distribution is an attractive distribution - it belongs to the exptialfiamily and is conjugate
to the multinomial distribution.



The first term ensures that each feature has higher pralyaifithieing generated by nearby reference
locations. The second term enforces spatial constrairitsedocation of the feature that is generated
by topic (z;). We enforce these spatial constraints by a binning appro&ach feature in the
foreground can lie iB possible bins with respect to the reference location. Thgildution of the
spatial location of a feature is specific to the topi@and the type of objeas;. This distribution is
chosen from a symmetric Dirichlet) prior. Since we do not want to enforce spatial constraints
on the locations of the features generated by topics fromestrnwe setl to a constant when;
corresponds to the context of some object.

2.2 Gibbs Sampling

We use Gibbs sampling to estimateandz; for each feature. Given the featurés, !), authors
assignments, other topic assignments ; and other hyperparameters, eagls drawn from:

P(zilw,l,x,2—;) o  P(wi|lw—i, 2)P(zi|z—i, 05 ) P(li|®s, 1 =i, x—3, 23)
ng, +B8 nli+a ngT+v
n* + W n° + Ta nci? + By

)

wheren; represents the number of features of typein the dataset assigned to topig n*
represents the total number of features assigned to tgpic?’ represents the number of features
that are assigned to topig and author of type; andn® represents the total number of features
assigned to authar,. B; represents the spatial bin in which featities in when the referenceis,

n%’* represents the number of features from object typend topicz; which lie in bin B;, n®*
represents the total number of features from object typ@nd topicz;. W is number of type of
words andl” represents number of topic types.

Similarly, given the featuretw, 1), topic assignments, other author assignmenis_; and other
hyperparameters, eaeh is drawn from:

P(zi|lw,l,z,2—s) o<  P(li|lws, i, x—i, 2:) P(2i|0s, 2—i, x—3) P(13|04, 2—i, ®—3)

||l —ri|2, nET Y nZita ngi46
x exp( 5 )

3
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wherenyi represents the number of features from object tygbat have-; as the reference location
andn® represents the total number of features from objectin caseo; is of type context, the
second term is replaced by a constdRtrepresents the number of possible reference locations.

2.3 “Shape Aware” Model

The generative model presented in section 2.1 can be leasied the Gibbs sampling approach
explained above. However, this approach has some shorigsm{a) If there are features in the
background that exhibit a strong spatial relationship wlith object, they can be labeled as fore-
ground. (b) In clutter, the labeling performance diminslas the discriminability of the object is

lower. The labeling performance can, however, be improt@dmtour cues are utilized. We do

this by requiring that the shape of the object boundary amstextracted based on feature labeling
should be similar to a sketch of the object provided in thesktt Thus, the labeling of features into
foreground and background is not only governed by co-oeoge and structural information, but

also by shape similarity. We refer to this as a “shape awaiaieh

Shape matching using contours has, in the worst case, exti@neomplexity since it requires
selection of the subset of contours that best constitutddieground boundary. We avoid this
computationally expensive challenge by solving the selrgiroblem based on the labels of features
extracted using Gibbs sampling. The spatial author-topdehis used to attend to the contours
which are likely to be object boundaries. Our shape matcimadule has three steps: (a) Extracting
object boundaries based on labels extracted from the Spatilaor topic model. (b) Extracting
boundaries consistent with the shape model by matchingUg)g new boundaries to determine
new labels for features.
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Figure 4: Extraction of object boundaries consistent with the shape of exempher fif6t step is extraction
of contours which separate foreground and background feattités.is followed by a voting process. Each
contour in the image is matched to every contour in the model to extract tiber cf the object. The votes are
then traced back to identify the contours consistent with the shape model.

Extracting Object Boundary Contours from Feature Labels: We first determine the edges using
and group them into contours using the approach presentgtbin Each contour; is a collection

of 2D points(p;1, p;2....). Our goal is to extract boundary contours of the object usegfeature
labels. Since, the boundary contours separates foregranddackground features, an estimate
of the number of foreground and background features on edeho$ an image contour provides
evidence as to whether that image contour is part of the tbjgendary. For each contour, we
measure the number of foreground and background featuatdi¢hon each side of the contour
within some fixed distance of the contour. The probabilitgtth contour is a boundary contour
cl; = 1 of the object with the sid&'1 being the interior of the object is given by:

S1
Ny +7 nferT

Psi(clj = 1]z) = nSl £ 27 nS2 £ 27

(4)

wheren?! is the total number of features with foreground label on Sidef the contour ana, !
is total number of features on sid4d.

