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ABSTRACT
SHAPE DETECTION BY PACKING CONTOURS
Qihui Zhu
Jianbo Shi

Humans have an amazing ability to localize and recognizeablghapes from nat-
ural images with various complexities, such as low contragtrwhelming background
clutter, large shape deformation and signicant occlusida. typically recognize object
shape as a whole the entire geometric conguration of imagms$oand the context they
are in. Detecting shape as a global pattern involves two &syeis: model representa-
tion and bottom-up grouping. A proper model captures lomgeageometric constraints
among image tokens. Contours or regions that are groupedbaitom-up capture cor-
relations of individual image tokens, and often appear disdomplete shapes that are
easily recognizable. The main challenge of incorporatiigdm-up grouping arises from
the representation gap between image and model. Fragmiemage structures usually
do not correspond to semantically meaningful model parts.

This thesis presentontour Packinga novel framework that detects shapes in a global
and integral way, effectively bridging this representatgap. We rst develop a grouping
mechanism that organizes individual edges into long castday encoding Gestalt factors
of proximity, continuity, collinearity, and closure in aggh. The contours are character-
ized by their topologically ordered 1D structures, agawotsierwise chaotic 2D image
clutter. Used as integral shape matching units, they aregaifor preventing accidental
alignment to isolated edges, dramatically reducing fahsge detections in clutter.

We then propose a set-to-set shape matching paradigm tlzsunes and compares
holistic shape congurations. Representing both the maouktlee image as a set of con-
tours, we seek packing a subset of image contours into a eegthape formed by model
contours. The holistic conguration is captured by shapefesawith a large spatial extent,
and the long-range contextual relationships among costdire unique feature of this ap-

proach is the ability to overcome unpredictable contougrfrantations. Computationally,
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set-to-set matching is a hard combinatorial problem. We@se a linear programming
(LP) formulation for efciently searching over exponenyiahany contour congurations.
We also develop a primal-dual packing algorithm to quickbubd and prune solutions
without actually running the LPs.

Finally, we generalize set-to-set shape matching on m@hbisticated structures aris
ing from both the model and the image. On the model side, weletire representation by
compactly encoding part conguration selection in a treés iffakes it applicable to holis-
tic matching of articulated objects with wild poses. On tmage side, we extend contour
packing to regions, which has a fundamentally differenbtogy. Bipartite graph packing
is designed to cope with this change. A formulation by semitgeprogram ming (SDP)
provides an efcient computational solution to this NP-hamablem, and the exibility of

expressing various bottom-up grouping cues.
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Chapter 1

Introduction

Humans have an amazing ability to localize and recognizeablgihapes from an image
with various complexities, such as low contrast, overwhednibackground clutter, large
shape deformation, and significant occlusion (see Fig. 43pe is not only a useful cue
for object recognition, but also an important problem bglitbecause it leads to further
understanding of the geometric arrangement of the scemkfuactional properties of

objects.

(a) Low contrast  (b) Background clutter (c) Deformation Q@bclusion

Figure 1.1: Complexities in real images. In (a), part of thegns covered by shadow.
The contour of the starfish in (b) is surrounded by both ctutiehe background, and
texture in the foreground. The baseball player in (c) hasrg ddferent pose than the
canonical model. Part of the bottle in (d) is occluded by apes hand. Despite all these
complexities, a human has no difficulty in locating and matghobjects to the target
shape models shown at the top left corner.
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(a) Model (b) Matching locally (c) Matching inisolation  (@cclusion

Figure 1.2: The global percept of shapes. (a) presents desishppe with a silhouette.
Image tokens that fits to the target locally could composenaptetely different shape as
shown in (b). The local neighborhoods of (a) and (b) markegt@en have identical junc-
tions, with the curvature of the smooth silhouettes similanost of the places. Matching
shapes by aligning edges independently could contrive taypotheses as shown in (c).
Most of the silhouette in (a) can be aligned to some indiviédiges in (c). They group
with the horizontal lines as integral contours, and thasedido not have matches to the
target. In (d), although part of the object silhouette i®agssing, most likely the object
has the same shape as the target, and missing silhouetiy tuerto occlusion.

