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Abstract 

Resolving local ambiguities is an important issue fin" 
shape jkom shading (SFS). Pixel ambiguities of SFS can 
be elinzinuted by propagution approaches. However, patch 
anibiguities still exist. Therefore, we jomulate the global 
disambiguation problem to resolve these anzbiguities. Intu- 
itively, it can be interpreted us jlipping patches and adjust- 
ing heights such that the result sur$ace has no kinks. The 
~~roblern is irztructable because exponentially many possi- 
ble conjigurations need to be checked. Alternatively, we 
solve the integrability tesling problerrz closely related to the 
original one. It can be viewed asjnding a surface which 
satisfies the global integrability constraint. To encode the 
constraints, we introduce a graph jbr111ulation called con- 
figuration graph. Search,ing the solution on this graph can 
be reduced to a Max-cut problenz and its .solution is corn- 
putuble using semidefinite programming (SDP) relaxation. 
Tests carried out on .s-ynthetic and real inzages show that the 
global disunzbiguation works well for complex shapes. 

1. Introduction 

Resolving local ambiguities is important for accurate 3D 
shape reconstruction. In shape from shading (SFS) prob- 
lem, each pixel has a family (cone) of surface normals sat- 
isfying the image-irradiance equation [4]. Surface normals 
are uniquely determined only at points where the surface is 
frontal to the illumination direction. These points are called 
singular points. 

Shapes around singular points can be computed ex- 
actly (without using smoothness constraint) using prop- 
agation methods [I ,  7, 11, 131. However, local shapes 
are determined up to three types of ambiguity con- 
vex/concave/saddle [2, 101. 

Once the label of convex/concave/saddle is determined 
at a singular point, the shape around it can be computed 
withoul any anzbiguiw. In this paper we point out that the 
image-irradiance equation alone is not enough for SFS: as- 
signment of convex/concave/saddle has a fundamental ef- 

(d) (el (0 
Figure 1. Venus' face. (a) 3D shape obtained by changing four 
labels of patches with singular points marked by blue squares in 
(d). (d) shows the re-rendered image, which is almost the same as 
the input image of (f). (b) and (e) shows the case where we have 
fewer (two) incorrect patches. (c) is the 3D shape reconstructed by 
our algorithm. 

fect on the overall reconstructed shape. In Figure 1, we 
show several incorrect labels of singular points can lead to 
wrong shapes whose re-rendered images look identical to 
the shading images. The only noticeable differences are tiny 
white lines due to kinks where local estimations have dis- 
crepancies on surface normals. Therefore, resolving local 
ambiguities boils down to checking kink-free condition: 
(PI) Global disambiguation problem. Assign the con- 
vex/L.oncave/saddle labels and heights to singular points 
such that local patches reconstructed around thenz form a 
snzooth surface without kinks. 

In order to stitch local patches to f o m  the whole shape, 
one will have to answer the following two questions: 

Convexity. Which singular points are convex? We will 
construct the shape by travelling monotonously down- 
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(a) Convexity: convex vs concave (b) Range: short vs long (c) Direction: upward vs downward 
Figure 2. Local choices in problem (Pl) and (P2). Singular points are marked in green (shaded). 

ward from the peaks. 
Range. How far should each local propagation travel? 
The propagation terminates when it meets the fron- 
tiers of propagation from other peaks at the same 
height. Therefore, ranges of propagations depend on 
the heights of peaks. The question is how we deter- 
mine the ranges or the heights such that there are no 
kinks. 

The brute force solution for (Pl) is to check all the pos- 
sibilities by flipping the label and adjusting the height on 
each singular point. Because combinations of all the labels 
are exponentially many, searching for the correct configura- 
tion is hard. 

The kink-free constraint is very important in addition 
to image-irradiance equation. Normally we do not expect 
kinks on the object surface. We use the term kink-free con- 
straint to avoid confusion with the traditional smoothness 
constraint [3, 8, 19, 201. Unlike smoothness constraint, the 
kink-free constraint in (PI) does not flatten the surface, it 
only requires the turning points (from going up to going 
down) to be smooth. On the contrary, smoothness constraint 
regularizes the shape by penalizing the second derivative of 
surface heights. Hence it forces the surface to be flat. Extra 
smoothness constraint introduces unnecessary distortions of 
the shape and often produces over-smooth surfaces [3,8]. 

