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ABSTRACT

SHAPE REPRESENTATIONS FOR OBJECT RECOGNITION

Alexander Toshev

Kostas Daniilidis

The problem of object recognition has been at the forefront of computer vision

research in the last decade. The most successful approaches have used mainly edge-

or texture-based representations. The shape of the object outline, albeit widely used

for pre-segmented objects, has found limited applicability to the detection problem

in real images. The fact that shape is a truly holistic global percept is challeng-

ing because background structure and interior object contours can easily clutter a

global shape descriptor and render it unusable. Therefore, figure-ground organiza-

tion, which segments the object of interest and removes the cluttering contours, is

of paramount importance. However, purely bottom-up segmentation rarely provides

a good object outline suitable for shape-based detection.

In this thesis, we study a novel shape representation, called a chordiogram, which

allows us to address the above challenges. The chordiogram is a holistic shape de-

scriptor capturing global geometric relationships between object boundaries. Based

on the chordiogram, we introduce a boundary structure segmentation model which ef-

ficiently integrates region and boundary grouping principles with shape-based match-

ing. This method uses holistic shape for simultaneous object segmentation and de-

tection in highly cluttered scenes. We apply it on established recognition benchmarks

and achieve state-of-the art results.

Further, we study the applicability of shape for object detection in videos. We

show that shape-based representations can be used not only to robustly detect mov-

ing objects but also to provide a rough estimate of their pose. For this purpose, we

utilize freely available large datasets of 3D synthetic models.

Beyond linking shape matching with perceptual grouping, we study the inter-

play between feature matching and perceptual grouping. We introduce co-salient
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regions – coherent, corresponding segments in two or more images – and describe

two algorithms for their detection. Co-salient regions are applied to two problems –

wide-baseline stereo and motion segmentation. In the former problem we show how

to estimate correspondences between regions and improve feature matches, while in

the latter segments representing same object parts are tracked across multiple frames

in a video.
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Chapter 1

Introduction

One of the basic and most fundamental problems being addressed in computer vision

is the problem of object recognition and detection. It is the question of what objects

or object types we see in an image and how to determine their precise location and

segmentation. Answering this question with high accuracy will have an enormous

impact and diverse consequences in the field of machine perception and beyond. It

is a fundamental step towards image and video understanding.

Over the last two decades computer vision research has focused an enormous effort

on solving this problem. Although we have witnessed great progress, especially in

the last ten years, computer performance still remains unsatisfactory. One of the

unresolved aspects of these challenges is the proper representation which should

be used in order to describe an object. Researchers have proposed a variety of

representations capturing various object properties.

In this thesis we analyze shape for the purpose of recognition. We provide a new

perspective on how to operationalize shape and develop a novel representation and a

computational model. In support of this model, we provide empirical evidence with

respect to established benchmarks of still images as well as videos.
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1.1 Representations for Object Recognition

In the last ten years a myriad of object representations have been proposed. The

most widely used are keypoint features [Lowe, 2004, Mikolajczyk and Schmid, 2004,

Tuytelaars and Gool, 2004]. These descriptors are based on edges and tend to cap-

ture local fine structure. Their success owes to the fact that they model local object

parts in a discriminative and repetitive way [Zhang et al., 2007b]. This enables the

features to capture salient object parts while dealing at the same time with clutter

and occlusion.

These local features have been thoroughly analyzed for the task of recognition

[Zhang et al., 2007b]. They have been used individually as well as they have been

combined in recognition frameworks. The consensus among researchers is that no

single feature alone is sufficient for object recognition. The reason is that each fea-

ture captures specific object properties, which are manifested differently for objects

from different classes. This realization has motivated the exploration for further

representations.

Examples of other representations, which capture fine image structure, are the

texture descriptors based on filter bank responses [Varma and Zisserman, 2005],

[Leung and Malik, 2001]. They have been applied to object recognition

[Malisiewicz and Efros, 2008], [Gu et al., 2009] as well as scene segmentation at a

global scale [Shotton et al., 2009].

Later, edge-based descriptor have been proposed, which have a support going

beyond an object part and covering the whole object. For example, Histogram of

Gradients has been applied for both human detection [Dalal and Triggs, 2005] and

general object recognition [Felzenszwalb et al., 2008].

Although texture- and edge-based descriptors are successful for representing ob-

jects, there are object classes which inherently can be only poorly described in this

manner. For example, if we study the examples of a specific object class, as shown

in Fig. 1.1, it is easy to see that neither color nor texture is very repeatable across
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(a) Examples of bottles. (b) Bottle shape model.

Figure 1.1: What are the common properties among these examples of bottle?

these examples. The only property, which seems to be shared is the shape.

1.2 Shape Representations

In this thesis we focus on shape, which is generally defined as the outline of an object.

In some cases, shape includes internal contours as well. From perceptual point of

view, there have been two major paradigms for capturing object shape, which we

describe below.

1.2.1 Holism

The Gestalt school of perception, led by Max Werhheimer, Wolfgang Koehler and

Kurt Koffka, has established the idea of holism in visual perception [Palmer, 1999,

Koffka, 1935]. This principle suggests an object should be perceived as a whole

and not merely as a collection of individual parts. Although this paradigm was

formulated for general perception, it is even more applicable to shape. The main

reason is that shape is locally not discriminative – while a small region in an image

may contain a rich and complex texture pattern, a contour segment in a small region

is much less informative.
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As a result, when it comes to the design of a computational model for a holistic

shape representation we try not to identify local contours as a means for description,

but attempt to describe each object contour in the context of the whole object. In

other words, the contribution of an edge or a contour segment to the whole object

representation depends on all other object contours. We call this view on holism

global dependence.

There have been a wide range of shape representations consistent with the prin-

ciple of holism. Such representations are based on a global transform of the input

shape. For example, Fourier coefficients have been used to characterize a closed

contour [Zhang and Lu, 2003]. Similarly, Zernicke moments were applied to capture

shape contour and interior [Zhang and Lu, 2003]. Smoothing a curve and detecting

curvature zero-crossings led to Curvature Scale Space Image [Mokhtarian et al., 1997].

Another class of holistic shape representations was initiated by the develop-

ment of the Medial Axis Transform [Blum, 1973], which is defined as the set of

centers of maximally inscribed circles in a closed shape. This set can be thought

of as a skeleton of the shape, which is computed globally, and reveals geometri-

cal as well as topological shape properties. Depending how those properties are

captured, the medial axis has led to the development of Shocks, Shock graphs

[Kimia et al., 1995, Siddiqi et al., 1999, Sebastian et al., 2004] as well as M-reps ap-

plied to medical imaging [Pizer et al., 1999]. To deal with the instability of the

medial axis to small boundary protrusions a more robust transform based on the

Poisson equation has been proposed [Gorelick and Basri, 2009].

Unfortunately, the above holistic representations have had limited success when

it comes to real scenes containing background clutter and multiple objects. The main

reason is that holism implies a global support. Therefore, holistic representations

are susceptible to clutter. As a result, the above approaches expect an already

segmented shape as an input, which is not always a realistic setting, especial for real

world images.
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1.2.2 Structuralism

A different paradigm for object representation is the assumption that each object

can be decomposed and this is described in terms of a set of atoms, chosen from a

small atom dictionary. Due to the nature of shape, which cannot be easily described

locally, the aforementioned atoms should be the shape primitives which capture

semi-local shape parts.

From a historical perspective there have been quite a few principled structural

theories for shape perception. One type of shape primitive is the generalized cylinder

which can be described as a base being swept along an axis [Marr, 2010, Binford, 1971].

By combining generalized cylinders with different parameters one can generate a wide

range of objects. Another theory based on a discrete set of predefined 3D shape prim-

itives, called geoms, is the Recognition by Components Theory [Biederman, 1987].

Another attempt is superquadrics which represent more natural shapes

[Pentland, 1986].

The above theories were not successfully applied to real-world vision problems.

The main challenges are twofold. On one side, the theories assume that one can

extract the shape primitives in images, which is not always the case. On the other

side, even if one can obtain good primitive candidates from an image, the search for

the correct shape is not always straightforward and tractable

[Grimson and Lozano-Perez, 1987].

1.2.3 Computational Models of Shape

The last decade has witnessed a significant development in shape representations.

Most of the proposed approaches lie somewhere between being holistic and structural.

On one side, they try to capture global properties while being invariant to shape

deformations. On the other side, some of the global properties have to be sacrificed

for the sake of having a tractable inference and dealing with problems posed by real

images: clutter and occlusion.
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Most of the shape representations are defined in terms of tokens or landmarks,

which can be very local points, or semi-local contours. The configuration of such

tokens can be captured in a purely statistical fashion or using a template. Usually

such configurations express the structural organization of the tokens in the plane,

but also exploit the fact that these points are linearly ordered along a curve, in

cases where a curve parameterization is provided. Finally, the support of the shape

representation can be semi-local or global.

Template-based methods capturing unordered point sets. The study of

geomertic configurations of landmarks for describing shape has been pioneered by

[Kendall, 1989]. Early template-based methods for describing point configurations

are the Chamfer distance [Borgefors, 1986] and the Hausdorff distance

[Huttenlocher et al., 1993]. Such simple techniques are not holistic and are suscepti-

ble to clutter. A richer set of geometric features in conjunction with graph matching

techniques have been used by [Leordeanu et al., 2007] to match an edge configura-

tion to a template. A parametric statistical framework, which models the shape

deformation of the point set is the Active Shape Model [Cootes, 1995].

Template-based methods capturing linearly ordered point sets. The above

methods capture an unorganized point set. In many cases, however, one is pro-

vided with a linear grouping of the points in a curve [Zhu et al., 2007]. This lin-

ear ordering has been exploited in the design of algorithms which align curves

[Sebastian et al., 2003, Felzenszwalb and Schwartz, 2007],

[Mcneill and Vijayakumar, 2006]. Such methods rely on perceptual contour grouping

to obtain object contours. However, they may not capture the full object outline.

Statistics-based methods capturing point sets. A principally different way

to capture the configuration of a set of points is to capture their statistics. For

example, geometric hashing has been used to describe purely geometric properties
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[Lamdan et al., 1990] as well as topological properties [Carlsson, 1999] at a global

scale. A very successful descriptor, called Shape Context [Belongie et al., 2002] cap-

tures a semi-local distribution of edges. Its descriptive power has been extended to

more deformed and articulated shapes by [Ling and Jacobs, 2007]. A different work

has related the Shape Context to contour grouping and based on a holistic matching

model was designed [Zhu et al., 2008, Srinivasan et al., 2010].

Contour configurations. A different type of token are contour segments. They

provide richer information than individual edges and can be extracted using edge

linking, contour grouping or segmentation. Boundary fragments combined with a

voting scheme have been applied to object recognition [Opelt et al., 2006],

[Shotton et al., 2005]. [Ferrari et al., 2006] search in a contour network for contour

chains which resemble the model. In a subsequent work, [Ferrari et al., 2008] define

a descriptor for groups of adjacent contour segments and use it in conjuction with an

SVM classifier. [Lu et al., 2009] explore particle filtering to search for a set of object

contours. Dynamic programming has been applied also by [Ravishankar et al., 2008]

in a mutli-stage framework to search for a chain of object contours.

The above approaches use semi-local tokens and combine them using global mod-

els. These models search for a matching configuration in a scene and thus deal with

clutter. To make the search tractable, these models usually do not take into account

all dependences among contours and thus lose some of the global relationships be-

tween contours. In addition, the above approaches recover some object contours,

however none of them reasons over regions or attempts to recover full figure/ground

organization.

A selection of the above approaches are compared with respect to holism and

robustness to clutter in Fig. 1.2.
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Figure 1.2: Representative selection of shape representations and their properties
with respect to holism and robustness to clutter. The approach, presented in this
thesis, uses a holistic shape descriptor which targets highly cluttered scenes.

1.3 Contributions of the Thesis

This thesis addresses the question of how to represent shape for the purpose of

describing, segmenting, and detecting objects in still images as well as videos. We

focus on designing a shape descriptor and integrating it together with grouping

principles into an object segmentation and detection model. More precisely, the

contributions of this work are as follows:

Shape representation: We introduce a novel shape descriptor, called a chordio-

gram, which captures the object outline and its interior. It possesses the follow-

ing properties, whose combination is novel and contributes to the descriptor’s

state-of-the-art performance:

• It captures the object shape as a whole and therefore falls into the category

of holistic descriptors.

• The definition of the chordiogram enables one to relate the descriptor to
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region and boundary grouping in the image.

By combining both properties, we can simultaneously segment and match an

object using its shape. This allows us to deal with clutter and apply the

descriptor to real scenes.

In addition, it is worth mentioning that the chordiogram is efficiently com-

putable and thus can be used to obtain efficiently a similarity score between

two shapes. However, the introduced descriptor can be related to graph match-

ing and, if necessary, can be used to obtain correspondences between points on

the shapes.

Perceptual grouping: We show how to use perceptual grouping to improve match-

ing in two computer vision settings:

• We are able to incorporate both region and boundary grouping principles

into a holistic shape detection approach.

• We introduce the notion of co-salient regions, defined as coherent segments

from two or more images, which exhibit strong appearance similarity. By

detecting co-salient regions in pairs of images, we are able to improve local

feature matches in the context of wide-baseline stereo.

In addition, we extend the the estimation of co-salient regions to multiple

images and apply it to video segmentation.

Object detection: We address the problem of shape-based object detection in still

images and videos.

• We introduce a shape detection model, called BoSS, which applies the

chordiogram. It allows for a simple and yet effective approximate compu-

tational solution. BoSS is shown to achieve state-of-the art performance

on several established benchmarks.
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• We utilize datasets of synthetic 3D models, freely available on the web,

for analysis of videos. We present a framework, which uses those models

to detect and provide a rough pose estimate for moving objects in videos.

1.4 Thesis Outline

This thesis is structured as follows:

Chapter 2: We motivate and introduce the chordiogram. The properties of the

descriptor are analyzed. In particular, we provide two versions of the descrip-

tor, each of which is invariant to different transformations – translation and

rotation. Moreover, we provide a theoretical relationship between chordiogram

and graph matching. In addition, an empirical analysis is presented and the

descriptor is compared to other representations.

Chapter 3: We introduce the Boundary Structure and Segmentation Model (BoSS),

which combines the chordiogram matching with perceptual grouping principles.

Both region and boundary grouping principles are explained. An efficient and

simple approximate optimization is described which is based on the Semidefi-

nite Programming relaxation. Finally, we empirically analyze and compare the

performance of the model on several datasets.

Chapter 5: The notion of co-salient regions is motivated and defined. We provide a

framework for their estimation and two concrete algorithms which can be used

for two applications. The first one is wide-baseline stereo, in which we simul-

taneously detect corresponding regions and improve feature matches between

pairs of images. In the second application, we segment video by processing

all video frames jointly – a co-salient region in this application is a segment

representing a part of a scene which is being tracked across multiple frames.

Chapter 4: We turn our attention to object detection in videos. For this purpose,
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we use shape matching between 3D models and objects in videos. We discuss

how to extract a shape representation of a 3D model suitable for matching to

an image as well as how to use motion to extract an object silhouette. We

present results on videos of moving objects using the chordiogram as well as

shape context as a representation.
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Chapter 2

Shape Representation

When it comes to visual perception, there are many cues one can use to describe an

object, such as color, texture, shape, etc. It is natural to ask which one carries the

most information, i. e. which one alone can be sufficient to identify and characterize

an object. Consider for a moment a swan – describing it by its color, which can be

either black or white, may not suffice to identify it, since there are many objects

which share this property. The swan shape, however, defined as a simple drawing

of the outline, seems to be enough to recognize this object with high certainty.

This examples motivates us to consider shape as one of the most powerful cues for

visual perception [Palmer, 1999] and a natural basic level of abstraction of an object

category [Rosch et al., 1976]. This observation is supported by empirical evaluation

and comparison of different cues on established datasets [Gu et al., 2009].

In this chapter we lay the groundwork for our shape-based approach towards

object detection. After introducing the basic principles, that we believe a shape

representation should satisfy, we formulate our descriptor and its variants. Fur-

ther, analysis of its properties, relations to other representations, and performance

evaluation is presented.
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2.1 Properties of a Shape Representation

In this work we capture the shape of the object by describing the object outline and

its relation to the object interior:

Object boundary: The object boundary can be considered to be a closed curve.

This is based on the assumption that the object is completely included in the

image and is not occluded. In real images, though, this is assumption is often

violated and thus robustness to occlusion is a desirable property of any shape

representation.

Contour-based shape descriptions are widely used in computer vision. Some

of them, such as Shape Context [Belongie et al., 2002], k-adjacent segments

[Ferrari et al., 2008], and hierarchical shapes [Felzenszwalb and Schwartz, 2007],

can capture an open curve and thus are suitable to describe a portion of the

object outline. Others, such as shock graphs [Siddiqi et al., 1999],

[Sebastian et al., 2004], can be defined only for closed curves.

Interior: Although the object boundary carries the main shape information of an

object, it is important to capture also the object interior. To understand

this consider the example in Fig. 2.1 of the Rubin’s vase [Rubin, 1915] which

allows for two interpretations – two faces or a vase – if one observes the image

contours. To resolve this ambiguity the object interior needs to be selected. To

address this problem, some of the contour-based descriptors, such as the ones

based on the medial axis transform, relate the object boundary to the object

interior [Blum, 1973, Siddiqi et al., 1999, Sebastian et al., 2004].

In this work we aim at capturing the object boundary as well as its interior. In

addition, we propose a descriptor which does not require a closed curve as an input

and thus can deal with occlusions and partial views.
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(a) Image con-
tours

(b) Face in-
terpretation

(c) Vase in-
terpretation

Figure 2.1: Rubin’s vase allows for two interpretations with the same set of image
contours.

Holism. In this work, we follow the view of the Gestalt school of perception. Ac-

cording to the principles of Gestaltism, objects are perceived as a whole. This notion

is best captured in the words of Koffka [Koffka, 1935] (p. 176): ‘The whole is differ-

ent from the sum of its parts’ and inspires the use of holistic object representations.

Evidence for this principle are the so called emergent properties of part configura-

tions [Palmer, 1999] – a configuration of parts can have properties, which are not

contained in the individual parts. For example, in Fig. 2.1 the centaur, which has

a horse and a human part is neither a horse nor a human but a completely new

creature. This interpretation is not only based on the properties of the individual

parts (human upper body and horse torso in this case), but mainly on the interaction

among the parts (a human upper body being attached on top of a horse torso).

The holistic approach is especially true for shape, where local parts are not

descriptive since they consist of simple contour segments. Contrary to edge- and

texture-based local descriptors, for which a patch in the image can contain rich

information, shape has locally very limited expressiveness – usually it is locally a

curve, potentially with a few high curvature points. For example, in Fig. 2.1 the

locally salient corners carry virtually no discriminative information to differentiate

between the two objects.

If we try to increase the support of the local parts, we can see that they be-

come expressive only if they capture a big portion of the outline. At this global
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Figure 2.2: A creature which is part human and part a horse is a completely new
creature.

level, however, at which part descriptors highly overlap, we can observe global in-

teractions among parts – we can no longer assume independence in the appearance

of the different parts, as it is commonly done for part-based approaches. Hence,

global dependence among all shape parts emerges and this is what we will regard

computationally as holism.

The above interpretation of holism as global dependence among all shape parts

does not give a direct prescription for the design of shape descriptors, but can only

serve as a high-level motivation. From a computational standpoint, a holistic descrip-

tor should not merely add up the evidence from the individual object contour seg-

ments, but compute properties which are a non-additive function of all or most of the

contour segments. For example, the Fourier contour descriptor [Zhang and Lu, 2003]

consists of spectral coefficients which depend on the whole object outline. Similarly,

the medial axis [Blum, 1973], which is the basis for shocks and shock graphs, depends

on the whole object outline.

A major drawback of such holistic descriptors is that they can easily be affected by

clutter. For non-segmented objects, background structure in the image and interior

contours may clutter the descriptor and thus severely undermine its representational

power. This has limited the applicability of the aforementioned representations to

object recognition benchmarks.
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(a) Local features’ view (b) Boundaries of both objects

Figure 2.3: Two shapes, when viewed through the eyes of local salient part descrip-
tors, are virtually indistinguishable. When, however, both shapes are viewed as
whole, we see a difference, which is not conveyed through the salient parts.

Transformation Invariance. A different property of a shape representation is

shape equivalence – under which conditions should two shapes be perceived as cor-

responding to the same object type [Palmer, 1999]. This question can be addressed

by categorizing the transformations under which a shape should not change its type.

A shape representation can be transformation invariant with respect to:

Rigid transformations: It is desirable that a shape descriptor is invariant to sim-

ilarity transformations: translation, rotation and scaling; and their combina-

tions. In addition, reflections do not change the shape identity.

Non-rigid transformation: A shape descriptor should be invariant to small non-

rigid transformations. For example, minor stretching of object parts or even

the whole object shape do not change the identity of the shape.

Articulations: A more severe class of deformations are articulations. In case of

articulations, an object shape can be decomposed into several parts which can

undergo large non-rigid transformation and usually the deformations of the

different parts are independent. As such, articulations occur only for specific

objects, such as humans, animals, etc.
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Image artifacts. Object recognition in real images, which contain multiple objects

and background structures, pose a different array of challenges, which affect shape-

based recognition.

Clutter: Interior contours and background structure can add irrelevant information

to any object representation. To address this problem, most of the object recog-

nition methods rely on local features [Zhang et al., 2007a]. In the case of shape-

based recognition, semi-local descriptors have been used [Ferrari et al., 2008],

[Belongie et al., 2002]. This approach, however, can be only of limited success

for shape, which best is described globally.

Occlusion and missing parts: Note that these types of challenges are more nat-

urally dealt with using part-based shape representations. In the case of holistic

representations, where an object part may affect the whole descriptor, dealing

with occlusions becomes harder.

2.2 Chordiogram

We introduce a novel shape descriptor, called a chordiogram, which addresses most

of the challenges outlined above [Toshev et al., 2010]. It captures both the object

boundary as well as its interior in a holistic fashion. In addition, it is invariant to

certain rigid transformations and robust to shape deformations. Most importantly,

however, it can be applied in images with severe clutter, which allows for recognition

in unsegmented images.

2.2.1 Definition of the Chordiogram

Let us denote by C all the boundary points of a segmented object. To define the

chordiogram, consider for a moment a pair of boundary edges p and q from C. We

will call such a pair (p, q) a chord. We can think of a chord as a way to express a
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Figure 2.4: Chord features and orientation of the normals at boundary edges.

dependency between edges p and q. One can define various features which describe

the geometry of the chord, which we will denote by fpq ∈ RD, as we will see in the

subsequent section. These features capture geometrical relationships between the

two boundary points.

We describe the shape of a segmented object by capturing the features of all

chords. In this way we attempt to capture all dependencies among boundary points

and achieve a holistic description. More precisely, the chordiogram ch is defined as a

K-dimensional histogram of all chords, where the mth chordiogram element is given

by:

chm = #{(p, q)|fp,q ∈ bin(m), p, q ∈ C} m = 1 . . . K (2.1)

To define the chordiogram, one needs to sample points from the shape. In our
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definition we take every pixel on the shape.

2.2.2 Chord Features

The exact features that are used to describe a chord determine the properties of the

chordiogram. In our work, we use the following two possible sets of chord features.

I. Translation-invariant chord features. One potential chord characterization

can be achieved if we focus on the relative geometric configuration of the two bound-

ary edges. More precisely, we define four chord features (see Fig. 2.4(a)):

• Chord length lpq and orientation ψpq of the vector connecting p and q.