1.1 Motivation

Shape is fundamentallyglobal percept- we typically recognize object shape as a whole.

By “global” we mean the following two concepts:

1. Non-locality. Shapes are measured by #mire geometric configuration of image
tokens, rather than their local properties. Unlike othegecobproperties such as

texture, a shape hardly has small distinctive parts thaticagquely identify it.

2. Non-isolation. Shapes are formed by orderly structures thdt image tokens to-
gether, instead of independent image tokens. Groupinge&settokens provides a

context where the shape could be extended, and what couhe lotHter alternatives.

Fig. 1.2 illustrates false shape matching examples iggaither one of these two aspects.
An image hypothesis can locally fit the shape prototype intrabthe places, but overall
does not resemble the target at all. On the other hand, atafliedividual edges can be

aligned to the prototype perfectly, but edges connecteddamtdo not have matches, and
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cause errors faraway from the matched edges.

In light of the above observationsjodel representatioandbottom-up groupingre
key issues to consider in order to detect shapes robustly intages. A proper model
representation handles the non-locality problem by capguong range geometric con-
straints. During the search process, image tokens thaaeegptrt can be bound by the
model, interpreted and checked via their configurationstddo-up image structures such
as contours identify the underlying correlation of indivad edges, which can be extracted
from the image independent of the shape model. Matching tvéke integral shape to-

kens avoids many accidental alignments to isolated edgégidutter.

Previous shape detection and matching approaches cands#ieldinto two groups

by model representation: shape primitive based methodseamplate-based methods.

Shape primitive based methods.These approaches assume that shapes are composed
of some high level generic primitives, or volumetric pahattconstitute objects via cer-
tain basic rules. These components include generalizeddeyk (Brooks, 1983), su-
perquadratics (Pentland, 1986), geons (Biederman, 1888)yibbons (Nevatia & Bin-
ford, 1977). Although perceptually these primitives makeper abstraction of the shape
models, they are hard to detect from images reliably. Theesgmtation gap between the
model and the image poses a big challenge: a shape recogsytsbem has to connect
raw image edges or pixels into contours or surfaces, anddksemble them into these
high level primitives. This results in two typical problembich eclipses the application
of these methods in real images. First, previous searclegues such as Interpretation
Tree (Grimson & Lozano-Perez, 1987) are insufficient to esgthe huge, usually expo-
nential, solution space. Second, many premature hardidesibave to be made before

reaching the final output since the primitives are sevevaléeabove the image pixels.

Medial axis based representations (Blum, 1967; Peleg & ek 1981; Leymarie &
Levine, 1992; Baet al., 2007) continue on the path of these attempts to developéwgh
primitives. Several shape descriptions such as Shock Grggitdigiet al., 1999) and

Poisson equation based features (Goredithl., 2006) effectively capture global shapes
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as well as semantical parts. Because medial axes are gensitiegion boundaries, all
these approaches assume that object regions and theirdrasitiave been segmented
from the background. However, segmenting foreground ebjearrectly is a hard prob-
lem to solve on its own in shape detection. Medial axis is dulisepresentation for
describing and matching holistic shapes given the foregtaegions, but does not pro-
vide insights on how to search the target shape from imagenewith over-segmentation

or under-segmentation.