This paper is organized as follows. In Section 2, we out- 
line a computational solution of (PI) using a simplified re- 
formulation. In Section 3, we explain how local shape can 
be computed. We present the details of our computational 
solution in Section 4. We demonstrate our results on syn- 
thetic data as well as real data in Section 5. Finally we 
provide discussions in Section 6, followed by conclusion. 

2. Problem reformulation 

Since searching directly for the solution of (PI) is a 
formidable task, we simplify the problem as follows. Lo- 
cal propagation from one singular point produce height 
differences to all the other points. ln particular, local 
propagations give height difference estimations between 
neighboring singular points as long as heights decrease 
monotonously from one to the other. Suppose these neigh- 
bor pairs of singular points are known, we can check 
whether the height differences are correct. This becomes 
the following problem: 
(P2) Integrability testing problem. Given A) the lo- 
cal propagation results around singular points and R) the 

neighbor pairs oj'singular points, assign heights on singu- 
larpoints such that the height diflerences o f  all the neighbor 
pairs are consistent with those front the local propagations. 

One alternative way to see (P2) is that we have to choose 
+I- signs of height differences on the neighbor pairs. The 
absolute values of height differences are given by local 
propagations, but we do not know the directions (see Figure 
2(c)). These choices must be consistent in order to assure 
height assignments to exist. To be specific, the choices sat- 
isfy the global integrability constraint: If we traverse some 
neighbor pairs in a loop, height differences must sum up to 
zero, meaning that we return to the same height. This is 
due to the fact that surfaces are assumed to be continuous 
without sudden jumps in the heights. 

Both two questions raised in (Pl)  are answered by solv- 
ing (P2). The direction choices determine the convexity. 
The local patch is convex if the singular point is the higher 
one in all the neighbor pairs containing it. The height as- 
signments determine the valid ranges of local propagations. 

We only consider the case where there is a unique surface 
satisfying (PI). If there are no noises, solution of (P2) satis- 
fies (PI). Furthermore, if the solution of (P2) is unique, it is 
exactly the desired surface. When noises present, the inte- 
grability testing problem amounts to finding the height as- 
signments least violating the constraints induced by neigh- 
bor pairs. 

Problem (P2) has a computable solution. We will con- 
struct a con$ guralion graphwhose nodes are singular points 
and edges are neighbor pairs of singular points. Using the 
configuration graph formulation we can encode global inte- 
grability constraint by computing height on each node and 
determining direction on each edge. We demonstrate this 
amounts to a Max-cut problem and the solution can be com- 
puted using an SDP relaxation. 

3. Local propagation 

The local propagation estimates the local shape around 
a reference point up to convex/concave ambiguity. Singu- 
lar points are good reference points because their surface 
normals are fixed in their orientations. 

Definition. Point p is a singulur point z#'n(p) = 32. 

Local propagation methods computes the local shape ac- 
cording to image intensities in the following way: 

Input. lmage intensities I ( R )  of a region R. The po- 
sition (x, y) of a singular point p E a. 
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Output. Height differences D ( p ,  q )  = z ( p )  - z ( q )  
between the singular point p and any other point q. 

To understand how shape can be estimated locally by 
propagation, let us first consider the formation of the shad- 
ing image: Suppose the light source direction is I' = 

(11,12, 13)' with 1: + 1; + 1; = I and the surface nor- 
mal of a point at p  is n ( p )  = ( 7 1 , ~ ~  n,2,71,:~)? Given the 
albedo p at p  and assuming the surface is Lambertian, the 
intensity I ( p )  at p  satisfies the image-irradiance equation 
I ( p )  = p t .  n(p). 

SFS tries to recover the differentiable height fi eldz(p) : 
R% R. Let x, = g, z ,  = f$. Then x is related to the 
intensity I by 

Without loss of generality, we can assume that the albedo 
p = 1. For the simple case where I = (0,0, I)', (1) degen- 
erates to 

Now SFS can be formulated as solving a PDE (2) known 
as the Eikonal equation [2, 71. However, there is no simple 
PDE solution to it. Because the boundary condition is un- 
known, it does not have a unique solution in general. There- 
fore, general PDE solutions do not guarantee the desired 
result. 