• Normals θp and θq to the object boundary at p and q.

Thus, the chord features can be written as:

f (t)
pq = (lpq, ψpq, θp − ψpq, θq − ψpq)T

The normals are defined such that they point towards the interior of the object.

In this way not only the contour shape at points p and q is captured but also the

relation of the interior to the chord. For example, in Fig. 2.4(c) the chords at the

two L-junctions at the bottom of swan’s neck differ because the object interior is

positioned differently w. r. t. the two junctions.

Since the features are real-valued, to compute the above histogram one needs to

quantize the features into bins. The lengths lpq are binned in bl bins in a log space,

which allows for larger shape deformation between points lying further apart. The

length h of the largest bin determines the scale of the descriptor – every two boundary

points lying within distance h will be captured by the descriptor. To guarantee that

the descriptor is global, we set h equal to the diameter of the object in case of pre-

segmented object masks. The remaining three features are angles lying in [0, 2π)

and are binned uniformly – the chord orientation in br bins; the normal angles are
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(a) Coarse shape. (b) Fine shape.

Figure 2.5: For each pair of shapes (upper row), we show the chordiogram computed
over the normal features only (middle row) and over the chord length and orientation
(lower row).

binned in bn angles. This binning strategy results in a N = bl × br × b2
n dimensional

shape descriptor at scale h. The chord features are summarized in Table 2.1.

Chord Features Analysis The chord features determine the invariance of the

chordiogram to geometric transformations. Since we do not capture absolute rotation

information, the resulting descriptor is translation invariant. However, the chord

orientation prevents the descriptor from being rotation invariant. Similarly, the

chord length prevents the chordiogram from being scale invariant. This design choice

is motivated by the fact, that translation is the largest possible dimension of a

similarity transformation we have to search along during detection. Moreover, the

above version of the chordiogram is tailored towards image datasets, which exhibit

the characteristics of personal photo collections – users tend to take pictures of

objects in their natural pose, which usually means that we do not need to search

over possible rotations.

Note, that we potentially could eliminate features which are not invariant to
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feature binning # bins
invariance

rotation scale translation

lpq chord length log space bl yes no yes
lp distance to center uniform bd yes no no
ψpq chord orientation uniform br no yes yes
θp − ψpq relative normal uniform bn yes yes yes

Table 2.1: Summary of the chord features and their properties. Note that both the
chord length and distance to object center depend also on the scale, defined as the
boundary of the largest bin.

other types of transformations. However, this would decrease the expressiveness of

our representation.

The chord features are chosen such that they completely describe the geometry

of a chord. When it comes to the chordiogram, the features capture different shape

properties. The chord length and orientation capture global coarse shape properties,

while the fine information is captured by the normals.

To see this, consider the example given in Fig. 2.5. We can restrict the computa-

tion of the chordiogram only over a subset of the features. If we only use the normals

at the boundary points, then the fine boundary information shown in Fig. 2.5(b) can

be distinguished. If we, however, use only the chord length and orientation, then we

can discriminate based on coarse shape, as visualized in Fig. 2.5(a).

II. Rotation-invariant chord features. In certain applications, such as videos

or multiple images of the same scene, we could use motion information or stereo to

detect the rough location and support of a foreground object (see Chapter 4). In

such situations, translation and scale invariance is irrelevant, while we need to deal

with rotation.

To introduce a rotation-invariant variant of the chordiogram, consider the center

of mass of the object outline defined as

c =
1

|C|
∑

p∈C

xp where C are all boundary points.
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For each boundary point p ∈ C denote by lp = |pc| the distance to the object center

c. Then the rotation-invariant features are (see Fig. 2.4(b)):

• Chord length lpq of the vector connecting p and q and distances to center lp

and lq.

• Normals θp and θq to the object boundary at p and q. To achieve rotation

invariance of these features, the angles are normalized with respect to the

chord orientation.

Thus, the chord features can be written as:

f (r)
pq = (lpq, lp, lq, θp − ψpq, θq − ψpq)T

The distances lp and lq are binned uniformly into bd bins, while the remaining features

are binned as above. This gives us a N = bl × b2
d × b2

n dimensional descriptor. The

chord features are summarized in Table 2.1.

2.3 Properties and Analysis of the Chordiogram

In this section we study the chordiogram with regard with the properties outline in

Sec. 2.1.

Boundary and interior. An important difference to most contour-based shape

representations, is that the chordiogram captures the contour orientation relative

to the object interior. Orienting the boundary normals with respect to the inte-

rior allows us not only to capture different interpretations of a contour, as shown

in Fig. 2.1 in Sec. 2.1, but also contributes to better discrimination, for example,

between concave and convex structures (configurations fpq and fp′q′ respectively in

Fig. 2.4(c)), which otherwise would be indistinguishable.
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2.3.1 Gestaltism

The introduced descriptor is a global and holistic shape representation. To see this

note that we take into account all possible chords – long chords as well as short

chords. Thus we capture short as well as long geometric relations, which makes the

descriptor global.

To give some intuition for the holistic nature of the descriptor, consider the

example in Fig. 2.6. Denote by chhorse and chcentaur the chordiograms of the two

shapes. Further, denote by chhorse
i and chcentaur

i the chordiograms of the ith part, i ∈
{1, 2}. The distance d(·, ·) between two shapes, expressed with their chordiograms

u and v, is defined in terms of the L1 norm:

d(u, v) =

∣∣∣∣
∣∣∣∣
u

||u||1
− v

||v||1

∣∣∣∣
∣∣∣∣
1

(2.2)

For the given examples and parameters of the descriptor set as bl = 4, br = 8,

bn = 8, we obtain the following the following distance:

d(chhorse, chcentaur) = 0.72

If we ignore the holistic portion of the descriptor, which relates both parts, and

evaluate the distance between the parts only, we obtain:

d(chhorse
1 + chhorse

2 , chcentaur
1 + chcentaur

2 ) = 0.46

This shows that the chordiogram captures not only the shape of the individual parts,

but also their mutual relation. If we change one part, then the interpretation of the

other parts change as well, although they remain the same. This results in a larger

shape distance compared to an additive equivalent.

2.3.2 Deformation Analysis

In this section we analyze the performance of the chordiogram with respect to various

deformations, such as rigid transformations, local boundary deformations, boundary

noise and occlusion. The analysis is performed using the following setup.
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(a) Centaur. (b) Horse.

Figure 2.6: Each of the two examples consists of two parts. Part 1 is the upper body
(colored in black), while part 2 is the torso (in gray).

Figure 2.7: Example shapes used in the analysis of the chordiogram. We show 5 out
of 10 examples for each of the ten classes: octopus, pagodas, panda, pigeon, pizza,
platypus, pyramid, rhino, rooster, saxophone.
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Protrusion:

Crack:

Boundary 
noise:

Occlusion:

Rotation:

Shear:

Stretching:

Inter-class 
deformation:

Base 
shape:

Target 
shape:

smooth deformation

Figure 2.8: Examples of deformation paths of a reference shape to a target shape
for each of the used deformation types.
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Deformation Analysis Setup. We use a subset of the MPEG-7 CE-Shape 1

[Latecki et al., 2000] dataset, as presented in Fig. 2.7. We use 10 different classes

and 10 examples per class. We will call those shapes reference shapes. For each of

the analyzed deformations and each reference shape, we create a target shape which

is a deformed version of the reference shape. For example, if the reference shape

is a rooster and we analyze protrusions, we deform the rooster by introducing a

protrusion (see second row of Fig. 2.8). Moreover, for each pair of a reference and

a target shape, we introduce a deformation path which is a smooth morphing of the

reference shape into the target one (see Fig. 2.8 for examples of several deformation

paths).

In this setup, the target shape is considered a version of the reference shape after

undergoing a severe deformation. The deformation path contains milder deforma-

tions, and the further one walks along the path, the more severe the deformation of

the reference shape becomes.

By computing a chordiogram-based distance between the reference shape and

each shape on the deformation path, we can analyze the degradation of our descriptor

with respect to the type of deformation used to create this path and the degree of

deformation. In particular, we use L1 distance:

dγ,deformation type(shape) = ||ch(shape)− chγ,deformation type(shape)||1

where the second descriptor is the chordiogram of the reference shape after under-

going a deformation of a specified type and degree γ ∈ [0, 1]. In this setup, γ = 0

corresponds to no deformation, while γ = 1 is full deformation, as defined below.

For the experiments below, we use the translation invariant version of the chor-

diogram with parameters bl = 5, br = 4, and bn = 8.

Deformations. We create the above deformation paths with respect to the fol-

lowing deformations (examples of each of the deformations is given in Fig. 2.8):

Rigid transformations: We use the following three rigid transformations:
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Rotation: We rotate the object counterclockwise where γ = 1 corresponds to

a rotation of 90 degrees.

Shear: For a shear factor λ = 0.5γ, we create a deformed shape {p1, . . . , pn}
from the reference shape {pr1, . . . , prn} such that for each point pk there is

a point prm on the reference shape with prm =


 1 λ

0 1


 pk.

Stretching: We stretch the reference shape along the x coordinate. The max-

imal stretch, corresponding to γ = 1, is 2.5.

We do not analyze translation and scaling since by having an already segmented

object we have already dealt with such deformations.

Boundary deformations: We also introduce several local as well global deforma-

tions of the object boundary:

Protrusion: In order to analyze the effect of local boundary deformations, we

deform the reference shape by using one horizontal rectangular protrusion.

The length of the maximal protrusion is 0.5 of the length of the object.

Crack: Similarly to the protrusion, we introduce a crack with maximal length

of 0.5 of the object length.

Boundary noise: In order to analyze the effect of global boundary noise, we

perturb the object boundary. Each boundary point is moved along its nor-

mal at distance which is sampled from a normal distribution N (0, 0.1lγ),

where l is the object length.

Occlusion: Occlusion is modeled by occluding the right side of the object with a

rectangle. The maximal occlusion is covering half of the object.

The above deformations were chosen to be representative for rigid and non-rigid

transformations to which a shape descriptor should be robust. The degree to which

they are applied, as described above, was intended to introduce a severe change of

27



(a) Intra- to inter class deformation. (b) Rotation.

(c) Stretching. (d) Shear.

Figure 2.9: Degradation of the chordiogram distance for rigid-transformations.

the object shape. However, this change should not distort the perception of the

shape – a deformed object should be more similar in shape to itself than to any

object of a different class. Therefore, to evaluate the degradation of the chordiogram

distance while deforming a shape, we compare this degradation to the one which will

be observed if we morph the object to an object of a different class. For this purpose,

we define an inter-class deformation path. It is computed by randomly choosing for

each reference shape a shape of a different class.

Analysis. The degradation of the chordiogram distance for each deformation is

shown in Fig. 2.9 and Fig. 2.10. The X axis of each plot shows a point in the

inter-class deformation path. Suppose that γ denotes a point on the X axis, i. e. a
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(a) Protrusion. (b) Cracks.

(c) Boundary noise. (d) Occlusion.

Figure 2.10: Degradation of the chordiogram distance for boundary deformations
and occlusion.

degree of morphing of an object of one class to another object of a different class.

For each γ and deformation type, we plot in green the maximally tolerable degree

of deformation µ1(γ) – the degree of deformation which yields on average lower

chordiogram distances than the distances of the γ-inter-class deformation:

µ1(γ) = max{β|Eshape(dβ,deform. type(shape)) ≤ Eshape(dγ,intra-class(shape))}

where the above expectation is computed over all reference shapes.

Since the mean does not tell us anything about the variance of the data, we

use a second definition of a maximally tolerable degree of deformation – its average

chordiogram distance is smaller than the average γ-inter-class deformation by at
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least the sum of the standard deviations σ of both deformations:

µ2(γ) = max{β|Eshape(dβ,deform. type(shape)) + σshape(dβ,deform. type(shape)) ≤

Eshape(dγ,intra-class(shape))− σshape(dγ,intra-class(shape))} (2.3)

We plot the second curve µ2 in red.

In Fig. 2.9(a) we compare the inter-class with the intra-class chordiogram dis-

tance. We can see that on average the chordiogram distance for objects of the same

class is smaller than the distance of objects morphed with γ = 0.3 to objects of

different classes. In addition, we plot in Fig. 2.9(b)-(d) the degradation of the chor-

diogram distance with respect to rigid transformations. Using the µ2 measure of

deformation tolerance, the maximally tolerable stretch is 1.7, shear 0.42, and rota-

tion of 30 degrees. This means, that deformations stronger than the aforementioned

parameter will make an object look as dissimilar to the original object as an object

of different class. The above values are a direct function of the chordiogram parame-

ters. Making the chordiogram bins larger would make the descriptor more tolerable

to rigid transformations. However, its inter-class versus intra-class separability will

decrease.

Further analysis is presented in Fig. 2.10. We can see that the chordiogram is

robust to protrusion and cracks which extend up to half of the object length. This

can be explained with the fact that both protrusions and cracks are local deforma-

tion. Although they add a large new part to the shape, most of the shape remains

unchanged which is captured by the chordiogram. Boundary noise, however, is less

tolerated by the chordiogram. We can see that perturbing the points by 0.03l, where

l is the object length, can make an object look almost as an object of a different class

(γ = 0.85 of the average inter-class deformation path). This can be explained by the

fact that noisy boundaries affect strongly boundary normals which an integral part

of the descriptor. Finally, occluding an object will approximately linearly degrade

the chordiogram distance. Occlusion of 50% of the object makes it indistinguishable
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(a) Intra- to inter class deformation. (b) Rotation.

(c) Stretching. (d) Shear.

Figure 2.11: Degradation of the chordiogram distance for rigid-transformations. We
plot average deformation paths for four different shape matching techniques.

from object of different classes.

2.3.3 Comparative Deformation Analysis

We compare the performance of the chordiogram under the deformations used in

Sec. 2.3.2 with three other shape representations and matching techniques – Haus-

dorff distance (HD) [Huttenlocher et al., 1993], Shape Context (SC)

[Belongie et al., 2002] and Inner Distance Shape Context (IDSC)

[Ling and Jacobs, 2007]. For each of the aforementioned approaches, we compute a

matching cost along a deformation path for each shape and deformation type. We
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(a) Protrusion. (b) Cracks.

(c) Boundary noise. (d) Occlusion.

Figure 2.12: Degradation of the chordiogram distance for boundary deformations
and occlusion. We plot average deformation paths for four different shape matching
techniques.

denote this cost by

dγ,deform.,algo(shape)

where algo is one of the above shape matching techniques. In the case of the chor-

diogram, we use the L1 distance as explained in Eq. 2.2.

Since the costs of the different techniques are on different scales, we normalize

them in such way that the inter-class deformation cost is the same as the one of the

chordiogram:

d′γ,deform.,algo(shape) =
dγ,deform.,algo(shape)dγ,inter-class,chordiogram(shape)

dγ,inter-class,algo(shape)

We plot d′ in Fig. 2.11 and Fig. 2.11 for the deformations introduced in Sec. 2.3.2.
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Figure 2.13: Overview of the MPEG-7 dataset. We show a single example from each
class.

We can see that the chordiogram performs similarly to SC and IDSC with respect

to rigid transformations, while HD performs much worse. This is a result of the

fact that all three descriptors are histogram-based and thus they exhibit similar

performance to rigid-transformations. When it comes to cracks and perturbations,

the chordiogram performs slightly better than SC and IDSC.

2.3.4 Recognition Experiments

Figure 2.14: Example performance of the translation invariant chordiogram on
MPEG 7. We show several classes and the achieved performance on the right.

To evaluate the performance of the chordiogram for the task of object recognition,

we perform experiments on the MPEG-7 CE-Shape 1 part B dataset [Latecki et al., 2000].
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(a) Translation invariant chordiogram.

level
parameters

dimension Bulleye
bl br bn

4 8 8 2048 80.85%

(b) Rotation invariant chordiogram.

level
parameters

dimension Bulleye
bl bd bn

1 2 1 2 32 55.19%
2 4 3 4 576 74.78%
3 8 7 8 25088 78.85%
4 16 15 16 921600 77.99%
5 32 31 32 31490048 75.99%

PMK 79.52%

Table 2.2: We present parameters of the chordiogram and the corresponding Bulleye
score obtained on the MPEG7 dataset. Top (a): translation-invariant variant of the
chordiogram. These parameters will be used in the experiments in the subsequent
chapters. Bottom (b): rotation-invariant chordiogram with several parameter set-
tings, called also levels. In addition, we aggregate the descriptors over the different
levels using Pyramid Matching Kernels and show the corresponding score.

This is a an established dataset which is used to evaluate shape-based classification

and retrieval. It consists of 1400 binary object masks representing 70 different classes,

each class having 20 examples (see Fig. 2.13). The recognition rate reported for this

dataset is the Bulleye score: each shape is matched with all shapes and the percent-

age of the 20 possible correct matches among the top 40 matches is recorded; the

score is the average percentage over all shapes.

In our experiments we use L1 distance between chordiograms extracted from

each shape. We test both the translation- and rotation-invariant versions of the

chordiogram (see Sec. 2.2.2).

The achieved Bulleye scores are summarized in Table 2.2. To compute a distance

between each two objects, we first scale-normalize all the objects. Since the transla-

tion invariant chordiogram is not rotation invariant, we rotate each image br times

using br rotations of angle {0, 2π
br
, . . . , (br − 1)2π

br
} around the object center of mass
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Method Bulleye score

CSS [Mokhtarian et al., 1997] 75.44%
Visual parts [Latecki and Lakamper, 2000] 76.45%
Shape Context + TPS[Belongie et al., 2002] 76.51%
Aligning curves [Sebastian et al., 2003] 78.16%
Rotation inv. chordiogram 79.52%
Generative Models [Tu and Yuille, 2004] 80.03%
Translation inv. chordiogram 80.85%
Inner-distance SC + DP [Ling and Jacobs, 2007] 85.40%
Hierarchical Procrustes [Mcneill and Vijayakumar, 2006] 86.35%
Shape Tree [Felzenszwalb and Schwartz, 2007] 87.70%

Table 2.3: Comparison of the performance of the chordiogram with other shape
matching methods on the MPEG dataset.

and compute the chordiogram. Thus, we obtain br descriptors {ch
(1)
i , . . . , ch

(br)
i } for

the ith object corresponding to two different rotations. The distance between tho

images i and j is defined as the smallest distance in L1 sense among all rotated

chordiograms:

d(i, j) = min
θi,θj

{||ch
(θ1)
i − ch

(θj)
j ||1|θi, θj ∈ {1, . . . , br}}

Using the above setup, we achieve a score of 80.85%.

In addition, we evaluate the performance of the rotation invariant chordiogram,

which is more suited for this experiment. The results show that the bin sizes are

not so crucial and different parameters lead to similar scores (see Table 2.2(b)).

Moreover, if we combine them using Pyramid Matching Kernel approach

[Grauman and Darrell, 2007], we achieve score of 79.52%.

A comparison to other shape matching approaches is presented in Table 2.3. We

outperform most of the approaches with exception of Shape Trees

[Felzenszwalb and Schwartz, 2007], Hierarchical Procrustes [Ling and Jacobs, 2007]

and Inner Distance Shape Context [Ling and Jacobs, 2007]. The main reason is that

the latter approaches are based on metrics which are computed along the shape

contour, while our approach uses Euclidean distances to capture shape. As a result
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it does not deal as well with non-rigid deformations as the above methods. However,

as we will see in the subsequent chapters, the particular definition of the chordiogram

allows it to be combined with segmentation and in this way to be applied to cluttered

images, while the above methods assume that the object has been pre-segmented.

An additional advantage of the chordiogram is that its distance is simply a L1 norm

computation, while the above approaches require an inference of some sort.

To better understand the performance of our representation, we show several

classes from MPEG in Fig. 2.14 and their Bulleye score. We can see that the chor-

diogram performs well on classes which have medium/large deformation (misk in last

row, frog) and medium articulations (camel, deer). However, the approach has prob-

lems with classes which are highly deformed (lizard), highly articulated (octopus),

or are characterized by small details (head of fork, device9 in fourth row).

2.4 Related Work

2.4.1 Shape Representations

The chordiogram has been inspired by and exhibits similarities to several other rep-

resentation techniques in computer vision.

Shape representations. The most closely related shape descriptor is the Shape

Context (SC) [Belongie et al., 2002]. In the context of the chordiogram, the SC can

be thought of capturing the relationship of all boundary points to only one boundary

point, which is the descriptor offset. These relationships are parameterized in a

similar fashion and captured in a histogram. The fact that SC is defined with respect

to a fixed offset, makes it more descriptive. However, contrary to the chordiogram,

the SC is not global and not translation-invariant. More in historic perspective,

pairwise geometric histograms have been used to capture relations of all lines in an

image to a reference line [Evans et al., 1992].
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The descriptor is also inspired by [Carlsson, 1999], which captures properties of

set of points. These sets are larger than pairs and the properties are related to the

order structure among points and tangent lines at those points. The major difference

is that the resulting properties are of a topological nature, while our approach has a

metric nature.

Shape representations in 3D. Histograms of geometric properties of sets of

points have been used to match 3D models [Osada et al., 2002]. These histograms

can be interpreted as distributions of shape functions, where each function repre-

sents a property of a small set of points (pairs, triplets or four points). One of the

motivations of this work is the fact that 3D objects lack natural parameterization

as the arc length used for 2D contours. Note, however, that in case of unsegmented

objects in cluttered images we are faced with ambiguity – although we know how to

parameterize a single contour, we do not know which contours comprise the object

and thus we cannot parameterize directly the object boundary. As we will see in

the next chapter, the histogram nature of our representation allows us to select the

object boundary and resolve the above ambiguity.

2.4.2 Shape Part Correspondence

A common paradigm in shape matching is to try to quantify the similarity between

two shapes by establishing correspondences between points on the shapes. The corre-

spondence between the points serves as an explanation of the match, while the qual-

ity of the match is determined using a matching model [Yoshida and Sakoe, 1982,

Basri et al., 1998]. The chordiogram, as defined in Sec. 2.2.1, does not capture any

absolute boundary point information as part of the chord features, neither it captures

any location relations among chords. As a result, it is not clear whether the chor-

diogram, as a histogram, can be used to establish correspondences among boundary

points of two shapes.
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In this section we relate the chordiogram to the graph matching problem, which is

a widely used approach to the correspondence problem [Shapiro and Haralick, 1979,

Gold and Rangarajan, 1996, Umeyama, 1988a], and obtain the following insights:

1. We provide a different interpretation of the chordiogram matching as bipar-

tite matching among chords. We show that the chordiogram can be used to

compute the cost of this bipartite matching efficiently without recovering any

explicit correspondences.

2. We bound the chordiogram matching from above with the cost of a graph

matching among points on the shape. This relates our descriptor to correspon-

dence estimation.

3. Finally, we show how to estimate correspondences between shapes starting

from the bipartite matching interpretation of our descriptor.

Next we set up the notation and tools needed for the subsequent analysis.

Graph matching. Suppose that the two shapes, whose similarity needs to be

assessed, are defined in terms of point sets:

P s = {ps1, · · · , psn} for s ∈ {1, 2}

For simplicity, we assume that both point sets have the same cardinality n. In this

case, we can think of a shape as a complete graph, whose nodes are the above point

set and the edges are the chords (see Sec. 2.2.1).