Shape Matching: Given the probabilities of each contour being a part of theeattboundary, we
estimate the object center using a voting-based appro&thfach contour votes for the center of
the object where the weight of the vote is determined basdubanwell the contour matches the
sketch. Non-maximal suppression is then used to estimateathdidate object locations. Once the
candidate location of the center of object is selected, aeetback the votes to estimate the new
boundary of the object. Figure 4 shows an example of the gqinocess and boundary contours
extracted using this approach.

Extracting New Labels: These boundaries are then used to relabel the image feattweore-
ground and background. We use the same separation pritcilalleel new features. Each boundary
contour votes as to whether a feature should be labeledrfarad or background. If the feature lies
on the same side as the object center, then the contour wotdseffeature as foreground. Votes are
weighted based on the probability of a contour being an ¢bjegndary. Therefore, the probability

that the feature is labeled as foreground is given % wherew; is the probability that the
wj

contourj is on object boundary ang; is variable which igl if the object center and feature are on
same side of contour; or 0, if the center is on opposite side. The new labels are theth asan
initialization point for the Gibbs sampling based learn@ighe feature model.

3 Experimental Results

We tested our “shape-aware” model on images of cars obtdioed the Label-me dataset[17].
We randomly selected 45 images for training the model froemlthbelMe dataset. A potential
concern is the number of iterations/convergence requiyaalibiterative approach. However, it was
empirically observed that, in most cases the system stabilifter only two iterations. It should also
be noted that each iteration between contour and featuedinigls is performed after 200 iterations



Figure 5: Advantages of iterative approach. At each iteration, the author topidbdistm changes, which
requires retraining the model using Gibbs sampling. This can help in twe:WAY More Focused Attention:
The feature labeling gets refined. (B) Change of Focus: A new refengoint gets chosen by new distribution.

of Gibbs sampling. The advantages of having an iterativeaggh is shown in, figure 5. We
compared the performance of our system against the awpar+nodel and the author-topic model
with spatial constraints. We evaluated the performancéebtgorithm by measuring the labeling
performance in training and test datasets. Better labétirtgaining is required for better model
learning. Figure 6 show some of the cases where both authar-and author-topic model with
spatial constraints fail due to high clutter or the foregrdwbject being too small in the training
dataset. The “shape aware” model, however, shows bettalization performance as compared to
the other two.

t=0 t=2 t=0 t=2

Figure 6: Two examples of how the “shape aware” model provides better localizatmpared to spatial
author topic models. The odd columns show the results of the author toplelribe initialization point of
iterative approach). The even columns show the labeling provided tglgorithm after 2 iterations.
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Figure 7: Quantitative Comparison of author-topic, spatial author-topic and shagmre” model based on
randomly selected 40 images each from the training and test datas&fezdres each approximately). The
values of the parameters used @re- 50, o = % =0.01,v=0.01, B=8andr =0.1.

Figure 7 shows a quantitative comparison of the “shape dwaoelel to the author-topic and the
spatial author-topic model. Recall ratio is defined as thie td features labeled as foreground to the
total number of foreground features. Precision is definati@sgatio of features correctly labeled as
foreground to the total number of features labeled as foregt. In the case of labeling in training
data, our approach outperforms both author-topic andaaithor-topic model. In the case of test
dataset, the author-topic model has higher recall but wevypkecision. The low precision of author-
topic and spatial author-topic can be attributed to the tfzat, in many cases the context is similar
and at the same relative locations to each other. This leadsteling errors - these features are
learned to be part of the object. In the case of the “shapeedwaodel, the shape of the objects help
in pruning these features and therefore lead to much higieeigion. Low recall rates in our model
and the spatial author-topic model is because some foredrfaatures do not satisfy the spatial



Original Image Author Topic  Spatial Author Topic “Shape Aware”

Figure 8: Example of performance of three models on a test image. “ShapeeAwaodel shows high
precision in label prediction due to pruning provided by shape matchinghok Topic model shows high
recall rates because high similarity in context across images.

Figure 9:A few examples of labeling in the test dataset.

constraints and hence are falsely labeled as backgroutddsaFigure 9 shows some examples of
performance of the “shape aware” model on test dataset.
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