Template-based methods.A separate path of research has been focusing on building
shape templates by low level, and detectable tokens. Th&ngally brings the model
representation all the way down to the image, such that ttterpa of model representa-
tion are repeatable in images. For example, the tokens cas banple as edge points.
Chamfer matching (Barrowt al., 1977; Shottoret al., 2008) and Hausdorff matching
(Huttenlochetret al., 1993) are representatives of when the model is merely af sgt-0
ordered points with fixed locations. The tokens can also lypdiats along with local
shape or appearance descriptors. Shapes are represettedspatial configurations of
these keypointse.g.geometric hashing (Lamdaet al. , 1990), decision tree (Amit &
Wilder, 1997) and Active Shape Models (ASM) (Cootdsal., 1995). However, key-
points alone are insufficient to distinguish objects shapeduttered images (Belongie
et al., 2002). Recent attempts such as Shape Contexts (SC) (Bektra)., 2002), His-
togram of Gradients (HOG) (Dalal & Triggs, 2005) and Scaklalrant Features (SIFT)
(Lowe, 2004) construct tokens from spatial histograms Wwieiecode local shape informa-
tion centered at keypoints or the object center. The modgdllysemploys a graph on the
tokens, either a pair-wise connected graph (SC) or a stahdtdOG, SIFT), to capture

the long-range geometric constraints of the entire shaperfleantet al., 2007).

Template-based methods have achieved certain successgingrthe model closer
to image signals, but sacrificing the generalizability. 8ese the tokens only contain very
local information, the templates made of these tokens dem gpecific to some instances

rather than generic for the whole object category. Theegfobject models result in either
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a large number of exemplars (Torralbaal. , 2009), with each one of them sensitive
to shape deformation, or composites from complicated grancad rules €.g.AND/OR

graphs) (Zhu & Mumford, 2006; Han & Zhu, 2009).

Although many model representations have addressed théonahshape configu-
ration, bottom-up grouping has been missing in most of tleipus works. Contour
grouping or region segmentation naturally pops out mangaitghapes. Starting with
half complete shapes appearing in grouped contours orrresgigments greatly reduces
the search space of shape matching (Grimson, 1986). Inasintnost template-based
methods resort to matching the shape model with individdges or pixels. Shapes are
not perceived by randomly linking edges or pixels, but byaoiging them in a simple,
regular and orderly form calledragnanz(Palmer, 1999). The principle of Pragnanz, ad-
vocated by Gestalt psychologists in the early 20th centkiohler, 1929; Koffka, 1935;
Wertheimer, 1938), involves grouping elements by the laiygraximity, similarity, con-
tinuity, closure, symmetry and common fate. Contour grogpr region segmentation
organizes the image by integrating several of these faciidre resulting contours or re-
gions are semi-finished products towards forming the estiepe, which save construct-

ing shapes from scratch with edges or pixels.

A deeper consequence of incorporating bottom-up groupsntyining the overall
shape matching cost into a non-additive function. This isapld by the Gestalt prin-
ciple “the whole is greater than the sum of the pari@Vertheimer, 1938). The additivity
of the shape matching cost function has been recognized asragause of accidental
alignments to clutter (Amir & Lindenbaum, 1998). For exammhamfer matching sums
up errors on many edges to a total cost. The additive costotatistinguish a simi-
lar shape with gaps versus a different shape partially allgmith the model (see Fig. 1.2
(c),(d)). Additivity of local errors implicitly assumesetstatistical independence of edges.
However, image edges do not occur in isolation, and erroderbg the edges tend to be
correlated. Bottom-up grouping identifies intermediatectres such as contours and

regions that constitute an image and capture the dependércges on them. Utilizing
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these bottom-up image structures can greatly improve thestoess of shape detection

against the background clutter.

The main challenge of incorporating bottom-up groupingesifrom thaepresenta-
tion gapbetween image structures and the shape model. Bottom-upuwsror regions
do not necessarily correspond to semantically meaningbdehparts, and the fragmen-
tations of contours and regions can vary from image to ima&gea junction formed by
occlusion, a contour could continue to complete the figug for further reasoning, or
leak to the background. A contour could also span multipjeatparts when edges con-
tinue smoothly, with little distraction around. These attans break the one-to-one corre-
spondences between contours and model parts, and hencéaatenihe shape matching
process. This results in either sophisticated constmatiothe model (Latecket al. ,

2008), or expensive search on bottom-up fragmentationsglidean & Dickinson, 2005).