Chord distances. Furthermore, a chord (i, j) from shape s, and in this way the

edge (i, j) from graph s, can be described by the bin into which it falls using a

predefined binning scheme b. This can be written as a trivial chordiogram chb,sij , in

which only the chord (i, j) with a feature vector f sij gets binned (see Eq. 2.1):

(chb,sij )m =





1 if f sij ∈ binb(m)

0 otherwise
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Denote further by chb,s the chordiogram for shape s using binning scheme b and

N =
(
n
2

)
= ||ch1|| = ||ch2|| the number of chords.

In the following exposition we will use a sequence of nested binning schemes, as

defined in [Indyk and Thaper, 2003]. Suppose that ∆ is the diameter of the chord

set of both shapes, where the diameter is defined in terms of the L1 distance on

the feature vector fij of a chord (i, j). Then the bth binning scheme is defined by

partitioning each feature space using a grid of size 2b. The values of b are such that

they define together a fine to coarse hierarchical binning: the grid cell length at level

b is 2b, b ∈ {1/2, 1, 2, 4, . . . , 2B} with B = dlog2 ∆e.
Using the above descriptors of a chord, we can define the following three distances

Wij;kl between chords (i, j) and (k, l) from two different shapes, which characterize

their dissimilarity:

L1 in original feature space:

W orig
ij;kl = ||f 1

ij − f 2
kl||1 (2.4)

Bin-based distance: For a particular binning scheme b , one can declare two chords

similar if they lie in the same bin, and dissimilar otherwise. This can be

expressed as follows:

W bin
ij;kl = ||chb,1ij − chb,2kl ||1 (2.5)

Multilevel bin-based distance: In addition to the above bin comparison dis-

tance, one can combine multiple binning schemes into a single distance:

Wmbins
ij;kl =

B∑

b=−1

αb||chb,1ij − chb,2kl ||1 with weights αb (2.6)

Graph matching formulation. We would like to recover one-to-one correspon-

dence between both graphs. For this purpose, we define a correspondence indicator

variable

xik =





1 if p1
i and p2

k are in correspondence;

0 otherwise

(2.7)
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Then, a matching problem, which evaluates the structural similarity between the

graphs, can be formulated as follows:

(GM) : min
x
xTWx =

∑

ijkl

Wij;klxikxjl (2.8)

subject to
∑

k

xik = 1 for all i;
∑

i

xik = 1 for all k (2.9)

xik ∈ {0, 1} for all i, k (2.10)

where w can be any positive chord distance, such as the ones defined in Eq. (2.4–2.6).

The constraints (2.9) guarantee one-to-one correspondence, while the integral con-

straints (2.10) assure that the solution to the problem is a correspondence indicator

variable, as defined in Eq. (2.7).

Relaxation of the graph matching formulation. Following

[Chekuri et al., 2005], we reformulate the above problem into an equivalent one, in

which we introduce a new set of variables X : Xijkl = xikxjl. These variables can be

thought of as correspondence variables between chords. Then problem (GM) from

Eq. (2.8) reads:

(GMC) : min
X

W ·X =
∑

ijkl

Wij;klXijkl (2.11)

subject to
∑

k,l

Xijkl = 1 for all i, j;
∑

i,j

Xijkl = 1 for all k, l (2.12)

∑

l

Xij1kl =
∑

l

Xij2kl for all i, k, j1, j2 (2.13)

∑

j

Xijkl1 =
∑

l

Xijkl2 for all i, k, l1, l2

Xijkl ∈ {0, 1} for all i, k (2.14)

Constraints (2.12) stem directly from the definition of X and the constraints (2.9)

on x. Further, the constraints (2.13) assure that corresponding chords agree on a

unique correspondence between the points. This constraint can be derived from the
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following relationship between point and chord correspondences:

xik =
∑

l

Xijkl for all j (2.15)

To solve the integer program (GMC), one can relax the integral constraints (2.14)

to non-negativity constraints. As a result, one obtains the following exactly solv-

able linear program [Chekuri et al., 2005], which we will call point matching (PM)

indicating that it aims to recover point correspondences:

(PM) : min
X

W ·X subject to X ∈ PPM (2.16)

where PPM denotes the following polytope:

PPM = {
∑

k,l

Xijkl = 1 for all i, j;
∑

i,j

Xijkl = 1 for all k, l; (2.17)

∑

l

Xij1kl =
∑

l

Xij2kl for all i, k, j1, j2; (2.18)

∑

j

Xijkl1 =
∑

l

Xijkl2 for all i, k, l1, l2;

X ≥ 0} (2.19)

A different relaxation would be to retain the integral constraints (2.14), but to

remove the constraints (2.13). This corresponds to bipartite matching among the

chords of the two shapes:

(CM) : min
X

W ·X subject to X ∈ PCM (2.20)

with

PCM = {
∑

k,l

Xijkl = 1 for all i, j;
∑

i,j

Xijkl = 1 for all k, l; (2.21)

Xijkl ∈ {0, 1} for all i, j, k, l} (2.22)

The latter program does not guarantee that the resulting chord correspondence can

be directly translated to point correspondences. However, it is an integer program,

which can be solved exactly using Max-Flow algorithms.
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Relations between graph matching and chordiogram distance. Using the

above definition of graph matching and its relaxations, one can show that the chor-

diogram matching is closely related to the correspondence problem between two

shapes. First, we show the relationship between the chordiogram and bipartite

matching among chords:

Theorem 1. Define the set

P∗CM = {X ∈ PCM|
∑

(i,j)∈binb(m)

(k,l)∈binb(m)

Xijkl = min{ch1
m, ch2

m} for all bins m and schemes b}

(2.23)

as a subset of PCM for which the chord correspondence variable X is constrained

through the chordiograms.

Then we can show that each X∗ ∈ P∗CM is a minimizer of the problem (CM) with

data terms Wmbins and the minimum of this problem is analytically computable using

the chordiogram:

Wmbins ·X∗ =
B∑

b=−1

αb||chb,1 − chb,2||1

for weights αb = 2b.

Furthermore, we can relate the chordiogram matching to point matching between

shapes:

Theorem 2. Suppose that X∗cm,orig is the minimizers of problem (CM) in Eq. (2.20)

using the data terms W orig. Further, X∗pm is the minimizer of problem (PM) in

Eq. (2.16) using the data terms Wmbins. Then, the following relationship holds:

C(W orig ·X∗cm,orig) ≤
B∑

b=−1

αb||chb,1 − chb,2||1 ≤ Wmbins ·X∗pm

for a positive constant C.

The proof of both theorems is given in Appendix A. There are several insights

we gain from the above theorems which relate our shape representation to matching

points on the two shapes.
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1. As shown in Theorem 1, the chordiogram distance is a minimizer of a bipar-

tite matching among chords for a specific form of the chord distances. Thus,

it quantifies the best possible correspondences among chords on two shapes

without explicitly giving those correspondences. In addition, the chordiogram

distance does not require any inference and is thus more efficient.

2. As shown in the first inequality of Theorem 2, the chordiogram over several

binning schemes is an upper bound of the bipartite matching for which the

similarities are defined in the original chord feature space. This shows that

by choosing several binning schemes for the chordiogram, we can obtain an

approximation to the original distance in the chord feature space.

3. As shown in the second inequality of Theorem 2, the distance based on our

shape descriptor is a lower bound of the linear programming approximation

for establishing correspondences among points on two shapes.

Correspondence recovery. The above theorem is based on the fact that we can

think of chordiogram matching as a different relaxation of the original graph match-

ing formulation. This allows for recovery of point correspondences – if we have

X ∈ PPM , then we can use Eq. (2.15) for an arbitrary j to estimate point correspon-

dences. To obtain such an X, however, we will not solve (PM) directly, but rather

use the solution for (CM) obtained from the chordiogram matching. More precisely,

we will try to find X ∈ PPM closest to any minimizer of (CM):

min
X
{||X −X∗cm||2|X ∈ PPM , X∗cm ∈ P∗CM} (2.24)

Note the above problem is an integer quadratic program, and thus NP-hard. To

obtain an approximate solution, one can relax the above problem by replacing the
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Figure 2.15: Examples of recovered correspondence on pairs of shapes. Points, col-
ored in the same color, are in correspondence.

integral constraints with nonnegativity constraints in the definition of P∗CM:

P∗∗CM = {
∑

k,l

Xijkl = 1 for all i, j;
∑

i,j

Xijkl = 1 for all k, l;

Xijkl ≥ 0 for all i, j, k, l;
∑

(i,j)∈bin(m)

(k,l)∈bin(m)

Xijkl = min{ch1
m, ch2

m} for all bins m}

The above polytope P∗∗CM is a convex set and if we replace P∗CM for P∗∗CM in problem

(2.24), then we obtain a convex program. The correspondence recovery procedure is

summarized in Algorithm 1.
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Algorithm 1 Correspondence estimation from chordiograms.

Require: Chordiograms ch1, ch2 of two shapes.
1: Define P∗∗CM using ch1 and ch2.
2: Solve program (2.24) and obtain minimizer X∗ ∈ PPM .
3: Recover correspondence indicator variables x from X∗ using Eq. (2.15).
4: Obtain discrete indicators x̂ij = 1 iff j = arg maxj1{xij1}, and 0 otherwise.

Examples. We show results of the correspondence recovery algorithm on selected

pairs of shapes from MPEG 7 dataset [Latecki et al., 2000]. From each shape, defined

by the outline of the shape mask, we sample uniformly 30 points, which are to be put

in correspondence. The chordiogram is computed using only the sample points. For

the optimization problem in step 2 of the algorithm, we use the CVX optimization

package [Grant and Boyd, 2010]. Results are shown in Fig. 2.15. As we can see,

correct correspondences are recovered for most of the points for articulated as well

as rigid objects. The main problems arise in cases of strong articulation (see tree in

row 3, column 1, where the orientation of the branches differs drastically), or lack of

matching points (see elephant in row 1, column 3, where in the left object two legs

are visible, while in the right object three legs are visible).

2.5 Conclusion

In this chapter we have introduced a novel shape descriptor, called chordiogram. We

showed that this representation is consistent with basic shape principles – it should

describe shape boundary and interior, has a global and holistic nature and is robust

to deformations. We contrast the chordiogram with other shape representations. In

particular, we show that although it is a global histogram, the presented descriptor

can be thought of as an approximation of graph matching between points on two

shape outlines. In this way, we are able to use it for recovery of correspondences

between two matching shapes.

In the next chapters we will build upon the introduced shape representation.
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In Chapter 3 we will integrate the chordiogram with segmentation and thus use it

in cluttered scenes. In addition, region and boundary grouping principles can be

combined with the chordiogram, as shown in the same chapter. Finally, application

of the rotation invariant version of our descriptor to object detection in videos will

be studied in Chapter 4.
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Chapter 3

Shape-based Detection

In the previous chapter we introduced a novel shape descriptor, called the chordio-

gram, which is consistent with most of the properties which a shape representation

should possess. In particular, this descriptor is holistic and has global support.

Unfortunately, such global representations suffer from all the irrelevant structure

present in images, such as interior contours and background clutter. This is a ma-

jor challenge while applying an object representation in real settings, such as scene

images of multiple objects and rich background structure.

In this chapter we present a framework for shape detection based on the chor-

diogram which addresses the problem of clutter [Toshev et al., 2010]. In the next

section, we define the shape detection problem. In Sec. 3.2-3.5 we present the for-

mulation of the detection model, whose inference is explained in Sec. 3.6.

3.1 Problem Formulation

To see the importance of the problems arising from clutter, consider for a moment

the ETHZ Shape dataset [Ferrari et al., 2009] which contains 255 images containing

objects of 5 different classes. Suppose that an oracle has supplied us with masks and

boundaries of those objects. If we compute the chordiogram using only the object
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(a) Original images: Only object boundaries. (b) Original images: All image contours

(c) LDA: Only object boundaries. (d) LDA: All image contours

Figure 3.1: Top: Examples of object boundaries and all image contours. Bottom:
The top 2 principal components of chordiograms computed using Linear Discriminant
Analysis for objects in the ETHZ Shape dataset.

boundaries, than the top two principle components reveal a feature space, in which

all classes are well separated from each other (see Fig. 3.1). However, if we use all

image contours we obtain a feature space which is not anymore separable. Therefore,

image clutter presents a major challenge to shape detection approaches, especially

when we deal with images of scenes. This is one of the main reasons why well

motivated shape representations such as shocks and shock graphs [Kimia et al., 1995,

Sebastian et al., 2004] were not successfully applied to cluttered scene images.

In this chapter we show how we can use the chordiogram to perform shape de-

tection in cluttered scenes. More precisely, we unify the problems of shape-based

detection and object segmentation in a single problem. For an input image and a set

of object masks, representing the shape of a set of objects, a shape detection method

should produce:

Segmentation: A segment which represents an object. This segment should be:

48



1. Similar in shape to one of the object models. This is realized through

a top-down process exploiting object-specific knowledge. Evidence from

human perception indicates that familiarity with the target shape plays

a large role in figure/ground assignment.

2. Perceptually salient region. This criterion is executed through a bottom-

up process based on general grouping principles, which apply to wide

range of object masks. In particular, the perceptual grouping component,

which we define, is based on configural cues of salient contours, color and

texture coherence, and small perimeter prior.

Detection: An association of the segmented object to one of the object models and

a cost of this association based on the shape similarity to the model. This

gives us a detection and quantification of this detection.

We attempt to solve for object segmentation and detection simultaneously. This

is motivated by the fact that when it comes to global holistic shape we cannot

evaluate the object-model similarity before we have segmented the object. However,

segmenting an object assumes an already correct detection. The resulting ’chicken-

egg’ problem can be naturally addressed by solving for both at the same time.

We propose the Boundary Structure Segmentation (BoSS) model, which ad-

dresses the problem of detection and segmentation simultaneously in a unified frame-

work. BoSS allows a concise formulation as an integer quadratic program, consisting

of two terms a boundary structure matching term defined over superpixel bound-

aries, and a perceptual grouping term defined over superpixels. The terms are cou-

pled via linear constraints relating the superpixels with their boundary. The result-

ing optimization problem is solved using a Semidefinte Programming relaxation and

yields shape similarity and figure/ground segmentation in a single step.
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Figure 3.2: Using a cluttered image and a set of .

3.2 Chordiogram Parameterization

In order to relate the chordiogram to image segmentation, we should be able to

parameterize it with segment and segment boundary indicator variables.

Oversegmentation. As a starting point for our method, we assume that we have

an oversegmentation of the input image. The property we require from the thus

obtained segments is that they do not cross object boundaries. In this way, every

object in the image is representable as a set of such segments.

The advantages of using oversegmentation are twofold:

• Since the object is representable as a few segments which should be chosen

from at most several hundred segments, one needs to reason over the space of

segments instead of pixels which leads to a computational speedup.

• Segments are results of a bottom-up perceptual grouping process and thus can

be expected to be coherent regions. Thus they represent a stable coarsening

of the search space.

Oversegmentation as a preprocessing was first used for human pose estima-

tion [Mori, 2005] and is widely used for object and scene segmentation. To ob-

tain the segments one can use any segmentation algorithm such as Mean Shift

[Comaniciu and Meer, 2002], Felzenszwalb’s graph based segmentation
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[Felzenszwalb and Huttenlocher, 2004], or Normalized Cuts [Shi and Malik, 2000],

[Cour et al., 2005].

Segment parametrization. For each segment k obtained via the oversegmenta-

tion we introduce a segment indicator variable sk ∈ {−1, 1}:

sk =





1 segment k is foreground

−1 otherwise

(3.1)

Further, denote by N the number of segments.

Segment boundary parameterization. We denote by B the set of all bound-

aries between pairs of neighboring segments, where the number of such boundaries

is M = |B|. Note that a contour b is a boundary because exactly one of its neigh-

boring segments k and m is foreground and the other is background (see Fig. 3.3).

To differentiate between those two cases, we include in B for each contour b two

boundaries: bm and bk. The first denotes the case when m is foreground and k is

background; the second case denotes the opposite case.

We introduce boundary indicator variables which indicate whether a segment

boundary is an object boundary. This variable not only captures the state of the

boundary but tries to explain which segment configuration causes this state. More

precisely, for each boundary bk ∈ B we introduce a boundary indicator variable

tkb ∈ {0, 1}:

tkb =





1 segment k is foreground

and segment m is background

0 otherwise

(3.2)

As a result, there are two variables associated with each boundary. If the bound-

ary designates an object boundary, then exactly one of the variables has value 1.

Otherwise both are 0. The relationship between the values of the boundary and
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(a) Segment m is foreground (b) Segment k is foreground

Figure 3.3: There are two cases in which boundary b can be an object boundary.

Boundary Segments
tkb tmb sk sm

1 0 1 -1
0 1 -1 1
0 0 1 1
0 0 -1 -1

Table 3.1: We present the relationship between boundary and segment indicator
variables.

segment variables is summarized in Table 3.1. This relationship can be expressed in

terms of two constraints:

tkb − tmb = 1/2(sk − sm) (3.3)

tkb t
m
b = 0 (3.4)

Chordiogram additivity. To parameterize the chordiogram using the above vari-

ables, it will prove useful to provide an equivalent definition to Eq. (2.1). For a given

segmented object, the chords connecting points on two boundaries b and c, caused by

segments k and m being foreground respectively, can be described by a chordiogram

chkmbc ∈ RK , bk, cm ∈ B:

(chkmbc )l = #{(p, q)|fpq ∈ bin(l), p ∈ bk, q ∈ cm} (3.5)

The above quantity can be considered as boundary-pair chordiogram. Note that the

boundary-pair chordiogram is a subset of the overall chordiogram. Then Eq. (2.1) can
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(a) Segmented object (b) Unknown object

Figure 3.4: The chordiogram of an object can be decomposed in terms of chordio-
grams which relate pair of boundaries, as shown on the left. If the object is not
segmented, the boundaries can be selected via the boundary indicator variables.

be expressed as a sum of all boundary-pair chordiograms for all pairs of boundaries.

This has the following linear form (see Fig. 3.4, left):

ch =
∑

bk,cm∈B

chkmbc (3.6)

The above decomposition will be referred to as chordiogram additivity – the descrip-

tor can be expressed in an additive form in terms of relations between object parts.

Note that this is not a contradiction to the holistic nature of the descriptor since the

additive components are not object parts, but configurations between parts.

Chordiogram parameterization. If we do not have a segmented object, we can

select the object boundaries using the indicator variables (see Fig. 3.4, right) and

express the resulting image chordiogram as follows:

ch(t) =
∑

bk,cm∈B

chkmbc t
k
b t
m
c (3.7)

The value of the lth bin can be expressed as a quadratic function:

ch(t)l =
∑

bk,cm∈B

(chbc)lt
k
b t
m
c = tTQlt (3.8)
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for a matrixQl which contains the values of the boundary-pair chordiogram: (Ql)bk;cm =

(chbc)l.

Note that in the above chordiogram parameterization one needs to indicate not

only the boundary but also its relationship to the neighboring segments. This infor-

mation is already contained in the chordiogram, since as defined in Sec. 2.2.1, each

chord captures the object interior via the orientation of the normals.

Note that the above formulation is quadratic in the number of segment bound-

aries. However, the original problem of selecting a set of such boundaries, which

comprise the object outline, is exponential in the number of boundaries.

3.3 Shape Matching

After we have parameterized the chordiogram in terms of the boundary indicators

(see eq. 3.7), we chose to compare it with the model chmodel using L1 distance:

match(t,m) = ||chmodel − ch(t)||1 (3.9)

The above shape matching cost evaluates the shape similarity between a model and

a particular selection of segment boundaries. This motivates us to formulate the

problem of shape matching as minimization of the above cost while taking into

account the relation between boundaries and segments, as expressed in constraints

in Eq. 3.3:

(SM) : min
t,s
||chmodel − ch(t)||1 (3.10)

subject to tkb − tmb =
1

2
(sk − sm) for all bm, bk ∈ B (3.11)

tkb t
m
b = 0 (3.12)

t ∈ {0, 1}2M , s ∈ {−1, 1}N (3.13)

Solving the above optimization problem will result in
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Segmentation: The opimal values of the boundary and segment indicators gives

the object interior and boundary.

Shape-based detection cost: The minimum of the objective function quantifies

the quality of match based on shape similarity.

Therefore, we will perform shape-based detection while at the same time we segment

the object.

Region-boundary constraints. Many of the contour-based shape matching ap-

proaches reason directly over image contours [Ferrari et al., 2009, Ferrari et al., 2008,

Lu et al., 2009, Felzenszwalb and Schwartz, 2007]. These works assume contours as

a result of bottom-up contour grouping preprocessing step. The use of pre-grouped

contours leads to more stable solution and reduces the computational complexity.

However, those approaches ignore region information. In the work closest to ours,

Zhu et al. [Zhu et al., 2008] rely on bottom-up grouping by selecting object bound-

aries from a set of long salient contours [Zhu et al., 2007].

In our model from Eq. 3.10 we use segments as additional constraints. This

results in a solution which has the following properties with respect to the segment

and boundaries:

Segments: A set of regions.

Boundaries: A set of non-intersecting, non-including, closed contours (see Fig. 3.5).

These requirements present a perceptual prior which reduces the search space and

thus leads to a more stable solution. The latter requirements on the detected image

boundaries are natural. The extracted contours should build a closed boundary, since

they represent an object outline. Moreover, an object outline is not self-intersecting

and the object interior should not include portions of the outline (non-including).
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(a) Intersecting contours (b) Including contour

Figure 3.5: Undesirable contour configurations.

3.4 Perceptual Grouping

Our model can express grouping principles relating regions as well as boundaries.

Region grouping principles. While matching the input image to a model, we

need to assure that the resulting figure represents a perceptually salient segmentation,

i. e. the resulting figure should be a coherent region or set of regions distinct from the

background. This property can be expressed using the segment indicator variable,

as introduced in Sec. 3.2, and Min-Cut smoothness criterion. If we denote by we,g

the similarity between the appearance of superpixels e and g, then we can express

the above region condition by the standard graph cut score:

groupr(s) = −sTWs = −1TW1 + 2
∑

e∈figure
g∈ground

we,g for s ∈ {1, 1} (3.14)

where the first term is constant.

Boundary grouping principles. In many cases an edge/contour detector cannot

detect all object boundaries since there is no evidence in the image (see Fig. 3.6,

right). However, if we use segmentation we can hallucinate object boundaries and

recover the missing ones (see Fig. 3.6, left). This comes with the danger that one

can hallucinate also non-existing objects in the maze of segment boundaries.

56



hallucination missing boundaryinput image

Figure 3.6: Left: input image. Middle: if we use all segment boundaries, than non-
existing objects can be easily hallucinated. Right: if we rely on an edge/contour
detection, then we can miss correct boundaries, which the segmentation can poten-
tially hallucinate.

To address this issue we propose to use all segment boundaries, while at the

same time incurring a cost if we choose hallucinated ones. In this way we will be

able to complete the bottom of the bottle in Fig. 3.6 by paying a small cost, while

we will never detect the apple since the cost for hallucinating all boundaries will be

prohibitively large.

