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Abstract

Contours have been established in the biological and computer vision literature
as a compact yet descriptive representation of object shape. While individual
contours provide structure, they lack the large spatial support of region segments
(which lack internal structure). We present a method for further grouping of con-
tours in an image using their relationship to the contours of a second, related
image. Stereo, motion, and similarity all provide cues that can aid this task; con-
tours that have similar transformations relating them to their matching contours
in the second image likely belong to a single group. To find matches for con-
tours, we rely only on shape, which applies directly to all three modalities without
modification, in contrast to the specialized approaches developed for each inde-
pendently. Visually salient contours are extracted in each image, along with a set
of candidate transformations for aligning subsets of them. For each transforma-
tion, groups of contours with matching shape across the two images are identified
to provide a context for evaluating matches of individual contour points across the
images. The resulting contexts of contours are used to perform a final grouping
on contours in the original image while simultaneously finding matches in the re-
lated image, again by shape matching. We demonstrate grouping results on image
pairs consisting of stereo, motion, and similar images. Our method also produces
qualitatively better results against a baseline method that does not use the inferred
contexts.

1 Introduction
Researchers in biological vision have long hypothesized that image contours (ordered sets of edge
pixels, or contour points) are a compact yet descriptive representation of object shape. In computer
vision, there has been substantial interest in extracting contours from images as well as using object
models based on contours for object recognition ([15, 5]), and 3D image interpretation [11].

We examine the problem of grouping contours in a single image aided by a related image, such as
stereo pair, a frame from the same motion sequence, or a similar image. Relative motion of contours
in one image to their matching contours in the other provides a cue for grouping. The contours
themselves are detected bottom-up without a model, and are provided as input to our method. While
contours already represent groupings of edges, they typically lack large spatial support. Region seg-
ments, on the other hand, have large spatial support, but lack the structure that contours provide.
Therefore, additional grouping of contours can give us both qualities. This has important applica-
tions for object recognition and scene understanding, since these larger groups of contours are often
large pieces of objects.

Figure 1 shows a single image in the 1st column, with contours; in the other columns, top row,
are different images related by stereo, motion and similarity to the first, shown with their contours.
Below each of these images are idealized groupings of contours in the original image. Note that
internal contours on cars and buildings are grouped, providing rich, structured shape information
over a larger image region.
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Figure 1: Contours (white) in the image on the left can be further grouped using the contours of a
second, related image (top row). The bottom row shows idealized groupings in the original image
according to the inter-image relationship.

2 Related Work
Stereo, motion, and similar image matching have been studied largely in isolation, and often with
different purposes in mind than perceptual grouping. Much of the stereo literature focuses on per-
pixel depth recovery; however, as [7] noted, stereo can be used for perceptual grouping without
requiring precise depth estimation. Motion is often used for estimating optical flow or dense seg-
mentation of images into groups of pixels undergoing similar motion [13]. These approaches to
motion and stereo are largely region-based, and therefore do not provide the same internal structure
that groups of contours provide. Similar image matching has been used for object recognition [1],
but is rarely applied to image segmentation.

In work on contours, [12] matched contour points in the context of aerial imagery, but use con-
straints such as ordering of matches along scanlines that are not appropriate for motion or similar
images, and do not provide grouping information. [9] grouped image pixels into contours according
to similar motion using optical flow as a local cue. While the result addresses the long-standing
aperture problem , it does not extend to large inter-image deformations or matching similar images.
[8] grouped and matched image regions across different images and unstable segmentations (as we
do with contours), but the regions lack internal structure. [2, 6] used stereo pairs of images to detect
depth discontinuities as potential object boundaries. However, these methods will not detect and
group group contours in the interior of fronto-parallel surfaces.

3 Grouping Criteria
We present definitions and basic criteria for grouping contours. The inputs to our method are:

1. Images: I1, I2; for each image Ii, i ∈ 1, 2 we also have:
2. A set of points (typically image edges) IP

i ; ∀p ∈ IP
i , p ∈ R2. We restrict the set of points

to those that lie on image contours, defined next.