1.2 Outline and Contributions

This thesis presentSontour Packing a novel framework that detects shapes in a non-
local, non-isolated way, addressing the issues of both hmegeesentation and bottom-up
grouping.

We exploit long and salient contours extracted by bottongnapiping as shape primi-
tives, instead of using short edges or local patches. Thesen-up contours have a large
spatial extent allowing the recognition of global geomgetiryd capture the correlation of
individual edges forming the shape. With both the model &medimage represented by
contours, we seek a packing of a subset of image contouraintonplete global shape
similar to the one composed by model contours. The uniquieifeaf contour pack-
ing is the ability to describe and match the holistic shap&figarations of two contour
sets, but neglecting the difference of their fragmentatidn this way, the representation
gap between the bottom-up image structures and the top-doape model is effectively

bridged.

In contour packing, the model representation addressemtiocality aspect of shape
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in two levels. In the level of shape tokens, these contowemtelves encode useful geo-
metric constraints on faraway edges, especially when costre long and curved. More
importantly, the assembly of the contours in the structexell takes into account the
global geometric context — contours are packed if all theirainding contours have the

right placement. This work has made the following contiidna$ on shape detection:

1. We develop a grouping mechanism that organizes indiViddges into ordered
topologically 1D structures, against otherwise chaotici@iage clutter. Gestalt
factors of proximity, continuity, collinearity, and claguon edges are integrated via
a directed graph. Our formulation achieves simultaneogssatation and param-
eterization of image contours as 1D cycles in this graph. nkd&ing contours as

integral units for matching can drastically reduce falssgpghdetections in clutter.

2. We propose a set-to-set shape matching paradigm thatiresasd compares holis-
tic shape configurations formed by two sets of contours. Tistit configuration
is captured by shape features with a large spatial extedtttenlong-range con-
textual relationship among contours. Unlike traditioreaddl features that are pre-
computed before shape matching, our approach adjusts $bafoees according
to figure/ground selection. As a result, it provides an effecway to overcome

unpredictable fragmentations on bottom-up contours aoney

The above principles are achieved by the following comparat tools:
1. A complex eigenvector solution for extracting multipentours as graph cycles;

2. Aformulation that searches for a holistic shape matcbeld target over combina-

torially many subsets of contours;
3. An efficient primal-dual algorithm to search and boundtoanpacking solutions;

4. Extensions of contour packing to accommodate additistmattures including de-

formable model composition and figure/ground region selact
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We describe the key components to develop in the next fewtersags follows:

First, Chapter 2 translates grouping topologically 1D oans$ into finding persistent
random walks in a weighted directed graph. Representingpaosas random walk cy-
cles in the graph captures ordering, the essential propéeyopologically 1D structure.
We derive the mathematical connection from cycle perst&tdn complex eigenvalues
of the random walk matrix. This connection leads to the sotubf computing complex

eigenvectors, and tracing cycles in the corresponding tangnbedding space.

In Chapter 3, we formulate the maximal, holistic set-torsatching of shapes as find-
ing the correct figure/ground contour selection, and thexadtcorrespondences of control
points on or around contours. This task is simplified by enupthe feature descriptor
algebraically in a linear form of contour figure/ground sélen variables. This allows us
to formulate set-to-set matching as an instance of lineagnamming (LP), which enables

the efficient search over exponentially many figure/groumtt@ur selections.

The LP arising in the set-to-set matching is reduced to difmaal packing problem in
Chapter 4, where contours and feature descriptor binssqoorel to items and knapsacks,
respectively. We derive a primal-dual combinatorial aiton for contour packing which
exploits the duality of packing and covering. The primakdalgorithm gives a deeper
algorithmic understanding of the search process, and staf bounding and pruning

suboptimal solutions without running LP to convergence.