For a boundary segment b, we denote by cb the percent of the pixels of b not

covered by image edges extracted using thresholded Pb [Martin et al., 2004]. Then

the boundary cost is defined as

groupb(t) = cT t =
∑

b∈B

∑

k∈N (b)

cbt
k
b for tkb ∈ {0, 1}N (3.15)

3.5 BoSS Model

The BoSS model combines the costs from the previous sections. It solves for a

shape match using cost (3.9) from Sec. 3.3, while at the same time applies grouping
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Figure 3.7: For an input image and model, as shown in the first row, our algorithm
computes an object segmentation displayed in (a) row. We present three solutions
by using only the matching term from Eq. (3.9) in first column; the matching term
together with the superpixel segmentation prior (see Eq. 3.14) in second column; and
the whole cost function consisting of the matching, segmentation and the boundary
term in third column. (b) We also show for the three cost combinations the relaxed
values of the segmentation variable s, as explained in Sec. 3.6.

principles as formulated in costs (3.14) and (3.15) from Sec. 3.4:

(BoSS) : min
t,s

match(t,m) + δgroupr(s) + γgroupb(t) (3.16)

s. t. tkb − tmb =
1

2
(sk − sm) for all bk, bm ∈ B (3.17)

tkb t
m
b = 0 (3.18)

t ∈ {0, 1}2M , s ∈ {−1, 1}N (3.19)

where δ and γ are weights of the different terms. The difference to the program

(SM) from Eq. (3.10) lies in the addition of two grouping terms.
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Term contributions. We examine the contribution of each term of the model

on one concrete example presented in Fig. 3.7. The shown results were obtained

using the optimization described in Sec. 3.6. By using only the matching term we

are able to localize the object and obtain a rough mask, which however extends the

back of the horse and ignores its legs (first column). The inclusion of the superpixel

grouping bias helps to remove some of the erroneous superpixels above the object

which have a different color than the horse (second column). Finally, if we add the

boundary term, it serves as a sparsity regularization on t and results in a tighter

segmentation (third column). Thus, the incorrect superpixels above the horse get

removed, since they contain hallucinated boundaries not supported by edge response.

Additionally, it recovers some of the legs, since they exibit strong edge response along

their boundary.

3.6 Inference

Both the Shape Matching problem formulated as an integer quadratic program (SM)

in Eq. (3.10) and (BoSS) from Eq. (3.16) are NP-hard. This not surprising since

it is the problem of selecting from a set of exponentially many segments such that

the resulting region has a desired shape and perceptual properties. To compute an

approximate solution, we apply the Semi-definite Programming (SDP) relaxation

[Goemans and Williamson, 1995, Boyd and Vandenberghe, 2004]. Since the latter

program is a superset of the former, we present an optimization scheme for (BoSS)

only.

First, we re-write the objective as a linear function and a set of quadratic con-

straints. We introduce for the lth bin a variable βl, which denotes the difference of

the model and image chordiogram at this bin. Then the objective of (BoSS) can be
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expressed in terms of β and a quadratic constraint for each bin:

min
t,s,β

1Tβ − δsTWs+ γcT t (3.20)

subject to tTQlt− chmodel
l ≤ βl (3.21)

chmodel
l − tTQlt ≤ βl (3.22)

tkb − tmb =
1

2
(sk − sm) for all bk, bm ∈ B

tkb t
m
b = 0

t ∈ {0, 1}2M , s ∈ {−1, 1}N (3.23)

where in the first two constraints (3.21) and (3.22) we use the chordiogram param-

eterization as defined in Eq. (3.8).

To apply the SDP relaxation, we introduce variables T and S, which bring both

the quadratic terms (3.21) and (3.22) into linear form: T = ttT ; and the quadratic

terms in (3.20) into linear form: S = ssT . This allows us to state the relaxation as

follows:

(BoSSsdp) : min
t,s,β

1Tβ − δtr(W TS) + γcT t (3.24)

subject to tr(QT
l T )− chmodel

l ≤ βl

chmodel
l − tr(QT

l T ) ≤ βl

tkb − tmb =
1

2
(sk − sm) for all bk, bm ∈ B

Tbk;bm = 0 for all bk, bm ∈ B

tkb = Tbk;bk for all bk ∈ B (3.25)

diag(S) = 1n (3.26)
 T t

tT 1


 � 0 (3.27)


 S s

sT 1


 � 0 (3.28)

The above problem was obtained from problem (3.20) in two steps. First, we re-

lax the constraints T = ttT to T � ttT and S = ssT to S � ssT respectively, which by
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Schur complement are equivalent to (3.27) and (3.28) [Boyd and Vandenberghe, 2004].

Second, we weakly enforce the domain of the variables from the constraint (3.23).

The −1/1-integer constraint on s is expressed as diagonal equality constraint on the

relaxed S (see Eq. (3.26)), which can be interpreted as bounding the squared value

of the elements of s by 1.The 0/1-integer constraint (see Eq. (3.25)) is enforced by

requiring that the diagonal and the first row of T have the same value. Since T = ttT ,

this has the meaning that the elements of t are equal to their squared values, which

is true only if they are 0 or 1. Finally, the boundary-region constraints, one of which

is quadratic, naturally translate to linear constraints.

The above problem is a liner program with inequality constraints in the cone of

positive semi-definte matrices. As such, it is convex and can be solved exactly with

any standard optimization package which supports such problems.

Discretization. Discrete solutions are obtained by thresholding s. Since s has N

elements, there are at most N different discretizations, all of which are ranked using

their distance to the model. If a threshold results in a set of several disconnected

regions, we consider all possible subsets of this set. The algorithm outputs the

top 5 ranked non-overlapping masks. Note that we are capable of detecting several

instances of an object class since they result in several disconnected regions which

are evaluated independently.

BoSS algorithm. The BoSS algorithms starts with an input image and a set of

models. It solves the above optimization problem for each image-model pair at each

scale. The best matching model gives the object segmentation as well as a detection

cost – the chordiogram distance of the model to the obtained segmentation. The

final algorithm is presented in Algorithm 2.
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Algorithm 2 BoSS algorithm.

Input: model masks m1, . . . ,mk; image segmentation parametrized by t and s;
scales h1, . . . , hp.
Initialize: segmentations S ← ∅ and their detection costs D ← ∅.
for i = 1 . . . k do

for j = 1 . . . p do
mj
i ← rescale mi to scale hj:

Compute chmod
i,j of mj

i at scale hj using Eq. (2.1).

Solve relaxed BoSS problem (3.24) using chmodel
i,j .

Discretize to obtain segmentation si,j; S ← S ∪ {si,j}.
Compute chi,j from si,j at scale hj using Eq. (2.1).

Compute detection cost: di,j ←
∣∣∣
∣∣∣ chi,j

||chi,j || −
chmodel

i,j

||chmodel
i,j ||

∣∣∣
∣∣∣
1
.

end for
end for
(i∗, j∗)← arg mini,j di,j.
Output: segmentation si∗,j∗ and detection cost di∗,j∗ .

3.7 Experiments

In this section we show detection and segmentation results on several established

benchmarks.

Implementation details. We use translation invariant chordiograms with bl =

4, br = 8, bn = 8, resulting in 2048-dimensional descriptor.

To obtain superpixels we oversegment the image using NCuts [Cour et al., 2005]

with n = 45 segments. The grouping cues used to define the affinity matrix W pixels

are color and intervening contours [Yu and Shi, 2003] based on Pb [Martin et al., 2004].

To define the segmentation term (3.14) in our model we can use any affinity matrix.

We choose to use the same grouping cues as for segmentation above. For each pair of

superpixels k and m we average the pixel affinities to obtain an affinity matrix over

the superpixels: W superpixels
km = 1

akam

∑
p∈k,q∈m Ŵ

pixels
pq , ak and am being the number of

pixels contained in k and m respectively. Above, Ŵ pixels is obtained from the top n

eigenvectors E of W pixels: Ŵ pixels = EΛET ≈ W pixels, where Λ are the correspond-

ing eigenvalues. This low-rank approximation represents a smoothed version of the
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original matrix and reduces the noise in the original affinities. Finally, the weights

of the term in Eq. (3.16) were chosen to be δ = 0.01 and γ = 0.6 on five images from

ETHZ dataset and held constant for all experiments.

For the optimization we use SeDuMi [Sturm, 1999] which is based on the Primal-

Dual Interior Point Method. To compute the number of variables in the SDP, one

can assume that each superpixel has at most C neighboring superpixels. Hence we

obtain M = Cn boundary variables. Thus, the total variable number in the relaxed

problem is bounded by n2 + C2n2 ∈ O(n2). In our experiments, we have n = 45

and the value of C is less than 5 which results in less than 200 boundary segment

variables. The segmentation of an image takes 5− 15 secs on a 3.50 GHz processor.

3.7.1 ETHZ Shape Dataset

Dataset. The ETHZ Shape Dataset [Ferrari et al., 2009] consists of 255 images

of 5 different object classes — Applelogos (40 images), Bottles (48 images), Mugs

(48 images), Giraffes (87 images) and Swans (32 images). The dataset is designed

such that most of the object do not have a distinctive appearance and the only

representation, which can be used to detect them, is their outline. As a result, this

dataset has been widely used for evaluation of shape-based detection methods. Some

of the challenges in this dataset are highly cluttered images – in the background as

well as internal spurious contours; wide variation of object scale; multiple instances

of an object in the same image. However, the depicted objects are fully included in

the images and are not occluded. Also, the used objects vary in shape but are not

articulated (the giraffe’s legs are not detected).

We apply the BoSS model using hand-drawn object outlines as shape models, one

model per class. These models were supplied with the dataset. We use 7 different

scales, such that the scale of the model, defined as the diameter of its bounding box,

range from 100 to 300 pixels. We use non-maximum suppression – for every two

hypotheses, whose bounding boxes overlap by more than 50%, we retain the one
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with the higher score and discard the other one.

Detection results. On the ETHZ Shape Dataset we achieve 89.2%/90.5% detec-

tion rate at 0.3/0.4 fppi using Pascal criterion1 and 93.4%/94.2% under 20% overlap

criterion2, as reported in Table 3.2 and Fig. 3.9-3.8.

Reranking In order to compare with approaches on the ETHZ Shape Dataset

which use supervision, we use weakly labeled data to rerank the detections obtained

from BoSS. We use only the labels of the training images to train a classifier but not

the bounding boxes. This classifier can be used to rerank new hypotheses obtained

from BoSS.

More precisely, we use half of the dataset as training and the other half as test (we

use 5 random splits). We use BoSS to mine for positive and negative examples. The

top detection in a training image using a model which represents the label of that

image is considered a positive example; all other detections are negative examples.

The chordiograms of these examples are used as features to train one-vs-all SVM

[Joachims, 1999] for each class. During test time, each detection is scored using the

output of the SVM corresponding to the model used to obtain this detection. Note

that this is a different setup of supervision which requires less labeling – while we

need one hand-drawn model per class to obtain detections via BoSS, we do not use

the bounding boxes but only the labels of the training images to score them. We

argue that the effort to obtain a model is constant while segmenting images by hand

is much more time consuming.

The results are shown in Table 3.2. The weak supervision leads to 94.3%/96.0%

detection rate under Pascal criterion, which is an improvement of approx. 5% over

BoSS. It is attributed to the discriminatively learned weights of the chordiogram’s

bins. This corresponds to discriminatively learning object shape variations and

1Pascal criterion: the intersection of the hypothesis and ground truth bounding boxes overlap
more than 50% with the union of both; 20% overlap detection criterion: the intersection of the
hypothesis and ground truth bounding boxes overlap more than 20% with the each of them.
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Algorithm Apple logos Bottles Giraffes
20

%
ov

er
. BoSS† 86.4%/88.6% 96.4%/98.2% 97.8%/97.8%

[Lu et al., 2009]†] 92.5%/92.5% 95.8%/95.8% 86.2%/92.0%
[Fritz and Schiele, 2008]∗ -/89.9% -/76.8% -/90.5%
[Ferrari et al., 2009]† 84.1%/86.4% 90.9%/92.7% 65.6%/70.3%

P
as

ca
l

cr
it

.

BoSS† 86.4%/88.6% 96.4%/96.4% 81.3%/86.8%
BoSS + reranking∗ 100%/100% 96.3%/97.1% 86.1%/91.7%
[Maji and Malik, 2009]∗ 95.0%/95.0% 92.9%/96.4% 89.6%/89.6%
[Srinivasan et al., 2010]∗ 95.0%/95.0% 100%/100% 87.2%/89.6%
[Gu et al., 2009]∗ 90.6%/- 94.8%/- 79.8%/-
[Ravishankar et al., 2008]†◦ 95.5%/97.7% 90.9%/92.7% 91.2%/93.4%
Algorithm Mugs Swans Average

20
%

ov
er

. BoSS† 84.8%/86.4% 93.4%/93.4% 91.2%/93.0%
[Lu et al., 2009]†] 83.3%/92.0% 93.8%/93.8% 90.3%/93.2%
[Fritz and Schiele, 2008]∗ -/82.7% -/84.0% -/84.8%
[Ferrari et al., 2009]† 80.3%/83.4% 90.9%/93.9% 82.4%/85.3%

P
as

ca
l

cr
it

.

BoSS† 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%
BoSS + reranking∗ 90.1%/91.5% 98.8%/100% 94.3%/96.0%
[Maji and Malik, 2009]∗ 93.6%/96.7% 88.2%/88.2% 91.9%/93.2%
[Srinivasan et al., 2010]∗ 93.6%/93.6% 100%/100% 95.2%/95.6%
[Gu et al., 2009]∗ 83.2%/- 86.8%/- 87.1%/-
[Ravishankar et al., 2008]†◦ 93.7%/95.3% 93.9%/96.9% 93.0%/95.2%

Table 3.2: Detection rates at 0.3/0.4 false positives per image, using the 20% overlap
and Pascal criteria. We achieve state of the art results on all categories under the
first detection criterion. Under the Pascal criterion, we achieve state of the art rates
on the dataset as well. For Applelogos, Swans and Bottles, the results are equal to
the ones using the weaker criterion. This is due to the exact localization, which can
be achieved when segmenting the object. For Giraffes and Mugs results are slightly
lower due to imperfect segmentation (some segments leak into the background or miss
parts) – the detections which are correct under the weaker 20% overlap criterion,
are not counted as correct under the Pascal criterion. However, there are correctly
segmented objects under the Pascal criterion which are ranked lower. The employed
reranking helps to recover some of them. († use only hand labeled models. ∗ use
strongly labeled training data with bounding boxes, while we use weakly labeled
data in the reranking, i. e. no bounding boxes. ] considers in the experiments only
at most one object per image and does not detect multiple objects per image. ◦ uses
a slightly weaker detection criterion than Pascal.)
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builds on the power of BoSS to deal with clutter.

Segmentation In addition to the detection results, we evaluate the quality of

the detected object boundaries and object masks. For evaluation of the former we

follow the test settings of [Ferrari et al., 2009]2. We report recall and precision of

the detected boundaries in correctly detected images in Table 3.3. We achieve higher

recall at higher precision compared to [Ferrari et al., 2009]. This is mainly result of

the fact that BoSS attempts to recover a closed contour and in this way the complete

object boundary. These statistics show that the combination of shape matching and

figure/ground organization results in precise boundaries (> 87% for all classes except

Giraffes). The slightly lower results for Giraffes is due to the legs which are not fully

captured in the provided class models. We also provide object mask evaluation

as percentage of the image pixels classified incorrectly by the detected mask (see

Table 3.3). For all classes we achieve less than 6% error, and especially classes with

small shape variation such as Bottles and Applelogos we have precise masks (< 3%

error).

3.7.2 INRIA Horses Dataset

Dataset. The INRIA horses dataset, has 340 images, half of which contain horses

and the other half has background objects. This dataset presents challenges not only

in terms of clutter and scale variation, but also in articulation, since the horses are

in different poses, and partial occlusions.

We use 6 horse models representing different poses for the INRIA horse dataset

(see Fig. 3.12). In these experiments we used 10 scales such that the scale of the

model, defined as the diameter of its bounding box, range from 55 to 450 pixels.

Similarly to the previous dataset, we use non-maximum suppression – for every two

2A detected boundary point is considered a true positive if it lies within t pixels of a ground
truth boundary point, where t is set to 4% of the diagonal of the ground truth mask. Based on
this definition, one computes recall and precision.
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Figure 3.8: Results on ETHZ Shape dataset: detection rate vs false positives per
image. Results using BoSS are shown using 20% overlap as well as after reranking
using the stricter Pascal criterion. Both consistently outperform other approaches,
evaluated using the weaker 20% overlap criterion.

hypotheses, whose bounding boxes overlap by more than 50%, we retain the one

with the higher score and discard the other one.

Detection results. On INRIA Horses dataset, we achieve state of the art detection

rate of 92.4% at 1.0 fppi (see Fig. 3.10). Examples of detections of horses in different

poses, scales and in cluttered images are shown in Fig. 3.12.

3.7.3 Analysis of the Empirical Results

In Fig. 3.11 and Fig. 3.12 we show examples of typical detections in the datasets

described above. Our method is capable of detecting objects of various scales in

highly cluttered images, even when the object is small and most of the image contours

and segments are not part of the object. Note that the translation invariance of the

chordiogram allows us to find the object without having to search exhaustively for

location. Additionally, the segmentation gives us a pixel-level object localization

67



Figure 3.9: Results on ETHZ Shape dataset: precision recall curves. Results using
BoSS are shown using 20% overlap as well as after reranking using the stricter Pascal
criterion. Both consistently outperform other approaches, evaluated using the weaker
20% overlap criterion.

Method Det. rate
BoSS 92.4%
[Maji and Malik, 2009] 85.3%
[Ferrari et al., 2008] 80.8%
[Ferrari et al., 2009] 73.8%

Figure 3.10: Detection rate vs false positives per image (fppi) for our and other
approaches on INRIA Horse dataset.
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1 2 3

4 5 6

7 8 9

10 11 12

Figure 3.11: Example detection on ETZ Shape dataset. For each example, we show
on the left side the selected superpixel boundaries, and on the right the selected
object mask.
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boundary precision/recall pixel error
SM BoSS [Ferrari et al., 2009] SM BoSS

Applelogos 91.9% 97.1% 91.8%/97.5% 91.6%/93.9% 2.0% 1.6%
Bottles 89.4%/91.1% 90.3%/92.5% 83.4%/84.5% 2.8% 2.7%
Giraffes 75.4%/81.3% 76.8%/82.4% 68.5%/77.3% 6.2% 5.9%
Mugs 77.7%/89.1% 86.5%/90.5% 84.4%/77.6% 5.5% 3.6%
Swans 81.0%/86.8% 85.8%/87.6% 77.7%/77.2% 6.7% 4.9%

Table 3.3: Precision/recall of the detected object boundaries and pixel classification
error of the detected object masks for ETHZ Shape dataset. We present results using
only the Shape Matching cost (see Eq. (3.3)) as well as the full cost – BoSS – which
consists of shape matching as well as perceptual grouping terms (see Eq. (3.16)).

Figure 3.12: Examples of detections for INRIA horses dataset. For each image we
show the selected superpixel boundaries on the left and the detected object segmen-
tation on the right. Bottom right: 6 models used in the experiments.
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(a)

(b)

Figure 3.13: Example detection on ETHZ Shape dataset which show the robustness
of the chordiogram and BoSS to shape variations. For each example, we show on
the left side the selected superpixel boundaries, and on the right the selected object
mask. We use the same model to obtain those detections. Note. however, that the
detected mugs may have different aspect ratio, shape of the body (rectangle or cone),
and shape and size of the handle.

which is much more precise compared to the bounding-box localization used by

other methods.

Shape variations. Our approach is robust against local shape variations as well

as global transformations. As shown in Fig. 3.13 (a), using a single mug model

BoSS obtains detections of objects whose shape deviates from the model in various

ways: aspect ration, global shape, shape of parts, etc. In addition, it tolerates global

transformations as minor rotations and foreshortening (see Fig. 3.13 (b)).
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(a) Inexact segmentation.

(b) Hallucinations.

Figure 3.14: Examples of missdetections.

Missdetections. The major sources for incorrect detections are accidental align-

ments with background contours, which we call hallucinations, and partially incorrect

boundaries (see Fig. 3.14). The former cause shows the limitation of shape – one can

sometimes find a constellation of contours which resemble the model outline. Some

of those cases can be ruled out by using perceptual grouping principle. However, in

other cases the lack of an appearance model is limiting.

Multiple detections per image. Our algorithm is capable of detecting multi-

ple objects of the same class in an image. This is possible since the sum of the

unnormalized chordiograms of all present objects should be a good match for the

object model. Hence, a single invocation of the optimization problem should lead to

a relaxed solu- tion which captures all detections. For example, after matching the
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Input image Relaxed solution Discretized solution
Top 5 detections
(also from other
discretizations)

BoSS thresolding with -0.24

Connected components

Scoring using the model

(1) (2) (3) (4) (5)

(a) Outline of the detection of multiple objects per image.

(b) Examples of multiple detections per image.

Figure 3.15: Detection of multiple instances of the same object class in an image.

image in (1) of Fig. 3.15, we obtain a relaxed solution (2) which contains the major-

ity of the objects. During the discretization step we use all the different thresholds,

which would give us different discretizations. We subsequently score them by match-

ing them to the model. If a discretization contains several disconnected regions, we

score all of them independently. For example, after using threshold −0.24 on (2), we

obtain the descrete solution (3), which contains 6 disconnected regions shown in (4).

After scoring each of them, we discard the left most mug and retain the remaining

regions. The results are shown in (5) (note that we present in (5) the final result

after matching over several scales and using all thresholds).

Influence of the different terms. The presented BoSS model (see Eq. (3.16)

in Sec. 3.5) consists of top-down shape matching term and a bottom-up perceptual

grouping term. Clearly, the former term is stronger since it contains class specific

information. Additionally, it operates on pregrouped superpixels, which are a prod-

uct of a bottom-up process. Therefore, the shape matching term alone (first term in
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Figure 3.16: Examples of BoSS without perceptual terms (left) and with perceptual
terms (right).

Eq. (3.16)) is not purely top-down.

To analyze the contribution of the perceptual terms, we apply BoSS on the ETHZ

Shape Dataset without the perceptual terms (see program SM in Eq. (3.10)) and

compare the resulting segmentations and object boundaries to the one obtained using

the full BoSS model. The results are compared in Table 3.3. Although SM performs

pretty comparable to the full model, its boundary and pixel precisions are slightly

below the ones obtain via BoSS – on average SM has 4.6% pixel error, while BoSS

reduces it to 3.7%. Perceptual grouping tends to correct shape-based segmentation

in cases where the shape match is not very good, but the bottom-up grouping is

based on a strong signal. For example, in the upper left image in Fig. 3.16 the bottle

does not match well due to the occluding hand. Segmenting only the upper part of

the bottle, however, will be penalized by the segmentation term since it encourages

grouping of the whole bottle due to homogeneous appearance.
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3.8 Analysis of BoSS

In the definition of the BoSS model we assume that we pre-segment the image into

segments. All subsequent computations are executed over these segments. Therefore,

it is natural to ask how does the quality of the segments and the noise in the image

influence the performance of the presented algorithm?

In particular, we will motivate the need for a good segmentation in the case of

shape-based detection. The high quality of the segmentation is achieved through

the BoSS model and its inference. Further, we will analyze the performance of the

BoSS model in the presence of background clutter and object boundary noise. We

will analyze the influence of the number of segments. Finally, we will motivate the

choice of the chordiogram as a shape representation with the BoSS model.

3.8.1 Grid World Setup

In the subsequent analysis we will use an idealized setup in which we can control the

clutter and background noise. In particular, we will use an image whose segmentation

is a grid of size g× g. An object in this image is a connected group of grid cells (see

Fig. 3.17). In this setup we will instantiate contours by selecting a set of segment

boundaries to be real image contours. In this way we can introduce and control the

following two image artifacts:

Image clutter: Each segment boundary which is not an object boundary can be

a potential background or interior clutter contour. We denote by ηg the per-

centage of the clutter as the portion of non-object boundaries which are image

contours.