3. A set of contours IC
i , where the jth contour Cj

i ∈ IC
i is an ordered subset of points in IP

i :
Cj

i = [pk1 , pk2 , ..., pkn ] ⊆ IC
i .

We would like to infer groups G1, ..,GnGroups, each with the following attributes:
1. A transformation Ti that aligns a subset of contours (e.g., corresponding to an object) in I1

to I2. T is the set of all Ti.
2. A subset of contours Coni in each image, known as a context, such that the two subsets

have similar overall shape. Coni = {Con1
i ,Con2

i }; Con1
i ∈ {0, 1}|I

C
1 |, Con2

i ∈ {0, 1}|I
C
2 |.

Each Conj
i is vector that indicates which contours are in the context for image Ij. Con is

the set of all Coni.
We further define the following variables on contours Cj

1 = [pk1 , ..., pkn
]:

1. A group label lj ; lj = a implies that Cj
1 belongs to group Ga. L = {lj}, set of all labels.

2. Matches Matchj = [qr1 , ..., qrn
], qri

∈ IP
2 , s.t. pk1 matches qrn

. Match = {Matchj},
the set of all matches for each contour.
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Figure 2: (left) - matching closest points cannot reject false positives; simply enlarging the feature
size rejects true positives; increasing the feature size and selecting correct context fixes the prob-
lem and Figure 3: (right); the realized shape context from choosing a subset of contours can be
summarized as the multiplication of a shape context matrix M and a binary indicator vector.

We would like the groups to possess the following criteria:
1. Good continuation - for contours that overlap significantly, we prefer that they are present

in the same group, if they are grouped at all.
2. Common fate by shape: contours with similar transformations mapping them to their

matches should be grouped. We also require that each contour point in a grouped con-
tour and its matching point in the second image have similar local shape. Shape in each
image is defined with respect to a subset of image contours known as a context; we will
explain the importance of choosing the correct context for shape comparison, as first noted
in [16].

3. Maximality/simplicity: We would like to group as many of the contours as possible into
as few groups as possible, while still maintaining the similarity of local shape described
above.

We will encode these criteria in our cost function F(T,Con,L,Match), which we seek to min-
imize. Our cost function has the following properties, which we develop in the following sec-
tions: 1) For fixed contexts Ĉon and transformations T̂, min

Match,L
F(T̂, Ĉon,L,Match) is a

Markov random field (MRF) that can be minimized exactly via graph cuts ([3]). This corresponds
to a standard computational formulation for graph matching (in this case, there is one graph in
each image, over the contours). 2) For fixed matches M̂atch, transformations, T̂ and labels
L̂, F decomposes as the sum over i = {1, ...,nGroups} and we can minimize independently:
min
Coni

Fi(T̂i,Coni, ̂Matchj|l(j)=i) as an integer linear program. This can be easily relaxed to a closely

related linear program (LP), allowing for an efficient approximation. This combination of the MRF
standard graph matching technique with an LP for inferring context for accurate matching by shape
is our main contribution.

The layout of our paper is as follows: we explain the problem and importance of selecting contours
as context for accurate matching and grouping, outline our computational solution (LP) for inferring
Con given T, our technique for choosing T, followed by finding L and matches Match based
on the inferred contexts (via graph cuts). Results using our method follow, and we demonstrate
improvement over a baseline that lacks that benefits of our context selection procedure.

4 Matching and Context Selection
We can evaluate the hypothesis of a particular contour point match by comparing the local shape
around the point and around its match. Although local features such as curvature and simple prox-
imity (in the case of roughly aligned contours) have been used for matching ([12]), inconsistencies
in the input contours across two images make these them prone to error. Local features exhibit com-
pleteness (good score for correctly matching shapes), but not soundness (bad score to not matching
shapes). Figure 2 illustrates this distinction. Two aligned sets of contours are shown in a),e). In a),
the contours do not match, while in e), a “7” shape is common to both. In b) and f), matching of
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Figure 4: The context selection process for roughly aligned sets of contours. See text for full de-
scription.

closest points between two roughly aligned shapes finds matches in both examples due to the small
support of local features, even though there is no valid match in a).