In Chapter 5, we enrich the model representation by incatpay part configura-
tion selection, making it applicable to deformation andcatation of object shapes. The
model encodes exponentially many configurations througingact set of selection vari-
ables. We extend the LP based set-to-set matching methbdsteepresentation, which

efficiently searches the combinatorial space formed by exxagtours and model poses.

In Chapter 6, we extend contour packing further to regiortgcivhave a fundamen-
tally different topology than contours. We propose bigargjraph packing to cope with
this variation. Regions are represented by graph nodes@mtary fragments between

regions are represented by edges whose weights indicatectivdributions to shape.
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Packing bipartite edges can be casted as semidefinite pnagre (SDP) for efficient
computation. Several grouping constraints from the graghitpning setting naturally fit
into the formulation, increasing the expressive power giae packing. We demonstrate
promising results that simultaneously detect object shamel their foreground region
support.

On the theoretical side, contour packing provides an eWfesblution that can extract
and assemble intermediate image structures into shapgsosewh of high level semantic
parts. The set-to-set matching opens up shape detectioretdent that it does not rely on
locally distinctive features (and hence the matching do¢bave to be one-to-one). It also
provides a search mechanism on the combinatorial space gdhape composition. On the
practical side, our approach resists background clutteataral images, and generalizes
well to object shape deformations even with few trainingregkes. The approach shows
promising results on detecting objects like mugs, botdad,swans and estimating human
poses in cluttered images. We believe that the packing lmasedutational paradigm shall

have many more applications in computer vision.



Chapter 2

Contour Grouping

Objects with salient contours tend to stand out from an inmrateey are nice to look at.
Aside from their esthetics, salient contours help invokernamory on object shapes, and
speed up visual perception (Koffka, 1935). A stable bottgarsalient contour group-
ing mechanism is extremely helpful to shape detection. Lomgtours provide global
structural information on shapes, which is not capturedidwidual short edges or local
patches (Ullman & Shashua, 1988). Contours also simplifgalvecognition by aligning
model shapes to a few salient structures instead of tremusneldge points in the image

(Uliman, 1996).

In this chapter we study contour grouping from a novel passpe of topology. The
fundamental distinction between a curve-like contour andliection of random edges is
that a contour must liepologically 1D(see Fig. 2.2). By topologically 1D, we mean a set
of edge points that have one well defined order, and the ctioneamong them strictly
follow that order. To detect contours from images, we neektoa harder question: does
the image contain any 1D curve-like structure, and if so,warshow that it is topologi-
cally 1D? Looking at the topology explicitly excludes 2D tér, i.e.region-like structures
from our contour search. Regions of 2D clutter can contaimtsddges with high contrast
locally, but does not form a long, contiguous 1D sequence fdMaulate contour detec-
tion as extracting persistent cycles in a directed weiglgtaghh. These cyclic structures

generate periodic random walks, which we found closelytedléo complex eigenvalues
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(a) Gaps (b) Distractions (c) 2D clutter

Figure 2.1: Challenges for contour grouping. (a) Contoargetgaps to bridge. (b) Spo-
radic distractions mislead contour tracing. (c) 2D clutnfuses grouping when topology
is not considered.

of the graph weight matrix. This observation leads to theieffit computational solution
of finding the top complex eigenvectors, and tracing cyalahé corresponding complex

embedding space.