Missing object boundaries: Some of the object boundaries will not be instanti-

ated as image contours. This will simulate segmentation leakage. We denote

by µg the portion of the object boundaries which are not image contours.
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(a) Segmentation. (b) Object in presence of clutter and
missing object boundaries.

Figure 3.17: Grid World Setup.

By controlling the above two parameters we can obtain input images with varying

clutter and missing object boundaries (see Fig. 3.18). In the following experiments

we will use grid of size g = 6, clutter levels ηg ∈ {0%, 20%, 40%, 60%, 80%} and

missing object boundary levels µg ∈ {0%, 20%, 40%}. We will generate 20 objects

randomly and for each object we will create 5 × 3 = 15 images, one for each of the

possible values of (ηg, µg).

In order to evaluate the quality of a segmentation, we use two metrics. The first

one is the overlap error is defined in terms of missegmented pixels – pixels which are

either segmented incorrectly as foreground or background:

overlap error =
# of missegmented pixels

# of image pixels

This measure gives the quality of the image segmentation. It has, however, lower

values for smaller objects. In order, to evaluate the segmentation of an object, we

use a metric introduced in conjunction with the Pascal Visual Object Challenge

[Everingham and et. al, 2005]:

pascal overlap score =
area of object and segmentation intersection

area of object and segmentation union
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Figure 3.18: Input image contours for the object from Fig. 3.17 with different com-
binations of image clutter ηg and missing contours µg .

3.8.2 Importance of Segmentation for Shape-based Detec-

tion

Most of the applications of segmentation in computer vision serve as coarsening

of the input space. In the case of general object recognition, one often computes

texture-based descriptors for each segment [Shotton et al., 2009], groups of segments

[Malisiewicz and Efros, 2008] or bag-of word descriptors of segments

[Russell et al., 2006]. In such approaches, a pre-segmentation is considered useful if

a segment or groups of segments overlap sufficiently well with the object of interest.

Therefore, using small groups of segments or multiple segmentations is often enough
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Figure 3.19: chordiogram distance versus overlap with the object. For each clutter
level we plot three curves, each corresponding to one of the missing object boundary
levels.

to capture an object.

In the case of shape-based object detection, it is important to capture the correct

object boundaries in a segment selection. Therefore, even if the overlap of a segment

or a group of segments with an object of interest is large, these segments may not

capture the shape of the object at all.

To analyze this, we use the Grid World Setup. For all possible groups of segments

we plot the chordiogram distance to the model versus the overlap error in Fig. 3.19.

The chordiogram is normalized by the largest distance to show the relative degrada-

tion with growing overlap error. We present this analysis for all clutter and missing

object boundary levels.

Even in the case when there are no missing object boundaries, we can see that

the chordiogram distance degrades pretty quickly with increasing overlap error. On

average, at overlap error 0.1 we have chordiogram distance 0.26, and at 0.2 the

distance is 0.41. In other words, if a group of segments misses only 20% of the object,

then the chordiogram distance degrades to 0.41 of the worst possible distance of any
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segmentation 10 20 30 all

# of groups 289 1705 3343 5337

Table 3.4: Average number of groups of segments per image for each segmentation
as well as the total number.

group of segments. This shows that even small overlap errors may affect the shape-

based distance. This can be explained by the fact that even such a small overlap

error may lead to missing important object boundaries.

As we can see in Fig. 3.19, the chordiogram distance degrades drastically as we

have missing object boundaries. When 40% of the boundaries are missing, the object

becomes unrecognizable since the chordiogram distance would not be sufficient to

indicate how well a group of segments overlaps with the object.

This motivates the usage of an inference for the BoSS model which potentially

can select any group of segments as an object segmentation. Thus, we do not exclude

any potential grouping and do not limit ourselves to a set of segments obtained using

a purely bottom-up process.

3.8.3 BoSS vs Multiple Segmentations

To see the importance of being able to select all possible groups of segments for

real images, we compare the BoSS model to shape-based detection over segments

computed via multiple segmentations.

More precisely, we use three different segmentations per image – using Normalized

Cuts [Cour et al., 2005] with 10, 20, and 30 segments. For each segmentation, we

compute groups of connected segments of up to 5 segments. This results in 5337

groups of segments per image on average. We consider each group of segments as

a hypothesis for an object segmentation. To evaluate how likely a hypothesis is

an object of a particular class, we compute the chordiogram distance between the

hypothesis and the object model.
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Figure 3.20: Detection rate vs false positives per image for all five classes of the
ETHZ Shape Dataset computed using groups of segments.

The detection rates for the five classes of the ETHZ Shape Dataset are presented

in Fig. 3.20 and Table 3.5. We can see that using only groups of segments, the

detection rate drops, even drastically for some classes such as Applelogos and Mugs.

The reason is that there are objects which cannot be segmented using groups of at

most 5 segments. Of course, one can increase the size of the groups, however their

number groups exponentially with their size. Therefore, it would become less feasible

to compute the chordiogram for all groups of larger sizes. A different reason for the

poor performance is that groups of segments approach causes more false positives.

3.8.4 Analysis of the BoSS Inference in Presence of Noise

The above grid world setup allows us to evaluate the quality of the segmentation

obtained from the BoSS model. For each image and pair of clutter and missing object

boundary levels, we try to segment the image using as a model the groundtruth object

for this image. We use four different algorithms, which are based on the BoSS model:

1. BoSS model without any perceptual terms (see the shape matching model from
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Applelogos Bottles Giraffes

groups of segm. 38.6%/43.2% 85.5%/87.3% 46.2%/52.8%
BoSS 86.4%/88.6% 96.4%/96.4% 81.3%/86.8%

Mugs Swans average

groups of segm. 50%/50% 78.8%/78.8% 59.1%/62.4%
BoSS 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

Table 3.5: Detection rates of group of segments and BoSS at 0.3 and 0.4 fppi for the
five classes of the ETHZ Shape Datatset.

Sec. 3.3).

2. BoSS model with a boundary term only (see second principle from Sec. 3.4).

3. BoSS model (see Sec. 3.5). We add a segmentation term with affinity matrix

W defined as We,g = 1 if both segments e and g belong to either foreground

or background; We,g = 0.73 otherwise. Note that this term does not contain

noise. However, it is relative weak since segments across the object boundary

are considered relatively similar (with similarity 0.73).

4. Groups of segments. Since the grid world contains only g2 cells, where g is

relatively small, we can compute the chordiograms of all possible groups of

segments. The segmentation under this model is the group of segments whose

chordiogram is closest to the model chordiogram under the L1 distance. We

use only cells which do not touch the image boundary. As a result we have to

generate 2(g−2)2 groups of segments and compute their chordiograms. In our

setup we use g = 6 which leads to 65536 groups of segments.

The first three algorithms are variations of the BoSS model. The last algorithm can

be considered an exact solution of the chordiogram matching which is tractable for

this small problem.

We evaluate the output of each algorithm by computing the overlap error of the

obtained segmentation and the groundtruth object. The results of the algorithms
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are presented in Fig. 3.21. In the case of no missing object boundaries, the exact

algorithm performs almost perfectly, while all variations of the BoSS model achieve

an error of less than 5%, even in the case when we have large clutter. This shows

that our model is capable of dealing with clutter.

In case when we have missing object boundaries, all algorithms degrade slowly

as the clutter increases. This is due to the fact that the clutter provides for acci-

dental segmentations which may have a lower chordiogram distance than the true

segmentation which is partially damaged.

In addition, we present the exact overlap errors averaged over all missing levels in

Table 3.6 and over all clutter levels in Table 3.7. On average, the exact chordiogram

distance computation through the last algorithm gives best segmentation. The worst

performing algorithm is the one without perceptual terms.

algorithm 0% 20% 40% 60% 80% average

BoSS - no perceptual terms 2.6 4.6 7.8 12.1 14.6 8.4
BoSS - boundary term 1.3 3.3 8.4 11.5 17 8.3
BoSS - all perceptual terms 2.7 5.1 7.2 9.6 12.4 7.4
groups of segm. 1.7 3.6 7.4 8.3 10.5 6.3

Table 3.6: Missclassified pixels in the grid world under varying levels of clutter ηg.

algorithm 0% 20% 40% average

BoSS - no perceptual terms 2.2 8.5 14.3 8.4
BoSS - boundary term 4 8.1 12.8 8.3
BoSS - all perceptual terms 4.2 6.8 11.2 7.4
groups of segm. 0 5.6 12.7 6.3

Table 3.7: Missclassified pixels in the grid world under varying levels of missing
object boundaries µg.

Adding boundary and segmentation terms helps to deal with the clutter and

missing object boundaries. To see how exactly the perceptual terms help, consider
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(a) BoSS w/o perceptual terms. (b) BoSS w/ boundary term only.

(c) BoSS. (d) Groups of segments.

Figure 3.21: For each of the four algorithms (see text) we present the overlap error
at all combinations of clutter level and missing object boundary level.

the examples in Fig. 3.22 and Fig. 3.23. In the first figure, we investigate the bound-

ary term only. In this example, the object has two missing vertical boundaries on

its right side. The relaxed segmentation tries to compensate by leaking in the upper

right side of the image. Note that this leakage is not affected by many other non-

vertical contours since most of the boundaries of this leakage are not supported by

contours. As a result, the discretization cannot find the correct segmentation. By

using the boundary term, we penalize this leakage since most of its boundaries are

hallucinated. The resulting relaxed solution allows for the correct discretization.
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Similarly in Fig. 3.23, we show the benefit of the region grouping perceptual term.

Since the contour image is very cluttered, two of the object boundaries are missing

and the object is very simple, it is very easy to hallucinate this object anywhere in

this image. For example, in the middle of the image one can see the same object

with same number of missing contours. If you include region grouping cues, however,

the correct object gets segmented better as observed in the relaxed solution. As a

result, the discretization obtains the correct segmentation.
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(a) Object. (b) Contour map.

(c) BoSS w/o perceptual terms – relaxed so-
lution

(d) BoSS w/o perceptual terms – discretized
solution.

(e) BoSS w/ boundary term – relaxed solu-
tion

(f) BoSS w/ boundary term – discretized so-
lution.

Figure 3.22: For one particular object (a) and a contour image (b) we segment
the image using BoSS w/o any perceptual terms (c)-(d) and using BoSS with only
boundary term (e)-(f).

85



(a) Object. (b) Contour map.

(c) BoSS w/o perceptual terms – relaxed so-
lution

(d) BoSS w/o perceptual terms – discretized
solution.

(e) BoSS w/ boundary term – relaxed solu-
tion

(f) BoSS w/ boundary term – discretized so-
lution.

Figure 3.23: For one particular object (a) and a contour image (b) we segment
the image using BoSS w/o any perceptual terms (c)-(d) and using BoSS with all
perceptual terms (e)-(f).
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3.8.5 Influence of the Number of Segments

As justified in Sec. 3.8.2, being able to select any possible combination of segments

as a figure segmentation is of paramount importance when it comes to shape-based

object detection. Using more segments could potentially result in better object seg-

mentation since one should be able to model finer details of an object shape. How-

ever, having more segments comes at a higher cost since the optimization problem

in Sec. 3.6 will be carried over a larger number of variables.

To evaluate the importance of the number of segments in the final object seg-

mentation, we run BoSS with a pre-segmentation on the ETZ Shape Dataset (see

Sec. 3.7.1) with 10, 20, 30 and 45 segments obtain using Normalized Cuts

[Cour et al., 2005]. For every level of input pre-segmentation, we evaluate the ob-

tained object segmentation using the ground truth model and scale for each image.

We use the the overlap error and the pascal overlap score, as introduced in Sec. 3.8.1.

To better evaluate the quality of the boundaries of the segmentation, we also com-

pute boundary precision/recall, as used in the evaluation of the segmentation in

Sec. 3.7.1.

The results for those four measures over the whole dataset for the four setups are

summarized in Fig. 3.24. We can see that the overlap error and the pascal overlap

scores improve with increasing number of segments. Moreover, the values become

closer to the median, which indicates that with increasing number of segments the

quality of the segmentation improves for more images. Similar behavior can be

observed for boundary precision/recall. The biggest improvement is in the recall –

as we have more segments, we obtain larger portions of the object boundaries better.

Also, we can see that there is a clear improvement from 10 to 20 and from 20 to

30 segments. However, the observed improvement beyond 30 segments is small.
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(a) Overlap error. (b) Pascal overlap error.

(c) Boundary precision. (d) Boundary recall.

Figure 3.24: We present four different measures for the quality of the segmenta-
tion. For each measure, we use all images from the ETHZ Shape Dataset and
pre-segmentations with 10, 20, 30, and 45 segments. We display for each measure
and pre-segmentation, the median in red, the 25% and 75% quantile as blue boxes,
and the range of the values as black lines.
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To understand, when one obtains improvement in the segmentation quality via

more segments, consider the example in Fig. 3.25. In this case, using 10 segments is

not sufficient to capture the mug. Hence, one needs more segments, and when using

45 the object can be segmented. For this reason in around 75% of the images using

45 segments leads to a better segmentation.

Using 10 segments can be beneficial when the pure bottom-up segmentation

can capture the object well. In such situations, using more segments may give

unnecessary freedom to the algorithm to make mistakes. For example, in Fig. 3.26,

using 45 segments allows the algorithm to lose the cap of the bottle and thus we

obtain a worse segmentation.

In general, using more segments is beneficial when the object is either too small

or too large. In the former case, using too few segments may lead to large segments

none of which captures the object. In the latter case, using too few segments may

miss important object boundaries. This analysis can be see by displaying the pascal

overlap score versus the object area for segmentation obtained using 10 and 45

segments (see Fig. 3.27).

Although using more segments may lead to better object segmentation, this

comes at a cost. The reason is that the optimization from Sec. 3.6 has complex-

ity polynomial in the number of boundary and segment variables. The number of

boundaries for the four levels of segmentation is presented in Fig. 3.28 together with

the running time on a 3.00 Ghz Intel Xeon Processor using the SeDuMi package

[Sturm, 1999] for the optimization.
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(a) Object segmentation
using 45 segments.

(b) Object segmentation
using 10 segments.

(c) Pre-segmentation
with 45 segments.

(d) Pre-segmentation
with 10 segments.

Figure 3.25: Using only 10 segments may not capture the object. In this case one
should use more segments.

(a) Object segmentation
using 45 segments.

(b) Object segmentation
using 10 segments.

(c) Pre-segmentation
with 45 segments.

(d) Pre-segmentation
with 10 segments.

Figure 3.26: Using 10 segments leads sometimes to better results provided the seg-
mentation captures the object of interest.
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Figure 3.27: Pascal overlap score versus object area. Using too few segments leads
to worse segmentation mainly for small and some of the very large objects.

(a) Number of boundary variables. (b) Running time.

Figure 3.28: Empirical computational complexity for different levels of pre-
segmentation.
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3.8.6 Importance of Representation

In this subsection we analyze the importance of using chordiogram in the BoSS

model instead of other representations. Indeed, there are other possible representa-

tions which can be incorporated in the BoSS model. More precisely, we replace the

chordiogram with Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005].

We will show that the chordiogram-based model performs better for two major rea-

sons:

1. Translation Invariance: The HOG is not translation invariant. As a result

one needs to run the BoSS model at each possible location and scale. Since

each application of the BoSS model requires inference, we need to pick a subset

of locations and scales which leads to a loss in precision.

2. Representational Power: Although the HOG has proven to be an excellent

representation for recognition tasks such as human detection

[Dalal and Triggs, 2005] and general object recognition

[Felzenszwalb et al., 2008], it is not so powerful when it comes to capturing

shape as defined in this thesis. As a result, we observe a loss in the segmentation

quality and this recognition accuracy.

HOG-BoSS Model. In order to replace the chordiogram with HOG in the BoSS

model as defined in Eq. 3.16, we need to introduce a new matching cost. For this

purpose, similar to Sec. 3.2, we need a parameterization of the HOG in terms of the

boundary variables t.

To do this, we define HOG in terms of the notation from Sec. 3.2. Using the bin-

ning scheme from [Dalal and Triggs, 2005], the value in the lth bin of the histogram

is given by:

hogl = #{p|fp ∈ bin(l)}

where fp = (px− cx, py − cy, pe) are the features of each boundary point: (px, py) are

92



the position of the boundary point p and pe is its orientation. The position features

are taken into account relative to the offset c = (cx, cy) of the descriptor.

Suppose that we have a set of boundaries B, as defined in Sec. 3.2. Then, for a

given boundary bk ∈ B and a HOG offset c we can define a HOG which captures

only this boundary:

(hogkb )l = #{p|fp ∈ bin(l), p ∈ bk}

For the sake of brevity we omit the HOG offset c from the above notation.

Then, for a given parameterization of the image boundaries B with a boundary

indicator vector t, as introduced in Sec. 3.2, an HOG can be expressed as a linear

function of the selected image boundaries:

hog(t) =
∑

bk∈B

hogkb t
k
b

We can use this parameterization in the shape matching model from Sec. 3.9 and

thus in the BoSS model. The resulting model is called HOG-BoSS.

Inference in the HOG-BoSS Model. Since the HOG-BoSS model is applied

always with respect to an offset, we need to run it for every location and scale in

the image which is not tractable. As a result, we use simple HOG matching in a

preprocessing step to obtain a small candidate of potential object locations. The cost

of the matching is the L1 distance between the model HOG and the HOG computed

at a particular location by overlaying the model bounding box at this location and

using only the boundaries inside this box. We use models over several scales. In a

second step, we apply the model for each location and scale as described in Sec. 3.6.

Implementation Details. The grid size of the HOG for each model is defined

by finding a rectangular grid with square cells which covers the model and has

approximately 32 cells. For each cell, we bin the boundary points according to their

normals into 4 bins.
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In the preprocessing step, we run HOG matching for each scale and retain the top

5 best matches after non-maximum suppression. We use 7 scales. All 35 hypotheses

are passed to the HOG-BoSS model.

Analysis. We run the HOG-BoSS model on the ETHZ Shape Dataset. The results

are summarized in Table 3.8 and Fig. 3.29, where we present detection rates for all

five classes of the dataset. In particular, we analyze and compare the performance

of BoSS with HOG and chordiogram by presenting the following detection rates:

HOG: This is the preprocessing step which generates hypothesis for the HOG-BoSS

model.

HOG-BoSS: The BoSS model with HOG representation.

HOG-BoSS with chordiogram reranking: We use the segmentations obtained

via HOG-BoSS and rerank them using the chordiogram distance.

HOG-BoSS – maximal possible rate: We present the maximally possible de-

tection rate using all hypotheses generated by HOG-BoSS.

BoSS: Detection rate of the original BoSS model with chordiogram representation.

We can see that pure HOG matching performs poorly and this is result of the

clutter and the simple distance function we use. Integrating HOG into the BoSS

results in almost 30% boost of the performance. This gain is due to the removal of

the clutter. However, HOG performs worse than the chordiogram and this can be

seen by reranking the segmentations using the chordiogram distance, which results

in 12% improvement.

Even after the reranking, however, the performance of the HOG-based model

is almost 30% lower than the original chordiogram-based model. There are two

reasons for this. First, the preprocessing step loses hypotheses. This is a result of

the fact that HOG-BoSS is not translation invariant which does not allow us to use it
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Applelogos Bottles Giraffes

HOG 18.2% 20% 29.7%
HOG-BoSS 63.6% 67.3% 25.3%
HOG-BoSS – chordiogram reranking 68.2% 80% 41.2%
max det. rate 86.4% 94.6% 79.1%
BoSS 88.6% 96.4% 86.8%

Mugs Swans average
HOG 6.1% 12.2% 17.2%
HOG-BoSS 33.3% 42.4% 46.4%
HOG-BoSS – chordiogram reranking 47% 54.6% 58.3%
max det. rate 78.8% 93.9% 86.6%
BoSS 77.3% 93.9% 88.6%

Table 3.8: Detection rates of BoSS with different representations at 0.4 fppi for the
five classes of the ETHZ Shape Datatset.

exhaustively over the whole image. Second, the shape expressiveness of HOG is not

sufficient enough to segment the objects with the desired precision. As a result, even

the maximally possible detection rate is lower that the detection rates we achieve

with BoSS at 0.4 fppi.
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Figure 3.29: Detection rate vs false positives per image for all five classes of the
ETHZ Shape Dataset computed HOG-BoSS and comparison to other variations of
BoSS (see text for explanation).
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3.9 Related Work

Due to the large volume of literature on recognition and segmentation, we review

approaches closest to our work. Global shape descriptors, such as Fourier contour

descriptors, Zernicke moments, Curvature Scale Space, etc. [Zhang and Lu, 2003]

have a long tradition in shape retrieval. However, they are applicable only for al-

ready segmented objects and cannot deal robustly with clutter. Semi-local shape

descriptors have been proposed to address this limitation. [Belongie et al., 2002]

introduce shape context as a histogram of contour edges, capturing parts of an ob-

ject. To perform recognition with shape context one needs to integrate it in a global

matching framework such as thin plate spline or voting, for example. To alleviate fur-

ther the issues arising from clutter, [Zhu et al., 2008] select relevant object contours

while matching shape contexts. Later [Srinivasan et al., 2010] combine the previ-

ous work with discriminative learning to leverage salient object contours. Boundary

fragments combined with a classifier and subsequent voting for object centers have

been explored as well [Opelt et al., 2006, Shotton et al., 2005]. These approaches are

part-based and do not use global descriptors. Moreover, all of the above methods

recover a set of object contours, but not the figure/ground organization of the image.

A different approach to shape-based recognition is to search for a set of im-

age contours which best matches to a model. [Ferrari et al., 2006] search in a con-

tour network for contour chains which resemble the model. In a subsequent work

[Ferrari et al., 2008] define a descriptor for groups of adjacent contour segments and

use it in conjuction with an SVM classifier. [Lu et al., 2009] explore particle filtering

to search for a set of object contours. [Felzenszwalb and Schwartz, 2007] propose a

hierarchical representation by decomposing a contour into a tree of subcontours and

using dynamic programming to perform matching. Dynamic programming has been

applied also by [Ravishankar et al., 2008] in a mutli-stage framework to search for

a chain of object contours. All of the above approaches have to deal with a com-

binatorial search among image contours and have to decompose their inference into
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tractable subproblems, thus losing some of the global relationships between contours.

On the contrary, we retain in our descriptor all relations between object boundaries

to achieve a holistic representation. Although the above approaches recover some

object contours, none of them recover full figure/ground organization.

Close interplay between segmentation and recognition has been studied by

[Yu and Shi, 2003] who guide segmentation using part detections, but do not use

global shape descriptors. Segment shape descriptors have been used by

[Gorelick and Basri, 2009] for detection and segmentation. [Leibe et al., 2008] com-

bine recognition and segmentation in a probabilistic framework. Recently,

[Gu et al., 2009] use global shape features on image segments. However, segmenta-

tion is a preprocessing step, decoupled from the subsequent matching.

Object dependent segmentation has been addressed in prior work

[Borenstein et al., 2004, Levin and Weiss, 2006]. Both methods combine bottom-up

segmentation with top-down matching, using templates of object parts as a way

to match shape. An explicit reasoning about figure/ground organization has been

proposed by [Ren et al., 2005] who use shapemes for local shape matching. Although

these approaches have segmentation and boundary priors they employ only local

shape descriptors.

3.10 Conclusion

In this chapter we introduced a shape-based object segmentation and detection

model, called BoSS. It is based on the shape representation introduced in the previ-

ous chapter. In addition, BoSS combines the chordiogram matching with perceptual

grouping principles, expressed in terms of region and contours.