However, increasing the support of the feature does not solve the problem. As an example, we use
the shape context, an image feature that has been widely used for shape matching ([1]). Briefly, a
shape context provides a log-polar spatial histogram that records the number of points that fall into a
particular bin. In Figure 2 c,g), shape contexts (darker bins mean larger bin count) with large spatial
support placed according to the rough alignment exhibit high dissimilarity in both cases, failing to
find a match in a). The large feature failed because contours in each image that had no match in
the other image were used in computing the shape context. Inferring which contours to include and
which to omit would give better features, as in Figure 2 d),h). This fixes the completeness problem,
while retaining soundness: no combination of contours in the two images in a) can produce matching
shapes. Therefore, with rough alignment we can cast the first step of shape matching as context
selection: which subset of contours, or context, to use for feature computation. Given the correct
context, matching individual contour points is much easier.

4.1 Selection Problem
We can neatly summarize the effect of a particular context selection on a shape context as seen in
Figure 3. a) shows two contours which we can select from. b) shows the shape contexts for each
individual contour. The bin counts for a shape context can be encoded as a vector, represented
by the shape contexts and their vector representations alongside. In c), we put the vector form of
these shape contexts into a matrix SC, where each column corresponds to one contour. SC has
dimensions nBins by nContours, where nBins is the number of bins in the shape context (and the
length of the associated vector). The entry SC(i, j) is the bin count for bin i and contour j. For each
contourCj

i in an image Ii, we associate an selection indicator variable selji ∈ {0, 1}, which indicates
whether or not the contour is selected; the vector of these indicator variables is seli. Then the shape
context bin counts realized by a particular selection of contours is SCseli, simply the multiplication
of the matrix SC and the vector seli. d) shows the effect on the shape context histogram of various
context selections.

4.2 Shape context matching cost
The effectiveness of selection depends significantly on the shape context matching cost. Traditional
matching costs (Chi-square, L1, L2) only measure similarity, but selecting no contours in either
image gives a perfect matching cost, since in both shape contexts, all bins will be 0. While similarity
is important, so is including more contours rather than fewer (maximality).

Our shape context matching cost, SCMatchCost(s1, s2, λ) in Figure 4, is a linear combination of the
L1 distance between shape context vectors s1 and s2 (similarity), and the intersection distance (max-
imality, one of our original grouping criteria), the L1 norm of min(s1, s2) where min is element-
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Figure 5: For a pair of images, SIFT matches propose different transformations of the contours in
image 1 to align with contours in image 2. The selection process is run for each transformation to
infer a context suitable for evaluating contour point matches via shape.

wise. The intersection term encourages higher bin counts in each shape context and therefore the
inclusion of more contours. The parameter λ trades off between similarity and maximality; typically
λ ≥ 1.

4.3 Computational Solution
Our formulation of the problem follows the construction first presented in [16], which studied the
role of context selection for object recognition. Figure 4 shows the formulation of the overall selec-
tion cost SelectionCost. This minimizes Fi(T̂i,Coni, ̂Matchj|l(j)=i) over Coni. We begin with two
input images, where the contours are in rough alignment (by applying known Ti to IC

1 ). Multiple
shape contexts are placed in each image on a uniform grid (an approximation of Matchj|l(j)=i, since
we initially have no matches). Like-colored (in the figure) shape contexts will be compared across
images. Our goal is to select contours in each image to minimize the sum of SCMatchCost for each
pair of shape contexts. For each shape context j in each image i, we compute the corresponding
shape context matrix SCj

i . All the SCj
i in a particular image Ii are stacked to form matrix SCi. SCi

for each image has been color coded to show the SCj
i matrix corresponding to each shape context.

We introduce the indicator vectors selc1 = [selc1
1...selc

m
1 ] and selc2 = [selc1

1...selc
n
1 ] for images

I1, I2. selcj
i = 1 implies that contour Cj

i is selected. SCiselci is then the realized bin counts for
all the shape contexts in image Ii under selection selci. We seek to choose selc1 and selc2 such that
SC1selc1 ≈ SC2selc2 in a shape sense; entries of SC1selc1 and SC2selc2, or realized bin counts,
are in correspondence, so we can score these pairs of bin counts using BinMatchCost. A compact
summary of this cost function SelectionCost is shown in Figure 4; its decomposition as the sum of
SCMatchCost terms, which are each in turn a sum over BinMatchCost terms is shown.