2.1 Overview

Detecting salient contours without reporting many falsgesdremains a challenge for in-
corporating this bottom-up information into object reciigm. Contour grouping meth-
ods often start with edge detection, and followed by linkedigels to optimize a saliency
measure (Ullman & Shashua, 1988). Finding salient contguediable when images are
clean, and contours are well separated. Gestalt factorsoofpgng, such as proximity
collinearity, and continuity, define the local likelihoofl@mnnecting two nearby edgels.
A local greedy search, such as shortest path, guided by dlpigng measure can compute
an optimal contour efficiently. However, existing contowogping algorithms often fail
on natural images where image clutter is mixed with gaps owocows. Fundamentally it
is difficult to distinguish gaps versus background clutberlly (see Fig. 2.1), resulting in
many false contours in cluttered regions with texture.
A key notion we introduce for this topological curve detenttask isentanglement

Intuitively, a set of edgels is entangled if these edges aabe organized following an

LIn the rest of this chapter, we call an image edge pamedgelko avoid the confusion witan edgein
the contour graph which connects two edgels.
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order without breaking many strongly linked edgel pairs. M&vide a graph embedding
formulation with a topological curve grouping score whishable to evaluate both sepa-
ration from the background and entanglement within the eu@omputationally, finding
such curves requiresmultaneouslgegmenting a subset of edgels and determining their
order in the graph. The general task of searching for sulbgrajth a specified topology is

a much harder combinatorial problem. We translate it into@tar embedding problem

in thecomplexdomain, where entanglement can be easily encoded and chabkeseek
the desired circular embedding by computing complex eigetors of the graph weight

matrix.

The use of graph formulation for contour grouping has a lostphy, and we have
drawn ideas from many of them (Mahamedt al. , 2003; Ullman & Shashua, 1988;
Medioni & Guy, 1993; Amir & Lindenbaum, 1998; Alter & Basri,996; Sarkar &
Soundararajan, 2000; Yu & Shi, 2003; Rehal., 2005b). The most related work is
(Mahamudet al., 2003) which uses a similar directed graph for salient conttetec-
tion. However, they compute the togal eigenvectors of than-normalizedyraph weight
matrix. As we will show, the relevant topological informatiis encoded in theomplex
eigenvectors/eigenvalues of thermalizedrandom walk matrix. This is an important
distinction because the real eigenvectors contain no egpodl information of the graph.
The works of (Elder & Zucker, 1996; Jacobs, 1996; Maharaudl. , 2003; Wanget al.

, 2005) seek salient closed contours. In contrast, we sesledltopological cycles that
can include open contours, and are more robust to clutterard/@lso motivated by the
work of (Fischer & Buhmann, 2003) which showed classicahpwige grouping is insuf-

ficient for contour detection. However, their solution ysmin-max distance is sensitive
to outlier and clutter. Our approach computes not only tharpaterization, but also the

segmentation of contours simultaneously.

The rest of this chapter is organized as follows. In Secti@) ®e define a directed

contour grouping graph and outline the three untanglindecgiateria. A novel circular
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(a) Clique (b) Chain (c) Cycle

Figure 2.2: Distinction of 1D vs 2D topology. (a) The 2D topgy (e.g.regions) assumes
a clique model. In (b), (c) The 1D topology assumes a chainoycke model. A ring has
a 1D topology but is geometrically embedded in 2D.

embedding is introduced to encode these untangling cyttkrier We show how a con-
tinuous relaxation of the circular embedding leads to caimguhe complex eigenvectors
of the graph weight matrix in Section 2.3. An alternativeempretation using random
walk is presented in Section 2.4, with explanations on ds&lconnection to the complex
eigenvalues. We summarize our computational solution tii@e 2.5 and demonstrate

experimental results in Section 2.6. The chapter is cordlny Section 2.7.

2.2 Untangling Cycle Formulation

In this section, we formulate the topological requirementd structures as/ntangling

Cycle Cut Scorelefined on alirectedcontour grouping graph.