The resulting model is formulated as a quadratic integer program, which allows

an approximate solution in a single step using off-the-shelf optimization techniques.

The BoSS model operationalizes our global and holistic shape representation,
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the chordiogram, and applies it to real scenes, which contain background clutter and

multiple objects. In addition, our detection algorithm provides a pixelwise object

localization. We present state-of-the-art results on established benchmarks.
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Chapter 4

Shape-based Detection in Videos

Many view-point invariant object recognition approaches rely on learning a 2D bag of

features or feature constellations from a set of limited views as representation. This

has been facilitated in the last decade through the plethora of images on the Internet

as well as with the systematic annotation and construction of image benchmarks

and corpora [Everingham and et. al, 2005]. In general, representations learnt from

images are not useful for leveraging properties of 3D shape for recognition. However,

recent advances in range sensor technology, as well as easy to use 3D design tools,

have enabled significant collections of 3D models in the form of VRML descriptions1

or even unorganized point clouds. Use of 3D models makes a recognition system

immune to intra-class texture variations and it frees us from the burden to capture

as many views as possible. However, it comes with the cost that we cannot make

use of the discriminative properties of appearances.

In this chapter we aim at utilizing shape of 3D models and apply it for recognition

in videos, which is the type of imagery where having a model of multiple views of

an object is of paramount importance [Toshev et al., 2009]. In particular, we target

moving objects in videos – as opposed to multiple views – which facilitate foreground-

background segmentation as well as a temporal coherency of the object views. We do

1http://sketchup.google.com/3dwarehouse/
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object mask extraction based
on motion and joint frame segmentation

model
silhouette 
extraction

c
shape -based
silhouette matching

(1)
(2)

(3)

Figure 4.1: Recognition in videos by matching the shapes of object silhouettes ob-
tained using motion segmentation with silhouettes obtained from 3D models.

not claim to propose a recognition system which should replace existing appearance

or shape based video search engines [Sivic and Zisserman, 2008]. Instead, we want

to show the potential of collections of 3D models to accomplish recognition of moving

objects in video.

In a nutshell, we propose to detect objects in videos combining the following

three steps (see fig. 4.1 for overview):

1. Extraction of the silhouette of the moving object in each video frame (see

sec. 4.1). This is accomplished by building upon the video segmentation pre-

sented in Chapter 5 and subsequently segmenting the moving object.

2. Extraction of a set of representative model views organized in a view graph
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(sec. 4.2). The view graph is an intermediate representation of a 3D object

which is a compact representation of the set of all silhouettes when captured

from a sphere of viewpoints. The use of silhouette projections gives us a stable

shape representation that avoids the complexities and variability of a model’s

internal representation.

3. Shape-based matching of the object silhouette with the model silhouette while

maintaining motion coherence over time as explained in sec. 4.3.

Our approach provides the following contributions to the state of the art:

1. A unified framework for detection of moving objects as well as their tracking

and rough pose estimation in videos. We show that pose estimation is possible

even with similar but not exact object models and without use of explicit

motion models.

2. The approach is purely shape-based, which frees us from the need to model

highly variable appearance. Since we use videos as input, we accumulate shape

information from several object views, which makes shape information discrim-

inative.

3. Using the proposed method, 3D model datasets, which contain a large number

of object classes, can be successfully applied for recognition. This is done in

a plug-and-play fashion without the need of manual interaction. Additionally,

3D models give us the ability to match to any model view and thus we do not

need to learn recognizers for each object view.

4. The approach relies on good motion segmentation, which in our case is achieved

by jointly segmenting the video frames.
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4.1 Silhouette Extraction from Video

To recognize moving 3D objects within videos, we need to extract the necessary

object shape information from the video sequences. As we described earlier, the

shape information we use is a silhouette representation of the moving object in the

video. To extract object silhouettes we propose a system that fuses two processes

(see fig. (4.2)):

1. Feature tracking and motion-based clustering of the resulting tracks as either

object or background (see Sec. 4.1.1).

2. Video segmentation into region tracks which represent parts of the scene evolv-

ing over time. For this we use the approach presented in Chapter 5, in par-

ticular Algorithm 4 from Sec. 5.2.2. This segmentation results in co-salient

regions, which we will call also segment tracks.

3. In a subsequent step, we combine the feature track labeling with the segment

tracks to obtain masks for the object in each frame (see Sec. 4.1.2).

The motivation for this approach is that through feature tracking we can achieve

robust sparse motion segmentation, while region tracks will propagate this motion

segmentation to the whole image, and thus the object silhouette can be extracted.

The approach is similar to [Wills et al., 2003], where the authors use a different

segmentation algorithm.

4.1.1 Sparse Figure-ground Labeling

We assume that each video contains at most two different motions (the object

and the background; the algorithm can be extended to handle multiple motions

[Wills et al., 2003]) and that these two motions are well approximated by an affine

motion model, motivated by large distance of the outdoor objects from the camera

relative to the object depth variations.
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! !

(a) Schematic view of the object silhouette extraction.

! !

(b) Example of the object silhouette extraction.

Figure 4.2: Steps of the object silhouette extraction: (1) feature clustering based on
common motion; (2) segment tracks; (3) object silhouette.
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More precisely, we seek to compute two motions Ml = {A(2)
l , . . . , A

(T )
l }, l ∈

{object, background}. Here A
(t)
l is the affine motion which transforms features labeled

as l from their locations in frame t − 1 to their locations in frame t, and T is the

total number of frames in the video. As we are assuming affine motion, we extract

and track features using the KLT tracker [Shi and Tomasi, 1994]. The output is a

collection of tracks x̄1, . . . , x̄n. Each track has a start frame start(x̄i), an end frame

end(x̄i), and a sequence of image locations x̄i = {x(t)
i |start(x̄i) ≤ t ≤ end(x̄i)}. We

enforce the feature labels to be consistent over the entire track and denote this by li

for track x̄i, with L = {l1 . . . ln} being the set of all track labels.

Our goal is to recover the two motions M = {Mobj,Mbckg} as well as an assign-

ment from the feature tracks to the motions. This can be achieved by minimizing

the fitting error of all tracks to their motion models:

Emotion(M,L) = E(Mobj, L) + E(Mbckg, L) (4.1)

where E(Ml, L) is the fitting error of a particular motion model Ml defined as the

combined fitting error of all tracks with label l w. r. t. the affine motions in Ml:

E(Ml, L) =
n∑

i=1

end(x̄i)∑

t=start(x̄i)+1

δ(l, li)ε(A
(t)
l , x

(t)
i ) (4.2)

where ε(A
(t)
l , x

(t)
i ) = ‖A(t)

l x
(t−1)
i −x(t)

i ‖2
2 is the fitting error of a feature and δ(l, li) = 1

if l = li and 0 otherwise.

The energy in eq. (4.1) can be minimized by employing the EM algorithm

[Dempster et al., 1977]. In the E-step we assign a label l to a feature track by

identifying the motion Ml with the smallest fitting error. In the M-step, we update

the affine motions of Ml using the tracked features with label l. Instead of estimating

the affine transformations from all the feature tracks with label l (in closed form by

minimizing the least-squares error), we use RANSAC [Fischler and Bolles, 1981] to

stay robust to possible outlier tracks. After the final iteration, we discard all tracks

that are counted as outliers from the final RANSAC estimation. After estimating two
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motion models we assign label object to the one whose features have larger scatter

in the image defined as the variance of the feature locations.

4.1.2 Object Silhouette Detection

Now we show how to use the track labels and the segments to obtain object sil-

houettes for the foreground object in each frame. The main idea is to propagate

the motion labeling of the tracks to labels of the segments, while maintaing spatial

and temporal smoothness of the segment labeling. We model the interplay between

tracks and segments using an MRF over the segments S = {s1 . . . sK} from all frames,

si ∈ {object, background} denoting the label of the ith segment. The energy function

Esilhouette(S) =
K∑

i=1

Epropg(si) +
K∑

i,j=1

Esmooth(si, sj) (4.3)

consists of unitary energy term Epropg which propagates motion labels of features to

segments, and a term Esmooth assuring that the resulting labels do not violate spatial

and temporal smoothness. A detailed definition of both terms follows below.

Propagating from feature tracks to segments Although the segment tracks

provide good segmentation, the segment boundaries are not precise enough to mea-

sure directly their compatibility with the estimated affine motion models. Therefore,

we propose to label the segments by propagating labels from features to the segments.

A simple way could be through assigning features to segments based on their loca-

tions. However, many of the tracked features tend to lie close to the boundary of

a segment which makes feature-to-segment assignment ambiguous (see feature A in

fig. (4.3)). To resolve this problem, we propose to use the Delaunay triangulation

of the features. We define a motion energy term for each of the resulting triangles

{d1, . . . , dm} (we denote by di the ith triangle as well as its label) based on the aver-

age fitting error of its vertices: Etri(di = l) = 1
3

∑
x∈di

ε(Al, x) where ε is the fitting

error as defined in eq. (4.2) applied for the motion model Al of the frame of di. The
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Delaunay traingulation of feature points

motion model energy 
of triangles

motion model energy 
of segments

Figure 4.3: Upper left: all features with their motion (blue denotes object, red -
background) and their Delaunay triangulation; upper right - a zoom in of feature
A and its triangles; lower right: motion model energy of each triangle (dark blue
means object); lower left: propagation of the triangle energy to the segments. (For
further explanation see text.)

motivation for this definition is that we can assign a motion label robustly to the

triangles since a triangle accumulates information from several vertices. For exam-

ple, in fig. (4.3) the boundary point A, moving with the object, is the only vertex

labeled as object on the background triangle d′, while it correctly supports triangle

d to be labeled as object. We propagate the motion label energy of the triangles to

entire segments as the average of the triangle energies weighted by the area overlap

oij between the ith segment and jth triangle:

Eseg(si) =
1

Oi

m∑

j=1

oijEtri(dj = si) (4.4)
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where Oi =
∑m

j=1 oi,j.

Spatial and temporal smoothness The smoothness constraint is imposed

among neighboring segments using a Potts smoothness term and is based on the

normalized color histogram hi of the segments:

Esmooth(si, sj) = α + (1− α) exp

(
−‖hi − hj‖

2

2σ2
c

)

if the jth segment is in the neighborhood of the ith one and si 6= sj, 0 otherwise. The

neighborhood of a segment i is defined as the set of segments which are either in the

same frame and share a common boundary, or are in the consecutive frame and share

a common boundary with a segment from the segment track of segment i. In this

way we incorporate spatial as well as temporal relationships. In our experiments, we

use 6-dim. RGB color histogram and set α = 0.2, σc = 0.3, and b = 6.

Finally, the labeling of the segments S is obtained by minimizing the energy in

eq. (4.3). This is a submodular binary labeling problem, hence it can be solved

exactly using Graph Cuts [Kolmogorov and Zabih, 2002].

4.2 Model View Graph

The matching of video frames to 3D model silhouettes requires a compact yet com-

plete model representation. We propose to use a small set of model silhouettes, called

view graph2 (see fig. 4.4). Each silhouette is a compact representation of a subset

of all possible model views, while the whole graph covers the entire viewing sphere.

The edges connect neighboring silhouettes represent view transitions which can be

induced by ego-motion of the model.

To create such a view graph, we orthographically render a large number (500 in

our experiments) of silhouettes from approximately uniformly distributed viewing

2We deviate from [Cyr and Kimia, 2004] and do not use the term aspect graph because we do
not follow its mathematical definition.
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Figure 4.4: View graph: 500 viewing points (blue) extracted initially and the view
graph (red) after clustering. Some of the silhouettes are displayed. In addition, we
show the parameterization of one of the views.

angles and cluster them into a few representative views. However, for 260 models,

which is the dataset size we use, this results in 130000 silhouettes, which not only

contain redundant information, but also pose a computational challenge for match-

ing. To obtain the graph, we perform k-medoids clustering of the 500 silhouettes

with 20 modes [Cyr and Kimia, 2004].

The clustering for view graph creation requires a feature vector for each silhouette

representing its shape. We compute shape contexts [Belongie et al., 2002] centered

at silhouette boundary points (we uniformly sample 20% of the boundary). Since a

shape context is not rotation invariant, each silhouette is pre-rotated to a canonical

orientation, given by the rotation that brings the offset vector q (which connects
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the offset of the shape context to the centroid of the silhouette) to the X-axis.

Hence, the descriptor sdk = (sck, qk) assigned to boundary point k contains both

the shape context sck and the offset vector qk. We use the extracted shape contexts

from all silhouettes to compute a codebook of size 200, using k-means clustering.

Using nearest neighbor binning we can build a histogram over codewords for each

silhouette image. The resulting 200-dimensional histogram vector is used for the

view clustering.

4.3 Matching of Object Silhouette Sequences to

Models

After we have extracted a sequence of silhouettes from the video and a set of model

silhouettes organized in a view graph, we cast the matching problem as matching of

the object silhouettes with the view graph. A simple approach would be to let each

frame vote for a particular model and thus to detect the object class as the class of

the model with most votes.

In addition, one can try to incorporate motion information and require that the

matched model views represent a smooth transition in the view graph. This second

approach can be considered as an alignment of the video silhouettes with a view

graph of a model (see fig. 4.5). The benefit of the second approach is two-fold – the

best aligned model gives the class of the observed object in the video, while the path

on the view graph gives a rough pose estimate of the object motion.

In the following exposition, we will denote the video silhouette sequence by F =

{f1 . . . fT} and a model view graph by G = {m1 . . .mK} of K views. Each model

view mi = (vi, θi, si, pi) is parametrized by the its silhouette vi, its orientation θi

around the silhouette centroid, its scale si, and the viewpoint pi = pi(ϕi, ψi)
T on the

model view sphere from which it was extracted (see Fig. 4.4).
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4.3.1 Shape Matching

We consider two shape matching techniques: shape context [Belongie et al., 2002]

and the rotation invariant chordiogram from Sec. 2.2.

Shape Context. We sample the silhouette boundary and compute shape context

descriptor (SC) [Belongie et al., 2002] at each sampled point. Since SC is not ro-

tation invariant, before extracting it at boundary point q we rotate the silhouette

to a canonical orientation for q such that the offset vector q (the vector connecting

the offset with the object center) is aligned with the X axis. The resulting SC sc is

combined together with the offset vector q in a descriptor sd = (sc, q).

We denote a correspondence between boundary point sdk = (sck, qk) of the object

silhouette and a boundary point sdn = (scn, qn) of the model silhouette by ck,n.

The L2 distance between the shape contexts sck and scn is a measure of the semi-

local shape similarity of the silhouettes and can be used to define a probability for

observing model silhouette shape v and the point correspondence ck,n:

P (ck,n, v|fi) = exp(−||sck − scn||2/2σ2
sc) (4.5)

Besides local similarity, we also evaluate the global shape similarity by measuring

how well individual point matches agree with each other. For this we need a parame-

terization of the alignment of the model with the object. Since we know the centroids

of the silhouettes, the alignment can be parameterized by a similarity transforma-

tion with a zero translational component. It is defined by a rotation R(θ) ∈ SO(2)

around the mask centroid and a scale s. Hence this is the transformation which

aligns the offset vectors qk and qn of the shape contexts. The probability of this

alignment given the correspondence ck,n is:

P (θ, s|ck,n, v, fi) = exp(−||sR(θ)qk − qn||2/2σ2
sp) (4.6)

By combining all shape context similarities and the global alignment the probability
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of a matching model silhouette m = (v, θ, s) can be written as:

P (m|fi) =
1

A

∑

k,n

P (θ, s|ck,n, v, fi)P (ck,n, v|fi) (4.7)

where A is a normalization factor guaranteeing that the above quantity is a proba-

bility distribution.

In our implementation we used the following parameter values: σsc = 0.25 in

eq. (4.5), σsp = 4 in eq. (4.6).

Chordiogram. For each silhouette v we compute the rotation invariant chordio-

gram ch(v) (see Sec. 2.2).

In this application of the chordiogram, we use the following parameter values:

bl = 5, bd = 5, bn = 8. The maximal bin boundary of the chords’ length bins is equal

to the length of silhouette major axis, while the maximal bin boundary of distance

to center bins is set to be half of the silhouette major axis length. These parameters

ensure that the chordiogram covers the whole silhouette.

4.3.2 Frame Voting for a Model

Suppose that for each frame fi and each class label l we have a score w(l, fi) for this

frame containing an object of class l. Then we can aggregate those scores as votes

over the whole video and determine the class of the video as the one with highest

cumulative vote:

label(F ) = arg max
l

T∑

i=1

w(l, fi) (4.8)

Shape Context. To compute a score in the case of the SC matching, we use the

shape probability from eq. (4.7) to compute a score of the best alignment between

each video frame and each model view:

s(v, fi) = max
θ,s

P (θ, s, v|fi)
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The maximum is computed using Hough transform – each match ck,n casts a vote

for a rotation and scale and we pick the ones with largest vote accumulation. Having

already computed a matching score we can use it to define a voting score

wsc(l, fi) =
∑

v

δ(label(v), l)s(v, fi) (4.9)

where we sum over all model silhouettes in the model dataset which have label l.

This score can be used in the voting scheme from Eq. (4.8).

Chordiogram. For each model view v and a frame fi we can compute the L1

distance between their corresponding chordiograms and interpret this as a shape

distance:

s(v, fi) = ||ch(v)− ch(fi)||1 (4.10)

Then we can define a binary voting score such that a frame fi votes for a class l

exactly if there is a model of this class which is among the k closest models to the

frame.

wch(l, fi) =





1 if there is a model v among the closest k models with label(v) = l

0 otherwise

4.3.3 Alignment of the Video to a Model View Graph

To define an alignment score for a given video F = {f1 . . . fT} and a model view graph

V = {m1 . . .mT}, where mi are views from the view graph, we use a conditional

random field [Lafferty et al., 2003]. It defines a joint distribution over the aligned

model views V (see fig. 4.5 as well):

P (V |F ) =
1

Z(F )

T∏

i

P (mi|F )P (mi,mi−1|F ) (4.11)

where Z(F ) is the partition function. Estimating the model silhouette sequence

V for which the above distribution is maximized amounts to finding the alignment
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Figure 4.5: Left: CRF model of the video-to-model alignment. Right: alignment
shown for 3 frames of a video and a model view graph.

with the highest score. This inference can be solved exactly by backwards-forwards

algorithm for CRFs [Lafferty et al., 2003]. Below we define the different terms. To

define the unitary potentials in the CRF in Eq. (4.11), we use eq. (4.7).

Transition smoothness in the view graph. The second term P (mi,mi−1|F )

represents the transition of the model silhouette at time i − 1 to the one at time i.

We require smooth transitions – the viewing points p as well as the alignment defined

as rotation θ to corresponding frames (see previous section) should be similar:

P (mi,mi−1|F ) = exp

(
−(θi − θi−1)2

2σ2
r

− acos(pTi pi−1)2

2σ2
p

)

Voting for initial object detection. To perform full recognition we need to

solve the problem in eq. (4.11) for each model. Since this can be computationally

challenging, in a first step we use shape information from each video frame indepen-

dently to detect a few matching models for the whole video – each individual frame

votes for the best matching model class and we retain the class with largest votes.

We use the voting scheme described in Sec. 4.3.2.The full model from eq. (4.11) is
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Figure 4.6: A sample of the 43 classes we use from the Princeton Shape Benchmark
[Shilane et al., 2004].

solved in a second step only for models from the best matching class.

We used the following parameter values: σp = 60◦, σr = 20◦. We rescale model

silhouettes to have variance 70 pixels.

4.4 Experiments

Videos. We perform experimental evaluation of our approach using 42 videos rep-

resenting 3 different classes: car (15 videos), airplane (12 videos), and helicopter (15
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videos). These videos are between 41 and 1159 frames long, in total 10029 frames,

and were collected manually or from the web. During the video segmentation pro-

cess we do not use every frame, but depending on the length of the video we use

every third or every tenth frame. This is motivated by computational limitations.

As a result, the number of frames which were used in the recognition stage is 2954,

ranging from 21 to 116 frames per video.

3D Models. We obtain 3D models from the Princeton Shape Benchmark

[Shilane et al., 2004], which contains a variety of different objects. We use 43 classes,

5 models per class (see Fig. 4.6). The classes represent a rich variety of object types

– vehicles, animals, furniture, architectural elements, etc. In particular, the dataset

contains classes of type car and helicopter and 5 classes of type airplane (passenger

plane, jet, F117, biplane, and space shuttle). Note that we initially extract 500 views

per model, resulting in a total 107500 silhouettes for the 215 models we use, many of

which contain unrealistic views, e. g. bottom of a sailboat, which make the matching

problem even harder. Moreover, although we test on 3 video classes, we use all 43

model classes in order to test the robustness of our system to shape variation. The

goal is to utilize the whole shape dataset without any manual selection.

Recognition and alignment results. We match the input videos to the models

and determine a model class using the voting procedure of sec. 4.3. In Table. 4.1

we present the percentage of the correctly classified videos. We achieve accuracy of

88.3% over all videos using the chordiogram and Eq. (4.10), while the score from

Eq. (4.9) based on shape context result in 83.9% detection rate.

In addition, we present the precision–recall curves for the two voting schemes in

Fig. 4.7. The average precision for the chordiogram-based method is 89.4%, while

for shape context it is 86.5%.

The results show that we can robustly detect the correct object class using a

textureless dataset of models without being confused by the large variety of object
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(a) airplain (b) helicopter

(c) car

Figure 4.7: Precision–recall curves using the voting scheme and scores based on
shape context and the chordiogram. In addtion, we present the average precision for
each class.

types. The few mistakes are result of shape ambiguities. For example, in fig. 4.8 we

can see incorrect matches due to very similar model object outlines. However, due

to object motion we always see one or several discriminative object shapes, which

decrease the effect of ambiguous shapes.

Further, we apply the the alignment procedure of Eq. (4.11). We can achieve

good alignment of the model with the video, and thus estimate the rough pose of

the moving object (see Fig. 4.9–4.9).
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class
detection rate

Shape Context Chordiogram

car 80.0% 86.7%
airplane 91.7% 91.7%
helicopter 80.0% 86.7%

average 83.9% 88.3%

Table 4.1: We show the detection rates for the voting scheme and scores based on
shape context and the chordiogram.

  

Figure 4.8: Failure cases for the matching (first row – frame, second row – object
mask, third row - best model match).

4.5 Related work

Much of the early work in 3D model recognition was performed by matching wire-

frame representations of simple 3D polyhedral objects to detected edges in an image

with no background clutter and no missing parts (a nice summary can be found

in Grimson’s book [Grimson, 1990]). An exception was aspect graphs, which first

appeared in [Koenderink and Doorn, 1979] and emerged again as a new represen-

tation of 3D objects (see for example [Kriegman and Ponce, 1990]). Aspect graphs

in their strict mathematical definition (each node sees the same set of singularities)

were not considered practical enough for recognition tasks. However, the notion of

sampling in the view-space for the purpose of recognition was introduced again in
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Figure 4.9: Matching results and model alignment for 5 videos. For each example,
we show in three rows the input video, the detected silhouette sequence, and the
aligned matched model (we sample 8 equally spaced in time frames from each of the
displayed videos).
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Figure 4.10: Matching results and model alignment for 5 videos. For each example,
we show in three rows the input video, the detected silhouette sequence, and the
aligned matched model (we sample 8 equally spaced in time frames from each of the
displayed videos).
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[Cyr and Kimia, 2004], and is the closest to our use of an aspect graph but is applied

for matching synthetic 3D models.