The minimization of SelectionCost over selc1 and selc2 is in fact an integer linear program (L1

distance and min are easily encoded with additional variables and linear constraints). By relaxing
each selji ∈ {0, 1} → [0, 1], we obtain a linear program (LP) which can be solved efficiently using
standard solvers (e.g. SDPT3). Although other methods exist for solving integer linear programs,
such as branch-and-bound, we found that directly discretizing the selji with a fixed threshold worked
well. Then Ĉoni = {selc1, selc2}.

4.4 Multiple Context Selections for Image Matching
Now that we have established how to do selection in the case were are given Ti, we now apply it
in images where there may be multiple objects that are related across the two images by different
alignments. We first need to infer the set of candidate transformations T; for our purposes, we will
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restrict them to be similarity transforms, although we note that non-linear or piecewise linear (e.g.,
articulation) transformations could certainly be used. A simple method for proposing transforma-
tions in the two images is via SIFT ([10]) feature matches. A SIFT match provides scale, orientation,
and translation (a similarity transform). RANSAC with multiple matches can be used to estimate
full homographies, similar to [14].

Figure 5 depicts an idealized selection process for two images (only the contours are shown). For
groups of SIFT matches that describe similar transformations, a transformation Ti is extracted and
warps the contours in image 1 to line up with those of image 2, in c). The selection problem is
formulated separately for each set of aligned contours d). The solution vectors of the SelectionCost

LP for each Ti provide a context ̂{Con1
i ,Con2

i } ({selc1, selc2} previously) of matching contours,
e). Two correct transforms align the car and person, and the selection result includes the respective
contours (rows 1,2 of e). A third, wrong transform results in an empty selection (row 3 of e). We
can view the context selection procedure for minimizing Fi as choosing the context of contours so
as to best reduce the matching cost of the hypothesized inter-image matches for contours with label
i, under the transformation Ti. In a sense, we are optimizing the local features via an LP, which
traditional graph matching techniques do not do. The result of this optimization will appear in the
unary term of the label/match MRF described next.

5 Graph Cuts for Group Assignment and Matching
We previously computed context selections (as solutions to the SelectionCost LP), which found
groups of contours in each image that have similar shape, Ĉon = {Ĉon1, ..., ̂ConnGroups} under
transformations T̂. Given these, we seek to compute L and Match. Some labels in 1, ...,nGroups
may not be assigned to any contours, satisfying our simplicity criterion for grouping. Note that a
contour Cj

1 need not be selected as context in a particular group a in order to have lj = a. Recall
with respect to the original cost function, we seek to optimize: min

Match,L
F(T̂, Ĉon,L,Match) We

phrase this label assignment problem as inference in a Markov network (MN). The MN encodes the
joint distribution over the labels L as a product of potentials: P (L) = 1

Z

∏
j φ(lj)

∏
j,k φ(lj , lk)

where Z is a normalization constant.

The binary potentials φ(lj , lk) encode the preference that overlapping contours Cj
1 , C

k
1 have the

same label:

φ(lj = a, lk = b) =
{

1 a = b

1− τ a 6= b
(1)

where 0 ≤ τ ≤ 1 controls the penalty of having different labels. This is a simple smoothing potential
to encourage continuity. Two contours overlap if they contain at least one point in common.

The unary potential φ(lj) encodes how well contour Cj
1 = [pk1 , pk2 , ..., pkn

] can be matched in the

second image with respect to the context ̂{Con1
a,Con2

a}. The log-unary potential decomposes as
the sum of matching costs of the individual points pki

to their best match in image I2, with respect

to the context ̂{Con1
a,Con2

a}:

log φ(lj = a) ∝ −
n∑

i=1

[min
q∈IP

2

MatchCostInContext(pki
, q, a)] (2)

where MatchCostInContext(p, q, a) = SCMatchCost(SCTa(p)
1 Ĉon1

a, SC
q
2 Ĉon2

a) and SCp
1 and

SCq
2 are respectively the shape context matrix computed for a shape context centered at Ta(p) using

the contours in image 1 under transformation Ta, and the matrix for a shape context centered at q
using the contours in image 2.