To estimate local shape, we use a fast and accurate SFS 
propagation method called fast marching [6, 7, 151. It re- 
constructs the surface by a Dijkstra style propagation on the 
grid. Fast marching works in the monotonous neighborhood 
around a singular point, which is locally the highest or the 
lowest. A monotonous neighborhood means when moving 
further away from the extremal point, heights ,- decrease or 
increase monotonously. Rouy and Tourin [14] proved that 

Figure 3. Local shape estimation from singular point p via fast 
marching: frontier of shortest path produces equal height contours. 

\, 
(a) (b) 

Figure 4. Local propagation with oblique light source. (a) Trans- 
formation of the coordinates from camera to illumination. (b) 
Shape propagation in the new coordinates (illumination) starting 
from singular points marked in green (shaded). 

the result surface of fast marching is a viscosity solution to 
the Eikonal equation (2) in this neighborhood. 

Conceptually, fast marching computes the length of the 
shortest path D ( p ,  q) from the local highest point p  to ev- 
ery other point q,  as an estimation of the height difference 
z ( p )  - z ( q ) .  The length is computed as the integration of 
the weights on the points p's, defi ned as J ( l / I ( p ) ) "  1. 

where L contains all the paths from p  to q. Notice V x  is 
the fastest descent direction in the height fi eld. Due to the 
monotonicity, there exist a fastest descent path 1* from p  
to q. rl(p, q )  = z (p )  - x ( q )  along this path. For any small 
segment ,r t o r + &  z ( T ) - z ( r + A s )  5 A s ( ( V z ( r ) ( / .  Inte- 
gration of I IVx ( r ) l  l along any path is no less than the height 
difference. Therefore another weighted path can not have a 
shorter length than the fastest descent path. The length of 
the weighted shortest path is exactly the height difference. 

The nature of fast marching is local propagation. It can 
be viewed as frontier propagation similar to the characler- 
istic strip expansion in [5] .  If we trace the propagation 
frontiers when computing the shortest path, they are in fact 
the equal height contours of the height field. The short- 
est path computation extends these contours starting from 
the singular point. Under the view of frontier propaga- 
tion, fast marching can be generalized to the case of oblique 
light source, by performing frontier propagation in the light 
source coordinates [7,9] (see Figure 4). 

4. Proposed approach 

Our approach works as follows. Suppose we can identify 
the singular points from the shading image. These are the 
brightest points in the image. The local height estimations 
D ( p ,  q )  are computed by fast marching in (3) w.r.t. singular 
points. Furthermore, if we can determine the subset F of 
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(a) (b) ( 4  (dl (el 
Figure 5. Result of Matlab PEAKS. (a) Input image. (b) Con$ gurution grrrpllon singular points: nodes have uncertainties of their heights 
h and edges have uncertainties of up and down directions encoded by d = f 1. Incorrect confi gurationd violating integrability constraint 
leads to incorrect shape shown in (e). Our result shown in (d) correctly determines the peaks, and the overall shape matches well with the 
ground truth in (c). 

singular points which are peuk points and their heights, then 
the heights of all points can be recovered as: 

We employ a graph to represent the directional choices in 
(P2). Checking the global integrability constraint amounts 
to a graph combinatorial search. 

4.1. Configuration graph formulation and notations 

A conji gurution gruph G = (V, E, W) is a graph rep- 
resenting the global confi guration of the shape. Figure 5(b) 
shows one example of the graph. The vertices V include 
all the singular points. i.e. peaks, valleys and saddle points 
in the light source direction. These points can be viewed 
a the representatives of the local patches. E consists all 
the neighbor pairs in (P2). Weights W(E) on these edges 
are simply the absolute values of height differences between 
vertices, computed by fast marching. Let us set ,n = /VI, 
,m. = IEl. 

Let height field h = ha, ..., IL.,,)'~' be a vector of the 
heights at all the vertices. Assigning different heights on the 
vertices can be thought as moving the patches at the vertices 
vertically and stitching them together. 

Edge configurations can be captured formally by d = 
( d l ,  d2,  ..., d.,,,)T with di = *l( i  = 1, 2, ..., n r ) ,  encoding 
the directions of height differences '. 

d ,  = +1 iff ei = ('tik, v,) and hk > 11, 

Values of i l  on d l ' s  give the choices of upward or down- 
ward direction in (P2). The optimal choice of the height 
fi eldh and edge confi gurationd answers the two questions 
of (Pl): 

Convexity. Classify the nodes to be peaks or valleys, 
by checking the signs of dl 's on the incident edges. 
Range, Start travelling from the peaks and keep going 
downward monotonously. 