2.2.1 Directed Graph and Contour Grouping

We start by introducing the construction of the graph. Famteor grouping, we first
threshold the output of an edge detectg(Probability of Boundary (Pb) (Martiet al.
, 2001) or (Maireet al., 2008)) to obtain a discrete set of edgels. We define a daecte

graph on these edges = (V,E, W) as follows.

e The set of graph nodeg corresponds to all edgels. Since the edge orientation is
ambiguous up tar, we duplicate every edgel into two copieandi with opposite
directionsf andf + .

e The set of graph edgds includes all the pairs of edgels within some distance
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(c) W;; at non-terminal nodes (dy;; at terminal nodes

Figure 2.3: Directed graph for contour grouping. Zoom-iews of graph weights/;; in
windows A and B are shown in (c) and (d) respectively. Eacheaugle is duplicated in
two opposite orientations. Oriented nodes are connecteal@diag to elastic energy and
their orientation consistency. Hei&;;, > W;,. Salient contours form 1D topological
chain or cycle in this graph. (d) In window B, addifig>* to duplicated nodes i turns
a topological chain into a cycle.

E = {(i,7) : [[(zi,v:) — (xj,9;)|| <re}. Since every edgel is directed, we connect

each edgel only to the neighbors in its direction.

e Graph weightsW measurdirectedcollinearity using the elastic energy between
neighboring edgels, which describes how much bending ideté complete a

curve between andj:
Wi = e~ (mcos(eilH1o5D)/0* 4 (2.1)

Herei — j means thaj is in forward direction of. W;; > 0 implies thatiV;; = 0.
¢; and¢; denote the turning angles ofand; w.r.t. the line connecting them (see

Fig. 2.3(c)).
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In this graph, an ideal closed contour forms two directedesjone for each dupli-
cated direction. Similarly, an ideal open contour leadsmo ¢hains. On the other hand,
random clutter produces fragmented clusters in the graphta3k is to detect such topo-
logical differences, and extract 1D topological strucsuvaly.

To simplify the topological classification task and redulbe search to only cyclic
structures, we transform two duplicated chains into a cggladding a small amount of
connectioni’*** petween the duplicated nodeandi. For open contourg} *** con-
nects the termination points back to the opposite diredbareate a cycle (see Fig. 2.3).

Image clutter presents a challenge by creating leakages draontour to the back-
ground. This is a classical problem in 2D segmentation ak Wielprevent leakages, we
borrow the concept from the random walk interpretation ofrNalized Cut (Meila & Shi,

2000). We define the random walk matrix:
P=D"' W (2.2)

whereD is diagonal withD;; = Zj W;;. This amounts to normalizing a connection from
each node by its total outward connections. Such normadizétas two good side-effects:
it boostsI*** connection at termination points of a chain, making therrétg links
there as strong as the interior of the contours; it also et#smoonnections for jagged

salient contours which do not fit our curvilinear model.

2.2.2 Criteria for 1D Topological Grouping

Graph topology highlights the key difference between salid curves and 2D clusters.
The ideal model of a 2D cluster is a graplque In contrast, the ideal model for a 1D
curve is a grapbkycleor chain— it requires that the intra-group connections must betktric
ordered (see Fig. 2.2).

Order plays an important role in distinguishing 1D topotagigrouping. We define
entanglementasconnection of nodes violating a given ordémy 1D topological struc-

ture can be put into a specific order, such that each graph cmu®ects to exactly one
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successor and is connected to exactly one predecessorigs&2Hb)(c)). In 2D topo-
logical structures, it is impossible to find a good order withentanglement (see Fig. 2.2
(a)). Entanglement is a tell-tail sign of 2D topologicalstiure.

It is important to generalize the notion of strictly topoicej 1D to a coarser level.
In real images, most image curves have missing edgesgiaps. In order to bridge gaps
without including clutter, each node needs to connect ipleltieighboring nodes. These
neighbors will contaimultiple (k) nodes in the forward direction of order. As a result, its
underlying graph topology is no longer strictly 1D. We needdiax the topologically 1D
to a coarser levet — allowing up tok forward connections for each node (see Table 2.1).
One can think thak defines a “thickness” factor on the 1D topology. As the nuniber
increases, the topological structure gradually changes tD to 2D. Wherk equals the
length of the contour, the group becomes 2D.