We compute the exact MAP estimate in the MN using the α − β swap graph cut algorithm ([3]),
which can maximize this type of energy. Instead of using all contours image 1 as nodes in the MN,
we only allow contours were selected in at least one of the context Con1

i ; likewise, we only permit
matches to points in image 2 that appear in a contour selected in at least one Con2

j . This better
allows us to deal with contours that appear only in one image and thus cannot be reliably grouped
based on relative motion.
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Figure 6: Baseline comparison (top) and additional results (bottom). Top: Columns 1,2: original im-
ages with input contours, each colored. Columns 3,4: grouping results for our method and baseline;
groups of contours are a single color. In stereo pairs, like colors indicate similar disparity. Bottom:
Columns 1,2: original images with input contours, each colored. Column 3: our grouping result.
Columns 4,5: matches across images indicated by like colors. Please view in color.

5.1 Baseline Comparison
As a baseline comparison, we attempted grouping using an MN that involved no selection informa-
tion. The binary potential remained the same, while the unary potential φ(lj = a) was a function of
the distance of each contour point in contour Cj

1 to its closest match in IP
2 , under the transformation

Ta:

log φ(lj = a) ∝ −
n∑

i=1

[min
q∈IP

2

(||Ta(pki
)− q||2L2, occlusionThresh2)] (3)

The constant occlusionThresh serves a threshold in case a contour point had no nearby match in
IP
2 under the transformation T a. Points which had no match within occlusionThresh distance were

marked as occluded for the hypothesis lj = a. If more than half the points in the final assignment
l∗j for a contour were occluded, we marked the entire contour as occluded, and it was not displayed.
Since we omitted all selection information, all contours in the 1st image were included in the MN
as nodes, and their contour points were allowed to match to any contour point in IP

2 . We again
optimized the MN energy with the α − β swap graph cut. Free parameters were tuned by hand to
produce the best result possible.

6 Experiments
We tested our method and the baseline over stereo, motion and similar image pairs. Input contours
in each image were extracted automatically using the method of [15]. SIFT matches were extracted
from images, keeping only confident matches as described in [10]; matches proposing similar trans-
formations were pruned to a small set, typically 10-20. Because of the high quality of the inferred
contexts, we used large shape contexts (radius 90 pixels, in images of size 400 by 500), which
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made matching very robust. The shape contexts were augmented with edge orientation bins in addi-
tion to the standard radial and angular bins. Shape contexts were placed on a uniform grid atop the
registered contours (via Ti) with a spacing 50 pixels in the x and y dimensions. Image pairs were
taken from the Caltech 101 dataset [4] and from a stereo rig with 1m baseline mounted on a car
from our lab (providing stereo and motion images). The running time of our unoptimized MATLAB
implementation was several minutes for each image pair.

Figure 6, top block, shows the results of our method and the baseline method on stereo, motion and
similar images. We can see that our method provides superior groupings that better respect object
boundaries. Groups for stereo image pairs are colored according to disparity. Due to the lack of large
context, the baseline method is able to find a good match for a given contour point under almost any
group hypothesis lj = a, since in cluttered regions, there are always nearby matches. However, by
using a much larger, optimized context, our method exploits large-scale shape information and is
better able to infer about occlusion, as well as layer assignment. We present additional results on
different images in Figure 6, bottom block, and also show the dense correspondences. Interesting
groups found in our results include facades of buildings, people, and a car (top row).

7 Conclusion
We introduced the problem of grouping of contours in an image using a related image, such as stereo,
motion or similar, as an important step for object recognition and scene understanding. Grouping
depends on the ability to match contours across images to determine their relative motion. Selecting
a good context for shape evaluation was key to robust simultaneous and grouping of contours across
images. A baseline method similar to our proposed method, but without context, produced worse
groupings on stereo, motion and similar images. Future work will include trying to learn 3D object
models from stereo and motion images, and a probabilistic formulation of the matching framework.
Introducing learning to improve the grouping result is also an area of significant interest; some shape
configurations are more reliable for matching than others.
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