Therefore fi nding the global consistent shape amounts to 
fi nding the height fi el& and edge confi gurationd. 

'We dcll ne [he vertex order on [he edge, dse, = ( v k ,  v , )  w ~ t h  k < 1 

4.2. Constraints on the graph 

The height fi eld h and the edge confi guration d are re- 
lated to each other through the following quantities. 

Defi ne vertex-edge incidence matrixA t IWnnr' a$ 

+1 e ,  = (uk, 1 1 ~ )  for j = k 
-1 P ,  = (vk,vl) for.) = 1 (6) 
0 otherwise 

Defi ne the graph weights on the edges W E R"" X"' as 

where ,uii's are the absolute values of height differences 
D (p, q) between nodes p and q on edge e ,, . We place wi's on 
the diagonul because this is convenient for later discussion. 

With the above notions and formulations, we will ex- 
plore how the global integrability constraint acts on the con- 
f i  gurution graph d and h ,  representing the local patch con- 
fi gurations, are related throughA, W. If we made a wrong 
assignment on one of the edge confi gurationdi, contradict- 
ing to the height fi eldh, then any loop traversing singular 
points passing through d i  will not return to the same height. 
A wrong assignment of d will violate the integrability con- 
straint. This intuition is captured by the following claim: 

Claim 1. The assignment of heightj eldh and edge con,fi g- 
urution d satisfi es the integruhility constraint, if 

Proof: The height differences f = (f f2, ..., f,,,)'l' on all 
the edges can be computed as 

It is not diffi cult to see, in ideal case, elements off are ac- 
tually the diagonal entries of W, except for the possibilities 
of +/- signs. So f can be represented as: 

with d encoding the +/- ambiguity. If a configuration is 
correct, there must be a height fi eldh such that (9) and (10) 
hold simultaneously. This justifi es (8). 
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Notice that when the heights are shifted by a constant a: 
h(') = h(') + u, we still have 

So for a fi xedd, we have a family of corresponding h. 
In order to obtain a unique solution of h, an additional 

row is added to A. A' = (t) with b = ( I ,  1, ...; I). Ac- 

cordingly we have h' = ($): W' = (7 3 and d' = 

( )  Then (8) remains in the same form A'h' = W'd'. 

We replace A', h', W', d' by A, h, W ,  d in later para- 
graphs. 

Our goal is to search over all possible h and d such that 
they satisfy (8). As we will show next, this reduces to a 
Max-cut problem. 

4.3. Max-cut Problem 

In the case of noisy image measurements, (8) does not 
hold strictly. The appropriate d and h satisfying the inte- 
grability constraint (8) can be computed as 

Claim 2. dopt, hOpt optimizing (12) cun be conzputed by 
u Mux-cur problem us 

dopt = argrllaxd Cd,dj=-l EiJ (13) 

hOpt = AtWdopt (14) 

with E = wT(AAt - I ) ~ ( A A ~  - 1)W. 

ProoJ: First it is easy to see hopt is related to dopt 
through hopt = AtWdopt, where A1 is the pseudo in- 
verse of A, i.e. ~t = [ A T A ] - l ~ T .  Our search task re- 
duces to optimization over d only, i.e. (dopt, hopt) = 

arg I I I ~ I L J ~  I /Ah - Wdl 12 is equivalent to 

Minimizing dTEd, with E as a positive semi-defi nite ma- 
trix and di = &l(i = 1 , 2 ,  ..., nr) is a combinatorial search 
problem over the 2'"" discrete choices of d. 

Using the fact d.,olj = +1, we can rewrite it as 

If we separate d ,  = 1 from d, = -1 and regard E,, as 
the edges connecting two parts, the above equatior~ gives a 
max-cut of d,  's. 

Finding the solution for integrability test problem (P2) is 
now computationally reduced to solving a Max-cut. Note 
that we perform our search on a limited number of singu- 
lar points instead of all the image pixels. The conti guru- 
tion graph actually condenses the information into limited 
nodes. These are the places where we have to make deci- 
sions, while other places are determined by fast marching. 
The choices of d and h have to be made in a global view. 