Regarding recognition from still images, Ullman introduced the representation

of 3D objects based on view exemplars [Ullman and Basri, 1991] and several recent

approaches use a sample of appearance views deliberately taken to build a model

[Rothganger et al., 2003, Ferrari et al., 2004, Savarese and Fei-Fei, 2007]. The au-

thors of [Savarese and Fei-Fei, 2007] propose to learn object category models encod-

ing shape and appearance from multiple images of the same object category by relat-

ing homographies between the same plane in multiple views. [Rothganger et al., 2003]

extract 3D object representations based on local affine-invariant descriptors of their

images and the spatial relationships between surface patches. To match them to

test images, they apply appearance feature correspondences and a RANSAC proce-

dure for selecting the inliers subject to the geometric constraints between candidate

matching surface patches. In terms of models, Liebelt’s approach [Liebelt et al., 2008]

is very close to ours since it works with a view space of rendered views of 3D models.

Appearance features are selected based on their discriminativity regarding aspect

as well as object category and they are matched to single images in the standard

benchmark datasets.

[Sivic et al., 2006] use matching based on affine co-variant regions across multiple

video frames to create models of all seen parts of 3D objects. It is the closest approach

to ours regarding the nature of the data while we use an aspect representation which

is the closest to [Cyr and Kimia, 2004].

4.6 Conclusion

In this chapter we have addressed the problem of object recognition in videos. The

proposed approach is based on the ideas and methods presented earlier in this thesis.

First, we explore shape as a major representation for recognition in videos.
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We use and compare the chordiogram, presented in Chapter 2, and shape context

[Belongie et al., 2002] for the purpose of recognition in videos. Using shape allows

us to utilize large datasets of 3D models, which are freely available on the web.

Our experimental evaluation shows that shape is discriminative among many classes

when we deal with videos.

Second, we show that co-salient perceptual grouping as described in Chapter 5

combined with motion information can be successfully applied to segment the moving

object. This is sufficient in many frames to obtain an object mask precise enough

for shape matching. Note that this is a different approach than the one advocated in

Chapter 3, where the model-based shape matching was tightly integrated with the

perceptual grouping – while in a single image such tight coupling is of paramount

important, in the case of videos we can exploit motion information.
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Chapter 5

Co-salient Perceptual Grouping

and Matching

Perceptual region grouping has been widely used as a preprocessing step in recogni-

tion [Mori, 2005, Russell et al., 2006]. Although unsupervised segmentation provides

meaningful groups, it is inherently unstable – segments rarely capture the same parts

in different images of the same object or scene. For example, in Fig. 5.1, upper image

pair, segmenting two images of the same scene with the same algorithm results in

different sets of regions. In the previous chapters we have addressed this problem by

precomputing an oversegmentation of an image and piecing an object out of this set

of precomputed segments.

Correspondence estimation is one of the fundamental challenges in computer

vision lying at the core of many problems, from stereo and motion analysis to

object recognition. The predominant paradigm in such cases has been the cor-

respondence of object parts or scene components. Such parts are usually repre-

sented using local features [Lowe, 2004, Matas, 2004, Mikolajczyk and Schmid, 2004,

Dalal and Triggs, 2005] such as interest points, whose power is in the ability to ro-

bustly capture discriminative image structures in a repeatable manner – interest

point detectors tend to fire at similar structures in different images. Feature-based
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approaches, however, suffer from the ambiguity of local feature descriptors and there-

fore are often augmented with global models which are in many cases domain de-

pendent (see upper image pair in Fig. 5.1).

independent matching and segmentation

joint matching and segmentation via JIG

Figure 5.1: Independently computed correspondences and segments (upper diagram)
for a pair of images can be made consistent with each other via the joint image graph
and thus improved (lower diagram).

In this chapter we address the above problems by combining the complementary

strengths of local features and segmentation. We attempt to resolve the matching

ambiguities related to local features by providing grouping constraints via segmen-

tation. In addition, the feature correspondences can be used to synchronize both

segmentations and obtain consistent segments. In this way we attempt to obtain
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image segmentation such that the segments can be put in correspondence across

images.

We introduce a perceptual framework to matching and segmentation by mod-

eling in one score function both the coherence of regions within images as well as

similarities of features across images. We will refer to such a pair of corresponding

regions as co-salient and define them as follows:

1. Each region in the pair should exhibit strong internal coherence with respect

to the background in the image;

2. The correspondence between the regions from the two images should be sup-

ported by high similarity of features extracted from these regions (see fig. 5.1).

To formalize the above model we introduce the joint-image graph (JIG) which

contains as vertices the pixels of both images and has edges representing intra-image

similarities and inter-image feature matches. The matching problem is cast as a

spectral segmentation problem in the JIG. A good cluster in the JIG consists of a

pair of coherent segments describing corresponding scene parts from the two images.

The eigenvectors of the JIG weight matrix represent ’soft’ joint segmentation modes

and capture the co-salient regions.

The resulting score function can be optimized with respect to both the joint seg-

mentation and feature correspondences. In fact we employ a two step iteration with

optimization of the joint segmentation eigenvectors in the first step. In the second

step we improve the feature correspondences by identifying those correspondences

which support the region matches indicated by the joint eigenvectors and suppress-

ing the ones which disagree with it. Furthermore, we can use the co-salient regions

to induce new feature correspondences by extracting additional features not used by

the initial estimation and checking their compatibility with the region matches.

In the next section we proceed with the introduction of the model. The solution

to the problem is presented in sec. 5.2 and sec. 5.3. We conclude with experimental
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results in sec. 5.4.

5.1 Joint-Image Graph (JIG) Matching Model

The JIG is a representation of N images, which incorporates both intra- and inter-

image information. It is constructed as a weighted graph G = (I1 ∪ . . . ∪ IN , E,W ),

whose vertex set consists of the pixels of all images Ii, i ∈ {1, . . . , N}. Denote the

number of pixels in Ii by ni. The weights W of the edges represent similarities

between pixels:

W =




W1 C1,2 0 . . .

CT
1,2 W2 C2,3 . . .
...

...
. . .


 (5.1)

Wi ∈ [0, 1]ni×ni is a weight matrix of the edges connecting vertices in Ii with entries

measuring how well pixels group together in a single image, called also an affinity

matrix. The other component Ci,j ∈ [0, 1]ni×nj is a correspondence matrix, which

contains weights of the edges connecting vertices from Ii and Ij, i. e. the similarities

between local features across the two images. We can assume that CT
i,j = Cj,i.

Further, denote all the correspondence matrices by C = {Ci,j|i, j ∈ {1, . . . , N}, i 6=
j}. To emphasize that W contains correspondences, we will occasionally write W as

W [C].
In order to combine the robustness of matching via local features with the de-

scriptive power of salient segments we detect clusters in JIG. Each such cluster S

represents a set of regions S = S1 ∪ . . . ∪ SN , Si ⊆ Ii, i ∈ {1, . . . , N}, and contains

pixels from some of the N images. We can describe each region Si with an indicator

vector vi ∈ {0, 1}ni : (vi)x = 1 iff pixel x lies in the region Si; all indicator vectors

for S can be stacked in a vector v = (vY1 . . . v
T
N)T ∈ {0, 1}n for n =

∑N
i=1 ni.

Using the above notation we can introduce the idea of co-salient regions. A set

S is called co-salient if each pair Si, Sj, with Si, Sj 6= ∅,

126



C

W2

W1

vT
1 Cv2

vT
2 W2v2

vT
1 W1v1

(
v1

v2

)T (
W1 C
CT W2

) (
v1

v2

)T

images JIG ’soft’ co-salient regions discrete regions

subject to
vT
1 D1v1 + vT

2 D2v2 = I

Figure 5.2: Diagram of the matching score function exemplified on two images. The
final score function consists of the sum of two components from eq. (5.4) and eq. (5.6).
The joint optimization results in ’soft’ eigenvectors, which can be further discretized,
and a correct set of feature matches. This example can be extended to more than
two images in a straightforward manner.

Intra-image similarity criterion: Form coherent and perceptually salient regions

in the ith and jth image respectively.

inter-image similarity criterion: Match well according to the feature descrip-

tors.

We formalize the two criteria as follows (see also fig. 5.2):

Intra-image similarity

The image segmentation score is the Normalized Cut criterion applied to all co-salient

regions

IntraIS(S) =

∑
i∈{1,...,N}

∑
x∈Si,y∈Si

(Wi)x,y

N(S)
(5.2)

with normalization

N(S) =
∑

i∈{1,...,N}

∑

x∈Si,y∈Ii

(Wi)x,y (5.3)

Using the notation of indicator vectors, the criterion can be written as

IntraIS(v) =

∑
i∈{1,...,N} v

T
i Wivi

vTDv
(5.4)
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where Di = diag(Wi1ni
) is the degree matrix of Wi; 1ni

is an ni dimensional vector

with all elements equal to one. Both the indicator vectors and degree matrices for all

images can be written succinctly by stacking them in a single vector v and a matrix

D:

D =




D1 0 . . .

0 D2 . . .
...

...
. . .


 v =




v1

v2

...




Inter-image similarity

The matching score can be expressed as

InterIS(S) =

∑
i,j∈{1,...,N},i 6=j

∑
x∈Si,y∈Sj

(Ci,j)x,y

N(S)
(5.5)

with the normalization defined in Eq. (5.3). This function measures the strength of

the connections between the regions Si and Sj.

The normalization favors correspondences between pixels which are weakly con-

nected with their neighboring pixels – exactly at places where the above segmentation

criterion is uncertain in one of the images. We do not use in the normalization any

correspondences across images. The reason is that if we include the correspondence

scores in the normalization then a keypoint, which is similar to several keypoints in

another image, will decrease the above score. However, these ambiguous matches

are indication of repetitive local structure and should not penalize the matching.

If we use the same indicator vector as above, then it can be shown that

InterIS(v, C) =

∑
i,j∈{1,...,N},i 6=j v

T
i Ci,jvj

vTDv
(5.6)

The correspondence matrix Ci,j is defined in terms of feature correspondences en-

coded in a ni × nj matrix M (detailed definition of M is given in section 5.4). As

Ci,j we select a subset of all feature correspondences such that no feature is mapped
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to more than one other feature. This can be encoded by a matrix P :

Ci,j = Pi,j ◦Mi,j for all pairs i, j ∈ {1, . . . , N}, i 6= j (5.7)

with Pi,j1nj
≤ 1ni

, 1Tnj
Pi,j ≤ 1ni

Pi,j ∈ {0, 1}ni×nj

where ◦ is the elementwise matrix multiplication.

Co-saliency score function

Because we want to match co-salient regions, we should maximize the sum of the

scores in eq. (5.4) and eq. (5.6) simultaneously. In the case of k pairs of co-salient re-

gions we can introduce k indicator vectors packed in n×k matrix V = (v(1), . . . , v(k)),

n =
∑N

i ni. Then we need to maximize

CoSaliency(V, C) =
k∑

c=1

IntraIS(v(c)) + InterIS(v(c), C)

=
k∑

c=1

(v(c))TWv(c)

(v(c))TDv(c)

The score IntraIS is related closely to the Normalized Cuts image segmentation

function [Yu and Shi, 2003] – its maximization amounts to obtaining ’soft’ segmen-

tation, represented by the eigenvectors of W with large eigenvalues. In our case,

however, the estimation of vi is related via the score function InterIS. Therefore,

this process synchronizes the segmentations of all images and retrieves matches of

segments, which are supported by the feature matches.

Co-saliency Matching

The CoSaliency score from Eq. (5.8) can be used in two ways to match a set of

images.

Co-saliency region matching. The first application would be to estimate a

set of co-salient regions, which is also known as the problem of co-segmentation
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[Rother et al., 2006]. More precisely, one would estimate segments V across images

for a given set of correspondences C.

(CSRM) : max
V

CoSaliency(V ) =
k∑

c=1

(v(c))TWv(c)

(v(c))TDv(c)
(5.8)

subject to V 1k = 1n, V ∈ {0, 1}n×k (5.9)

The last two constraints (5.9) enforce V to be a valid indicator vector – the elements

of V are integral and each pixel is assigned to exactly one region. Since we do not

estimate any feature correspondence, the above problem can be also understood as

a synchronization of the segmentation of the images.

Co-saliency region and feature matching. Besides synchronizing the segmen-

tation of two or more images, one may want to improve feature matches across the

images. This leads us to the second more general application of the CoSaliency score

in which we attempt not only to co-segment the images but also to detect feature

matches consistent with the co-salient region matches:

(CSRFM) : max
V,C

CoSaliency(V, C) =
k∑

c=1

(v(c))TW [C]v(c)

(v(c))TDv(c)
(5.10)

subject to V 1k = 1n, V ∈ {0, 1}n×k

Ci,j = Pi,j ◦Mi,j

Pi,j1nj
≤ 1ni

, 1Tnj
Pi,j ≤ 1ni

Pi,j ∈ {0, 1}ni×nj

In addition to (CSRM), we select correspondences supported by the region matches

by optimizing over P as well. The last two constraints are take directly from the

parameterization of the correspondence matrices in Eq. (5.7).

130



5.2 Optimization in the JIG

Both problems (CSRM) in Eq. (5.8) and (CSRFM) Eq. (5.10) are in general non-

convex integer quadratic programs and are NP-hard. Therefore, we seek an opti-

mization procedure which gives an approximate solution. We will use the techniques

presented in [Yu and Shi, 2003].

Problem (CSRM) in Eq. (5.8) can be considered as a subproblem of (CSRFM)

from Eq. (5.10). Therefore, we first show how to approximately optimize (CSRM).

This step amounts to synchronization of the ’soft’ segmentations of two images based

on C as shown in the next section. Then we use (CSRM) to optimize (CSRFM).

This involves an additional step, in which we find an optimal correspondence matrix

C given the joint segmentation V .

5.2.1 Co-saliency Region Matching

For fixed C, the optimization problem from eq. (5.8) can be relaxed to by dropping

the constraints (see [Yu and Shi, 2003]):

max
Z

tr
(
ZTWZ

)
(5.11)

subject to ZTDZ = 1k (5.12)

The above program is formulated in terms of the scaled indicator matrix Z =

V (V TDV )−1/2. After one has estimated an approximate scaled indicator matrix,

the corresponding original indicator can be recovered via

V = Diag(diag−1/2(ZZT ))Z (5.13)

The above problem is maximization of the Rayleigh quotient can be solved by com-

puting the eigenvectors corresponding to the largest k eigenvalues of the generalized

eigenvalue problem (W,D) [Golub and Loan, 1989].

Although one could apply this procedure directly to (CSRM), there are two

obstacles. First, C may contain many erroneous matches which will lead to noise
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in the matrix W . And since we attempt to discover clusters in JIG, this noise may

be detrimental. Second, the bottleneck of the above relaxation is the computation

of the eigenvectors of W , whose size is Nn × Nn for N images each containing

ni pixels each, n =
∑

i ni. Using Power Iteration, the top k eigenvectors can be

computed in O(N2n2k) [Golub and Loan, 1989]. If we exploit the sparsity of W ,

then its top eigenvectors can be computed in O(N3/2n3/2k) using the Lanczos method

[Golub and Loan, 1989]. This is an intensive computation which is challenging even

for a single image and therefore does not scale up for more than one image (N > 1).

As a remedy to the above problems we assume that the joint ’soft’ segmentation

V of all images lies in the subspace spanned by the the ’soft’ segmentations of the

individual images. In the following, we will present the optimization in the case of

two images (N = 2), although it can be generalized to many images in a straight-

forward manner. Suppose that Si ∈ are the top s eigenvectors of the corresponding

generalized eigenvalue problems for all images WiSi = DiSiΛi. Then, the notion

that V should lie in the subspace of the ’soft’ segmentations of the individual images

translates to the constraint

V = SVsub, where S =


 S1 0

0 S2




is the joint image segmentation subspace basis and Vsub are the coordinates of the

joint ’soft’ segmentation in this subspace.

With this subspace restriction for V the relaxed program from Eq. (5.11) can be

written as

max
Vsub

CoSaliencysub(Vsub) = tr
(
V T

subS
TWSVsub

)
(5.14)

subject to V T
subVsub = Ik (5.15)

The matrix STWS is the original JIG weight matrix restricted to the segmentation

subspaces. If we write Vsub =


 V

(s)
1

V
(s)

2


 in terms of the subspace basis coordinates
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Figure 5.3: Image view of segmentation synchronization. Top left: an image pair
with outlined matches. Below: the image segmentation subspaces S1 and S2 (each
eigenvector is reshaped and displayed as an image) can be linearly combined to
obtain clear corresponding regions (awning, front wall), which can be discretized, as
displayed in the upper right corner of this figure.

V
(s)

1 and V
(s)

2 for both images, then the above score function can be decomposed as

follows:

tr
(
V T

subS
TWSVsub

)
= tr

(
(V

(s)
1 )TΛ1V

(s)
1 + (V

(s)
2 )TΛ2V

(s)
2

)

+2tr
(

(V
(s)

1 )TST1 CS2V
(s)

2

)
(5.16)

The second term is a correlation between the segmentations of both images weighted

by the correspondences in C and, thus, it measures the quality of the match. The

first term serves as a regularizer, which emphasizes eigenvectors in the subspaces

with larger eigenvalues and, therefore, describing clearer segments.

The optimal Vsub in eq. (5.14) for k co-salient regions is attained for the top k

eigenvectors of STWSVsub = VsubΛs, corresponding to the largest eigenvalues written

as a diagonal matrix Λs. Note that STWS is a Ns × Ns matrix, for s ≤ 100

and N images, while the eigenvalue problem necessary to solve program eq. (5.11)

has much higher dimension n2. Therefore, the subspace restriction speeds up the
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problem and makes it tractable for a set of images. The resulting SVsub represents

a linear combination of the original ’soft’ segmentation such that matching regions

are enhanced. The initial and synchronized segmentation spaces for an image pair

are shown in Fig. 5.3.

Alignment in the embedding space. A different view of the above process can

be obtained by representing the eigenvectors by their rows: denote by bix the xth

row of SiV
(s)
i . Then we can assign to each pixel x in the ith image a k-dimensional

vector bix which we will call the embedding vector of this pixel. This vector is

obtain by projecting the s-dimensional rows of Si into a k-dimensional space (k < s)

via (V
(s)
i )T , where for each image we compute a different projection. Then the

segmentation synchronization can be viewed as an alignment of the segmentation

embeddings of both images such that corresponding pixels are close in the resulting

lower dimensional embedding (see Fig. 5.4).

Discretization of co-salient regions. From the synchronized segmentation eigen-

vectors we can extract regions. Suppose bix = (bix,1 . . . b
i
x,k)

T ∈ Rk is the embedding

vector of a particular pixel x in the ith image (also the xth row of Vi). Then, we

label this pixel with the eigenvector, for which the corresponding element in the

embedding vector has its highest value:

label(x) = arg max
l
{bix,l|l ∈ {1, . . . , k}} (5.17)

A more principled way to obtain a discrete solution is presented in

[Yu and Shi, 2003]. It is based on the fact the value of the score CoSaliencysub from

Eq. (5.14) is invariant with respect to a rotation:

CoSaliencysub(VsubR) = tr
(
RTV T

subS
TWSVsubR

)

= tr
(
V T

subS
TWSVsub

)
= CoSaliencysub(Vsub) for any R ∈ O(k)

This inspires the authors to apply the discretization from Eq. (5.17) to a relaxed

indicator SVsubR which after applying a rotation R is closest to an integral solution.
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X Y

S1 S2

×V
(s)
1 ×V

(s)
2

SVsub
Figure 5.4: Subspace view of the segmentation synchronization. Below each of the
images in the first row, the embedding of the pixels of the image in the segmenta-
tion space spanned by the top 3 eigenvectors is displayed. The pixels coming from
different objects in the image are encoded with the same color. In the third row,
both embeddings transformed by the optimal Vsub (eq. (5.16)) are presented, given
the matches selected as shown in the first row. Both embeddings were synchro-
nized such that all pixels from both rectangles form a well grouped cluster (the red
points). In this way the matches were correctly extended over the whole object, even
in presence of an occlusion (green vertical line in right image).
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More precisely, one solves the program (see Theorem 1 from [Yu and Shi, 2003]):

min
V,R

Discret(V,R) = ||V − S̃VsubR||F (5.18)

subject to V ∈ {0, 1}n×k, V 1k = 1n

R ∈ O(k)

for S̃ = Diag(diag−1/2(SST ))S (see program in Eq. (5.11)).

The resulting indicator vector mask V̂ = [v̂1 · · · v̂k] describes k segments, where

the lth column is the indicator for the lth co-salient region. Note that v̂l describes

a segment in the JIG and therefore represents a set of corresponding regions in the

images. The matching score between segments can be defined as CoSaliency(v̂l).

The final algorithm for co-saliency region matching is outlined in Algorithm 3.

Algorithm 3 Co-saliency region matching.

1: Initialize Wi and Ci,j as in section 5.1. Compute W .
2: Compute segmentation subspaces Si as the eigenvectors to the s largest eigen-

values of Wi.
3: Find optimal segmentation subspace alignment by computing the top k eigen-

vectors of STWSVsub: STWSVsub = VsubΛs, where Λs are the eigenvalues.
4: Discretize using program 5.18.

Discussion. The computation of the segmentation subspaces can be done inO(n
3/2
i s)

for the ith image. The complexity of the third step is the computation of the top

k eigenvectors of a dense matrix of size Ns × Ns, which can be accomplished in

O((Ns)2k). The discretization has running time O(
∑

i nik
2) [Yu and Shi, 2003].

The total complexity is O(
∑

i n
3/2
i k + (Ns)2k +

∑
i nik

2).

Clearly the dominant term in the above complexity is the first one. Notice that

in case we need to match an image several times, the segmentation subspaces can

be precomputed once. Then, each co-salient region matching will take O((Ns)2k +
∑

i nik
2).
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5.2.2 Co-saliency Region Matching during Discretization

The segmentation synchronization procedure outlined in sec. 5.2.1 obtains a relaxed

synchronized solution, which is discretized in a second step. This can be applied

for two or more images. It involves the computation of the top k eigenvectors of a

the matrix STWS of size Ns × Ns. For N = 2 images and a subspace s = 100,

this results in a 200 × 200 matrix. If we want to segment a video, however, whose

length is N = 150 frames, then we need to compute eigenvectors of a matrix of size

30000× 30000. Note that, contrary to W , the matrix STWS is in general not sparse

and thus the efficient Lanczos method cannot be applied.

A different approach would be to obtain independent relaxed solutions for each

image, which are synchronized during discretization using the correspondence matri-

ces Ci,j. The feature matches can be utilized during the discretization by requiring

that the segment indicator matrices of the individual images are not only close to

the relaxed indicator vectors but also their inter-image similarity is strong. More

precisely, we adapt the discretization program from Eq. (5.18) as follows:

min
V,R

CoDiscret(V ,R) =
N∑

i=1

||Vi − S̃iRi||F − γ
N∑

i,j=1,i 6=j

V T
i Ci,jVj(5.19)

subject to Vi ∈ {0, 1}ni×k, Vi1k = 1ni
for all i ∈ {1, . . . , N}

Ri ∈ O(k) for all i ∈ {1, . . . , N}

V = {V1, . . . , VN},R = {R1, . . . , RN}

for S̃i obtained using Eq. (5.13) and Si obtained as explained in sec. 5.2.1.