4.4. Numerical approaches 

Max-cut is NP-hard 2.  Brute force search is only feasi- 
ble for small graph size e.g. less than 10 nodes. For larger 
graphs we compute the Max-cut by semi-defi nite program- 
ming (SDP)~. We relax the edge confi gurationd to real val- 
ues. Let X = ddT, our problem can be relaxed to 

minimize dTEd = t r  (EX) 
subject to X,, = t7.(AiX) = 1, 1 = 1,2,  ..., VL 

X E SF, Ai = eieT 

which is a SDP problem 4. Due to the convexity of the semi- 
defi nite cone, SDP could be solved fast and reliably by the 
state-of-art implementations [16]. In practice, it works very 
well in optimizing (16). 

4.5. Shape integration 

Now we have recovered the global configuration en- 
coded by d and h. Since d, = +I  indicates which one of 
the neighboring vertices is higher, peaks (convex) are iden- 
tifi ed by fi nding the vertex higher than all of its neighbors in 
the graph. From these peaks and their estimated heights, lo- 

~ ~ 

cal propagations are stitched together according to (4). The 
region a@) = { q  : z (q )  = arg rna~, ,~(z(p)  - D(p,  q ) ) )  
is called the inpuential zone of p. These are the places 
where local propagation from p take over the result surface. 

If the graph topology is incorrect, the result might still 
have kinks. Therefore, we need to check whether there are 
kinks between neighboring patches. Suppose r L l  ( s ) ,  112 (s) 
are surface normals estimated from neighboring infben- 
rial zones fI1, 0 2  respectively. S ( B )  measures the discrep- 
ancy of surface normals propagated from ill and R2 on the 
boundary B, which indicates the "sharpness" of the kink. 

We check and correct the heights of the patches to ensure 
that the value of (19) is small, i.e. without kinks. 

2~-lowcvcr, there are polyl~o~nial algorilluns for the Min-cui problem. 
' ~ n  SDP solves this problem: minimize t r ( C X ) ,  subject to 

tv(AiX) = b,, i = 1, 2 ,  . . . , I  J ,  X E ST. S; del~otc the set of  posi- 
tive scmi-def nite m~tricea. 

4ei (i = 1, 2, ..., 1n) are the m~onical baais. 
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4.6. Algorithm overview 

In summary, our algorithm contains the following steps: 

1 .  Singular points detection Select points with local 
maximal intensities and above some tlueshold. 

2. Fast marching Estimates the height differences 
D ( p ,  y) from each singular point p to its local neigh- 
borhood. 

3. Confi guration graph formulation Construct the 
graph by connecting neighboring singular points. 

4. Disambiguation Use SDP to fi nd dope optimizing 
dTEd in (1 6). 

5. Shape integration Identify peaks from do,t. Adjust 
the infhential zones when necessary. Estimate h at 
the peaks by (14). Surface heights are computed by 
stitching equation (4). 

5. Results 

We test our approach on synthetic and real images with 
complex shapes and it outperforms previous energy mini- 
mization and local propagation methods. 

We first test the algorithm on the Matlab PEAKS im- 
age in Figure 5. It consists of 9 singular points, of which 
3 are peaks, 3 are valleys and 3 are saddle points. This 
simple example shows the power of our method to resolve 
local ambiguities. As seen in Figure 5 ,  we recover correctly 
the convex/concave/saddle labels ZLS well as the overall 3D 
shape. 

Figure 6 shows results on more complex synthetic jm- 
ages. For the Venus image, the graph has 94 vertices and 
213 edges, of which 3 are determined to be global peaks. 
In the case of the Egyptian queen Nefertiti, the graph has 
65 vertices and 148 edges, of which 3 are determined to 
be global peaks. We see that local propagation is able to 
produce detailed local 3D structure while integrability con- 
straint is able to determine the relative heights of different 
parts as well as the propagation direction. For example, the 
algorithm manages to fi gure out that propagation should be 
performed from the lower to the upper part on Nefertiti's 
headdress, where otherwise the whole shape of the surface 
will be changed. 

Previous methods [ I ,  9, 17, 19, 201 perform poorly on 
these examples. Energy minimization approaches suffer 
from smoothness constraint and local minima: the result 
surface is f i t  globally but bumpy locally (Figure 6(e)). Lo- 
cal propagation methods can give reasonable smooth sur- 
faces, but fail to give a correct global shape (Figure 6(f)). 
For a fair comparison, we have already tuned the parame- 
ters for the previous methods [ I ,  171 and take the best re- 
sults. Further, we choose the top two results from the six 
methods surveyed in [19]. 

Figure 5 shows recovering the correct confi guration is 
critical for propagation methods. If the propagation is per- 
formed from incorrect singular points, the result could be 
very bad. Even if we are lucky to choose the right starting 
point out of hundreds of candidates, propagation from only 
one point still does not give correct results. This is due to 
the fact that the infhential zone of a single point usually 
does not cover the entire image. 

Our algorithm is tested on two real images, a stone sculp- 
ture and part of the Three Graces. The light source di- 
rections are approximately estimated as (0.55,0.55, 0.62j7' 
and (0,0,1)"' respectively. Examples under uncontrolled 
illumination conditions are extremely dif i  cult. Our single 
light source, Lambertian assumption is usually violated in 
practice: incorrect intensities due to diffuse light sources 
and inter-refkctions, multiple self shadows, discontinuities 
such as cracks and dents, nonconstant albedo due to paints 
and dirts, just to name a few of them. Our algorithm has 
done a good job despite these difficulties (Figure 5). The 
rough shapes are correct and details are well preserved. 

6.  Discussions 

Several authors have pointed out that the local ambiguity 
problem in SFS. In [IS], local ambiguities were resolved by 
user specifying surface normals at a few key points. Kim- 
me1 and Bruckstein [6] observed that the classification of 
singular points and relations between them are important. 
However, their method does not work for saddle (shoulder) 
points, which is a serious limitation, Prados and Faugeras 
[12] assumed that boundary conditions as well as heights at 
singular points were given, but these data are generally in- 
accessible. Their recent work [13] considered the effect of 
the distance between the light source and the surface and a 
monotonous scheme was obtained. They actually assumed 
that points were becoming further away from the camera 
while they were approaching to the image boundary. This 
is a very limited assumption. 

Comparing to previous energy minimization and local 
propagation methods our approach directly resolves the am- 
biguity in SFS. Our method requires no boundary data, user 
interaction or additional assumptions to solve SFS. 

We would like to point out a shortcoming of our solu- 
tion. The equivalence between problem (PI) (kink-free) 
and (P2) (integrability) depends on the correct confi gura- 
tion graph topology. Configuration graph is defi ned on 
'neighbor pairs'. Correct neighbor pairs (between singular 
points) requires knowing u prior that the height decreases 
monotonously from one to the other. We use a heuristic 
of choosing close-by singular points as neighbor pairs, and 
it works for most cases. However, there is no guarantee 
that such heuristic always leads to the correct solution. In 
fact we have observed bad neighbor pairs causing incorrect 
solutions (satisfying (P2) but having kinks). One possible 
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(a) (b) (4 (dl 
Figure 6. Results of Venus and Nefertiti. (a) Input image. (b) Infhential zones of peaks (color coded). (c)-(d) Result by our method under 
two different views. (e) Result by Tsai and Shah's method [17, 191 with the best parameters. (f) Result by Bichsel and Pentland's method 
[ I ,  191 with the best parameters. 

(e) (f) (g) (h) 
Figure 7 .  Results of Isis. (a) Input image. (b)(e)(f) Surface computed by our algorithm has a correct global configuration as well as 
local surface details shown in (e)(t] (her face and left hand). (c) Incorrect labels of singular points leads to incorrect global shape. (d) 
Propagation from one correct singular point has a very limited range. (h) shows a zoom-in incorrect face reconstruction of (d), compared 
with our method in (g). 
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Figure 8. Results on two real images. (a) A stone relief. (b) 3D reconstruction of 

(a). (c) The Three Graces. (d) 3D Reconstruction of (c). Note that the surface is 

correctly reconstructed, except for errors in the lower leg of (d). Due to dirt, 

intensities are darker in the error regions. 

solution is to  perturb the confi guratioh graph by removing 
certain neighbor pairs and check for the kink-kee constraint 
upon solving (P2). 

7. Conclusion 

In this paper, we point out that image-irradiance equation 
alone is not a sufficient condition for SFS: the shape must 
also be  kink-free. The kink-free constraint should not be 
confused with smoothness constraint - local shape can be 
computed exactly up to convex/concave/saddle labels. The 
question is how we can glue these local shapes together, 
which amounts to a combinatorial search. In this work, 
we sirnplifi ed this search by checking the global integra- 
bility constraint between the patches. To solve it. we build 
the confi guration graph and computationally this combina- 
torial optimization reduces to  a Max-cut problem. The ex- 
periment results on real and synthetic data demonstrate our 
method works well on complex shapes. 
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