The above optimization problem is optimized iteratively with respect to R and

V :

Optimization w. r. t. R for fixed V : Rewriting the objective function yields:

CoDiscret(V ,R) = 2
N∑

i=1

ni − tr(V T
i S̃iRi)− γ

N∑

i,j=1,i 6=j

V T
i Ci,jVj
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Using Lagrange multipliers, as explained in Theorem 1 in [Yu and Shi, 2003],

the maximum is obtained from the SVD decomposition of

V T
i S̃i = UiΩŨi

T
via Ri = UiŨi

T
(5.20)

Optimization w. r. t. V for fixed R: Rewriting the objective function yields:

CoDiscret(V ,R) = 2
N∑

i=1

ni −
N∑

i=1

tr(V T
i (S̃iRi + γ

N∑

j=1,j 6=i

Ci,jVj)

Suppose that Vj above are fixed from the previous iteration. Then the maxi-

mum is obtained for

(Vi)l,m =





1 if m = arg maxm′{(Ai)l,m′}

0 otherwise

(5.21)

for Ai = S̃iRi + γ
∑N

j=1,j 6=iCi,jVj.

The final algorithm is outlined in Algorithm 4.

Algorithm 4 Segmentation Synchronization during Discretization

1: Initialize Wi and C as in section 5.1.
2: Compute segmentation subspaces Si as the eigenvectors to the k largest eigen-

values of Wi; obtain S̃i from Si via Eq. (5.13).

3: Initialize R
(0)
i ← Ik; t← 1;

4: Initialize V
(0)
i using Eq. (5.21) with A

(0)
i = S̃i.

5: repeat
6: Set R

(t)
i from V

(t−1)
i and S̃i using Eq. (5.20).

7: Set V
(t)
i from R

(t)
i and V

(t−1)
i using Eq. (5.21)

with Ai = S̃iR
(t)
i + γ

∑N
j=1,j 6=iCi,jV

(t−1)
j

8: until V
(t)
i has not changed from previous iteration for all i ∈ {1, . . . , N}.

Discussion. The computation of the segmentation subspaces can be done inO(n
3/2
i k)

for all N images. The complexity of the first step of the iteration is O(k3), while the

complexity of the second step is O(nik
2) steps. Assuming that the number of the

eigenvectors is negligible compared to the pixel count in the images (k � ni), we

arrive at complexity O(
∑

i n
3/2
i k +

∑
i nik

2).
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5.2.3 Co-saliency Region and Feature Matching

Similarly to the relaxation of the program (CSRM) in Eq. (5.11), we can relax the

program (CSRFM) from Eq. (5.10) as follows:

max
Z,P

tr
(
ZTWZ

)
(5.22)

subject to ZTDZ = 1k (5.23)

Ci,j = Pi,j ◦Mi,j for all i, j ∈ {1, . . . , N}, i 6= j

Pi,j1nj
≤ 1ni

, 1Tnj
Pi,j ≤ 1ni

, Pi,j ∈ [0, 1]ni×nj

where Z is related to the original variable via Eq. (5.13). In addition, we relax the

elements of P to lie be real numbers in [0, 1].

Then we can iteratively optimize the above function w. r. t. Z and P :

Optimize w. r. t. Z for fixed P : See sec. 5.2.1.

Optimize w. r. t. P for fixed Z: For two images (for N > 2 images the deriva-

tions are analogous) we can rewrite the objective function as follows:

tr
(
ZTWZ

)
= tr(ZT

1 W1Z1 + ZT
2 W2Z2) + 2tr(ZT

1 C12Z2)

= tr(ZT
1 W1Z1 + ZT

2 W2Z2) + 2tr(Z2Z
T
1 (M1,2 ◦ P1,2))

If we drop the terms in the objective which do not depend on P , then the optimization

problem, which should be solved in this iteration step has the form:

max
P

tr(Z2Z
T
1 (M1,2 ◦ P1,2)) (5.24)

subject to Pi,j1nj
≤ 1ni

, 1Tnj
Pi,j ≤ 1ni

, Pi,j ∈ [0, 1]ni×nj

The latter program is a linear program and can be solved exactly.

The product Z2Z
T
1 is not sparse and of size n2 × n1. However, we do not need

to compute the complete matrix Z2Z
T
1 , but only those elements for which M1,2 is

non zero. Since the number of feature matches F is very small (F is usually in
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the order of several hundred), then the above objective has only F variables. Thus

this program can be formulated efficiently and solved quickly using any standard LP

solver.

The final optimization is outlined in Algorithm 5.

Algorithm 5 Co-saliency region and feature matching.

1: Initialize Wi, M , and C as in section 5.1. Compute W .
2: repeat
3: Solve for relaxed co-saliency regions Z = SVsub using Algorithm 3.
4: Solve for correspondence selection P using program in Eq. (5.24).
5: until P does not differ from previous step.

5.3 Estimation of Dense Correspondences

Initially we choose a sparse set of feature matches M extracted using a feature

detector. In order to obtain denser set of correspondences we use a larger set M ′

of matches between features extracted everywhere in the image. Since this set can

potentially contain many more wrong matches than M , running algorithm 1 directly

on M ′ does not give always satisfactory results. Therefore, we prune M ′ based on

the solution Z∗ of the relaxed (CSRM) from Eq. (5.22) by combining

• Similarity between co-salient regions obtained for old feature set M . Using

the embedding view of the segmentation synchronization from Fig. 5.4 this

translates to euclidean distances in the joint segmentation space;

• Feature similarity from new M ′.

Suppose, two pixels x ∈ I1 and y ∈ I2 have embedding coordinates b∗x ∈ Rk and

b∗y ∈ Rk obtained as rows of Z∗. Then following feature similarities embody both

requirements from above:

M ′′
x,y = M ′

x,y((b
∗
x)
T b∗y)
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The new set M is obtained by thresholding the values of M ′′. The final matching

algorithm is outlined in algorithm 6.

Algorithm 6 Dense feature matching.

1: Construct M using a sparse feature detector (see sec. 5.4.1).
2: Obtain Z∗ = SVsub as outlined in sec. 5.2.1 and Algorithm 3.
3: Construct M ′ using a dense feature detector (see sec. 5.4.1).
4: Compute M ′′: M ′′

x,y = M ′
x,y((b

∗
x)
T b∗y)

5: Construct M by thresholding M ′′:

Mx,y =

{
M ′

x,y iff M ′′
x,y ≥ tc

0 otherwise.

Scale M ′′ such that maximal element in M ′′ is 1.
6: Solve (Vdense, Cdense) = maxV,C CoSaliency(V, C) using Algorithm 5.

5.4 Experiments

In this section we evaluate the performance of the presented algorithms. We apply

them on two problems: wide-baseline stereo and video segmentation.

The first application presents the challenge of erroneous feature matches with a

large outlier portion. In addition, independent segmentation of scenes viewed from

widely different viewpoints tend to be quite different. Thus obtaining region and

dense feature correspondences are of practical importance.

The second application presents the challenge of processing large videos and

obtaining a small set of precise segments of the video volume.

5.4.1 Wide-baseline Stereo

For the following experiments we use Algorithm 5 to obtain co-salient region and

feature matches. Further, we apply Algorithm 6 to obtain a dense set of feature

correspondences.
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Inter-image similarities. The feature correspondence matrix M ∈ [0, 1]n1×n2 is

based on affine covariant region detector. Each detected point p has an elliptical

region Rp associated with it and is characterized by an affine transformation Hp(x) =

Apx + Tp, which maps Rp onto the unit disk D(1). For comparison, each feature is

represented by a descriptor dp extracted from Hp(Rp). These descriptors can be used

to evaluate the appearance similarity between two interest points p and q, and thus,

to define a similarity between pixels x ∈ Rp and and y ∈ Rq lying in the interest

point regions:

mx,y(p, q) = e−‖dp−dq‖2/σ2
i e−‖Hp(x)−Hq(y)‖2/σ2

p

The first term measures the appearance similarity between the regions in which x

and y lie, while the second term measures their geometric compatibility with respect

to the affine transformation of Rp to Rq. Provided, we have extracted two feature

sets P from I1 and Q from I2 as described above, the final match score Mx,y for a

pair of pixels equals the largest match score supported by a pair of feature points:

Mx,y = max{mx,y(p, q)|p ∈ P, q ∈ Q, x ∈ Rp, y ∈ Rq}

In this way, pixels on different sides of corresponding image contours in both images

get connected and thus shape information is encoded in M (see fig. 5.5). The final M

is obtained by pruning: retain Mx,y for Mx,y ≥ tc, otherwise 0, where tc is a thresh-

old. For feature extraction we use the MSER detector [Tuytelaars and Gool, 2004]

combined with SIFT descriptor [Lowe, 2004]. The choice of the detector is motivated

Hp ◦H−1
q

p
q

x y

Rp

Rq

image contour

mx,y

image contour

Figure 5.5: For a match between features p and q their similarity gets extended to
pixel pairs, e. g. x and y.
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by MSER’s large support. For the computation of the dense correspondences M ′ in

sec. 5.3 we use features extracted on a dense grid in the image and use the same

descriptor.

Intra-image similarities. The matrices Wi ∈ [0, 1]ni×ni , for each image are based

on intervening contours. Two pixels x and y from the same image are considered

to belong to the same segment, if there are no edges with large magnitude, which

spatially separate them:

(Wi)x,y = e−max{‖edge(z)‖2|z∈line(x,y)}/σ2
e , i ∈ {1, 2}

Algorithmic settings. The optimal dimension of the segmentation subspaces in

second step of Algorithm 5 depends on the area of the segments in the images – to

capture small detailed regions we need more eigenvectors. For the experiments we

used s = 50, k = 10. The threshold tc from is determined so that initially we obtain

approx. 200− 400 matches and for our experiments it is tc = 3.2.

Dataset. We conduct two experiments: (i) detection of matching regions and (ii)

place recognition. For both experiments we use two datasets from the ICCV2005

Computer Vision Contest[Szeliski, 2005]: Test4 and Final5, containing each 38 and

29 images of buildings. Each building is shown in several images under different

viewpoints.

Experiment I – Detection of Matching Regions

In this experiment we detect matching regions, enhance the feature matches, and

segment common objects in manually selected image pairs (see Fig. 5.7 – 5.9). The

30 matches with highest score in Cdense of the output of the dense feature matching

Algorithm 6 and the top 6 matching regions according to Algorithm 5 are displayed

in Fig. 5.7 – 5.9.
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Finding the correct match for a given point may fail usually because (i) the

appearance similarity to the matching point is not as high as the score of the best

matches and therefore it is not ranked high in the initial C; or (ii) there are several

matches with high scores due to similar or repeating structure. The segment-based

reranking in step 4 of the matching algorithm helps on one side to boost the match

score of similar features lying in corresponding segments and thus to find more correct

matches (darker regions in row 1 in Fig. 5.7 – 5.9). On the other side the reranking

eliminates matches connecting points in different segments and in this way resolves

ambiguous correspondences (repeating structures in row 3).

To compare quantitatively the difference between the initial and the improved

set of feature matches we count how many of the top 30, 60, and 90 best matches are

correct. We rank them using the score from the initial and improved C respectively

and show the table (5.1). The number of the correct matches in all sets is around 4

times higher than the number of the correct matches in the initial feature set.

Experiment II – Place Recognition

As in ICCV2005 Computer Vision Contest each of the two datasets Test4 and Final5

has been split into two subsets: exemplar set and query set. The query set contains

for Test4 19 and for Final5 22 images, while the exemplar set contains 9 and 16

images respectively. Each query image is compared with all exemplars images and

the matches are ranked according to the value of the co-saliency region and feature

match score from Eq. (5.10) at the estimated approximate optimum. For each query

there are usually several (2 up to 5) exemplars, which display the same scene viewed

from different viewpoint. For all queries, which have at least k similar exemplars in

the dataset, we compute how many of them are among the top k matches. Accuracy

rates are presented in fig. 5.6 for Final5 (k = 1 . . . 4) and Test4 (k = 1 . . . 4). With a

few exceptions the match score function ranks most of the similar exemplars as top

matches.
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matches initial C improved C

1 - 30 19% 75%
31 - 60 12% 52%
60 - 90 15% 44%

Table 5.1: Percentage of correct matches among the first 90 matches ranked with
the initial and improved C. The top 90 matches are separated into 3 groups: top 30
matches, top 60 matches without the top 30, and top 90 matches without the top
60.

5.4.2 Video Segmentation

In this experiment we apply Algorithm 4 to extract co-salient regions from the frames

of a video. In this way we obtain a segmentation of the video which incorporates

appearance-based grouping cues in the individual frames as well as temporal infor-

mation.

Inter-image similarity. We extract and track features in the video using the KLT

tracker [Shi and Tomasi, 1994]. For any two frames i and j, denote by Ti,j the set of

feature tracks which involve both frames i and j. Then, the correspondence matrix

Ci,j between those two frames puts those pixels in correspondence which share a

track:

(Ci,j)x,y =





1 there is a track t ∈ Ti,j with x, y ∈ t, x ∈ Ii, y ∈ Ij

0 otherwise.

Contrary to the setup in sec. 5.4, we do not model affine deformation of the patches

around the pixels in correspondence since the deformation of the frames is not that

strong. Additionally, most of the correspondences relate frames which are nearby –

frames which are far in the video usually share very few or no tracks at all.

The intra-image similarities are set as in sec. 5.4.
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Figure 5.6: Accuracy rate in percentage for datasets Test4 and Final5.

Video Segmentation. We test the proposed approach on videos obtained from

YouTube [you, ]. Those videos are usually low resolution and suffer from compression

artifacts. In the conducted experiments we set the number of segmentation subspaces

(see second step in Algorithm 4) and thus the number of resulting segments per frame

to k = 50.

The resulting co-salient regions are displayed in Fig. 5.10 – 5.11. We obtain

segments which are correctly tracked across frames, even when the shape or the size

of the segment changes due to scene motion. Note that in some videos the object

undergoes a motion, while in other videos the motion of the background is larger.

The resulting co-salient regions should be treated as an oversegmentation of the

video and as such do not always represent object parts. Also, due to the motion

in the scene, new co-salient regions may emerge or disappear. For example, in the

right video in Fig. 5.11 in the first two frames the side windows are represented as

two regions (dark red and blue). As the vehicle undergoes rotation, the side window

becomes too small to be split into two segments. As a result, after the second frame
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Figure 5.7: Matching results for manually selected pairs of images from
[Szeliski, 2005]. For each pair, the top 30 matches are displayed in the left col-
umn, while the top 6 matched segments according to the match score function are
presented in the right column.
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Figure 5.8: Matching results for manually selected pairs of images from
[Szeliski, 2005]. For each pair, the top 30 matches are displayed in the left col-
umn, while the top 6 matched segments according to the match score function are
presented in the right column.
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Figure 5.9: Matching results for manually selected pairs of images from
[Szeliski, 2005]. For each pair, the top 30 matches are displayed in the left col-
umn, while the top 6 matched segments according to the match score function are
presented in the right column. 149



the window becomes a single co-salient region region (dark red).

To see the advantages of the co-salient region extraction, we compare it to in-

dependent frame segmentation. In Fig. 5.12 – 5.13 we show for each of the three

displayed videos one co-salient region. In addition, we show the segment from the in-

dependent frame segmentation, which has highest overlap with the co-salient region.

We can see that the co-salient region consistently tracks the same scene structure

and has a more stable shape.

5.5 Related Work

The presented framework touches on several research streams in computer vision.

Spectral graph matching and its applications to object recognition. Spec-

tral approaches for weighted graph matching have been extensively studied, some

of the notable works being [Umeyama, 1988b, Shapiro and Brady, 1992]. Such ap-

proaches characterize the graphs by their dominant eigenvectors. However, these

eigenvectors are computed independently for each graph and thus often do not cap-

ture co-salient structures as the eigenvectors of the JIG. Reasoning in the JIG helps

extracting representations from two images which contain relevant information for

the matching of the particular pair of images.

Our approach has also been inspired by the work on simultaneous object recog-

nition and segmentation [Yu et al., 2002], which uses spectral clustering in a graph

capturing the relationship between image pixels and object parts. Our work has

parallels in machine learning [Ham et al., 2004], where based on correct partial cor-

respondences between manifolds the goal is to infer their complete alignment using

regularization based on similarities between points on the manifolds.
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Figure 5.10: For selected frames of a video we show the original image on the left
and the output of the co-saliency region matching on the right. Each set of co-salient
regions has a unique color in the shown video.
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Figure 5.11: For selected frames of a video we show the original image on the left
and the output of the co-saliency region matching on the right. Each set of co-salient
regions has a unique color in the shown video.
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Figure 5.12: For selected consecutive frames for a video we show a single set of co-
salient regions on the left and the region with the highest overlap from independent
frame segmentation on the right.
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Figure 5.13: For selected consecutive frames for a video we show a single set of co-
salient regions on the left and the region with the highest overlap from independent
frame segmentation on the right.
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Co-segmentation. The term co-segmentation was coined by [Rother et al., 2006]

and refers to simultaneous segmentation of two images and extraction of the com-

mon objects. The authors use a generative graphical model, which consists of a

smoothness prior for segmentation and appearance-based model for the common

object. This model is usually described as histogram. Depending, on how the

models of the objects in the two images are compared, several approaches are

introduced which lead to different optimization problems [Mukherjee et al., 2009,

Hochbaum and Singh, 2009, Vicente et al., 2010].

Joint image representation is also used by [Boiman and Irani, 2006], who define

a similarity between images as the composability of one of the images from large

segments of the other image. Independently extracted regions have been used already

for wide-baseline stereo [Schaffalitzky and Zisserman, 2001] and object recognition

[Russell et al., 2006]. In the latter work the authors deal with the variability in the

segmentation by using multiple segmentations of each image.

5.6 Conclusion

In this chapter we have defined co-salient regions in a set of images and presented

algorithms for their extraction. Co-salient regions are segments in images which

are coherent and distinct from their surroundings, while at the same time they are

similar to each other where the similarity is quantified in terms of feature simi-

larities. The presented algorithms are based on the Normalized Cuts framework

[Shi and Malik, 2000, Yu and Shi, 2003].

We apply the presented approach to two problems. First, we use co-salient regions

to obtain region correspondences and dense point correspondences in the context

of wide-baseline stereo. We show that in this way we can improve local feature

matching.
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Second, we segment video incorporating motion information. The resulting co-

salient regions can be thought of as segment tracks which represent a coarsening

of the video. We will use these segment tracks for object silhouette extraction and

object recognition in Chapter 4.
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Appendix A

Proofs of Theorem 1 and 2

Theorem 1. Define the set

P∗CM = {X ∈ PCM|
∑

(i,j)∈binb(m)

(k,l)∈binb(m)

Xijkl = min{ch1
m, ch2

m} for all bins m and schemes b}

(A.1)

as a subset of PCM for which the chord correspondence variable X is constraint

through the chordiograms.

Then we can show that each X∗ ∈ P∗CM is a minimizer of the problem (CM) with

data terms Wmbins and the minimum of this problem is analytically computable using

the chordiogram:

Wmbins ·X∗ =
B∑

b=−1

αb||chb,1 − chb,2||1

for weights αb = 2b.

Proof. First we will show that the chordiogram matching lower bounds the problem

(CM). In a second step, we will show that for X∗ ∈ P∗CM the bound turns into an

equality.
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Lower bound for (CM). Suppose that X ∈ PCM, in particular it satisfies con-

straints (2.21) and (2.22). Then, one can show that

B∑

b=−1

αb||chb,1 − chb,2|| (A.2)

=
B∑

b=−1

αb||
∑

i,j

chb,1ij −
∑

k,l

chb,2kl ||1 (definition of chordiogram)

=
B∑

b=−1

αb||
∑

i,j

(
∑

k,l

Xijkl)chb,1ij −
∑

k,l

(
∑

i,j

Xijkl)chb,2kl ||1 (by Eq. (2.21))

=
B∑

b=−1

αb||
∑

i,j,k,l

(chb,1ij − chb,2kl )Xijkl||1

≤
∑

i,j,k,l

B∑

b=−1

αb||chb,1ij − chb,2kl ||1Xijkl (norm inequality and positivity of X)

=
∑

i,j,k,l

Wmbins
ij;kl Xijkl (by Eq. (2.6))

= Wmbins ·X

Minimizers for (CM). As a second step, we will show that for each X∗ ∈ P∗CM

the above inequality turns into an equality.

Consider for a moment a concrete bin m using finest binning scheme b = −1.

We can use the bin indices of the chords to define a matching between them. More

precisely, we put chords in correspondence if they lie in the same bin. After this

procedure there will remain chords which are not in any correspondence. The cor-

respondence assignment for such chords is deferred for a coarser binning scheme.

Now we turn to the description of the correspondence assignment for a particular

binning scheme b. For the sake of brevity we will skip the binning scheme index b.

Suppose that X gives a chord mapping for which dm denotes the number of chords

from shape 1 from bin m mapped to chords from shape 2 which are also in bin m; am

chords from shape 1 from bin m mapped to chords not in bin m; and cm chords from

shape 1 not in bin m mapped to chords from shape 2 in bin m. From the definition
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of dm we have

dm =
∑

(i,j)∈bin(m)

(k,l)∈bin(m)

Xijkl (A.3)

Then, it is clear that ch1
m = am+dm and ch2

m = dm+cm, hence |ch1
m−ch2

m| = |am−cm|.
Also, it is clear that

∑
i,j,k,l |(ch1

ij)m−(ch2
kl)m|1Xijkl = am+cm. Thus, we can express

the gap in the above inequality derivation for a single binning scheme as:

W bin ·X − ||ch1 − ch2||1 =
∑

m

(am + cm − |am − cm|)

X is a minimizer for (CM) exactly when the above gap equals zero, i. e. am +

cm − |am − cm| = 0 for all m. This is equivalent to min{am, cm} = 0, which holds iff

dm = min{ch1
m, ch2

m}. The latter identity together with Eq. (A.3) gives the desired

characterization.

Now, suppose that dbm = min{ch1,b
m , ch2,b

m } holds for all binning schemes from the

definition of multiple-bin distance between chords from Eq. (2.6). This means that

all gaps disappear:

W b, bin ·X − ||chb,1 − chb,2||1 = 0 for all b ∈ {−1, 0, . . . , B}

Combining the above inequalities together with weights αb gives the equality rela-

tionship in the theorem.

Theorem 2. Suppose that X∗cm,orig is the minimizers of problem (CM) in Eq. (2.20)

using the data terms W orig. Further, X∗pm is the minimizer of problem (PM) in

Eq. (2.16) using the data terms Wmbins.

Then, the following relationship holds:

C(W orig ·X∗bm,orig) ≤
B∑

b=−1

αb||chb,1 − chb,2||1 ≤ Wmbins ·X∗pm

for a positive constant C.

Proof. We show both inequalities separately.
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First inequality. The left inequality is result of a direct application of Lemma 1

from [Indyk and Thaper, 2003]. Note that the point sets, which are considered in

[Indyk and Thaper, 2003], correspond to the chords sets in our setting. Then there

is a constant C such that the chordiogram distance is lower bounded by the weighted

bipartite matching among the chords, where the weights are defined in terms of the

L1 distance in the chord feature space:

C(W orig ·X∗cm,orig) ≤
B∑

b=−1

αb||chb,1 − chb,2||1

Second inequality. From the previous theorem, we have that the middle term is

the minimum of the (CM) problem with data terms Wmbins. It is known that the

minimum of the (CM) problem interpreted as a bipartite matching is smaller that

the minimum of the (PM) problem interpreted as linear programming relaxation of

the graph matching. This gives us the second inequality.
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