Given the directed grapfy = (V, E, W), we seek a group of verticés C V and an

order on it such that they maximize the following score:

Untangling Cycle Cut Score (Max oversS, O, k)

— Bout(S) = Lout(S, O, k)
T(k)

Cu(S, 0, k) = > (2.3)

S: Subset of graph nodés, i.e.S C V.
O: Cycle order orf.

k. Cycle thickness.

External Cut (FE.,;). First, we need to measure how stronglyis separated from its
surrounding background. We define a cut on the random walkbm&tthat separateS

from V:

Ecut(S):i oo (2.4)

151 j€8,je(V—
1€S,jE(V-5)
We call it external cut reflecting that we are cutting off external background rsoidem
vertex setl’”. This cost is closely related f&% which is a “1-sided” Normalized
Cut. This cut criterion is resistant to accidental leakdga® background clutter to fore-

ground. In contrast to the standard Normalized Cut cost&¥alik, 2000), our contour
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Criterion Graph Topology Graph Weight Matrix|

-l -
External Cut QS Eeut
V2

-

Ecut(s) UTOQJ

6

U Vs
~o—
E cut

}f vy~ \
Internal Cut \ . g \Iz‘
o O
Lut(S. 0. k) g, Af\»_

Tube Size \ 3

T(k) g

Table 2.1: lllustration of 1D topological grouping criteriThe middle column visualizes a
graph containing a contour (marked in green) and other lyackgl clutter edges (marked
inred). The graph nodes are sorted in a way that contour ramaas first and background
nodes come last, with contour nodes following the right oi@dee the color bar in the
right column). Note that we do not know the partition and thdeo in advance. External
cut measures the strength of connections leaking from contades to background nodes
shown in the first row. Internal cut measures the strengtbohections within the contour
that violates the order, shown in the second row. Tube siezesr¢o how many forward
step on the cycle are considered, as shown in the last rows. cbhinfesponds to the width
of the band formed by contour connections in the weight matri

grouping does not care about the cut from background cltgtésreground; hence it is

“1-sided”.

Internal Cut ( 1..;). A key distinguishing factor of a 1D structure is that it hasemacnode

order. It requires minimal entanglement between nodesway an the order. We define
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the node order as a one-to-one mapping:
O:5—85={1,2,...,|5} (2.5)

whereQ introduces a permutation of the nodesSin

The “thickness” factok measures thmaximal step sizdefining how much each link
can violate the orde®. Edge(s, j) is forward if 0 < O(j) — O(i) < k; backwardif
—1S|/2 < O(j5) — O(1) < 0; fast forwardotherwise. A perfect 1D cycle requires all the
links to be forward (see Table 2.1) up kosteps ahead. No backward and fast forward
links should exist. Backward and fast forward links ardanglemensince they make the
group tangle into a 2D structure. Untangling 1D cycles an®tmreducing such links.

Given a subsef, O andk, we definenternal cutas the total entangled random walk
transition probability:

1
Lou(S, 0. k) = 17 > P; (2.6)
(O(Hz0([H))V(0(7)>0()+k)

HereO(:) > O(j) counts for backward links an@(j) > O(i) + k for fast forward links.

For simplicity, we assume thatis circular, i.e. the successor [8f| wraps back td.

Tube Size ('). The maximal step sizk is a crucial factor involved with internal cut. In
the ideal case of 1D cycle, we only allow connection witk- 1 step forward. As stated
before, we need to measure 1D topology at a coarser scalsigh citter and tolerate
gaps. Therefore we warkt to be as small as possible while keeping the internal and
external cut low.

A physical analogy is very useful for understanding our taskagine we are asked
to pull out string-like (1D) and ball-like (2D) interconrted particles through a tube. As
long as the tube is narrow, we have to pull things out littlditthe, and we must untangle
the strings to prevent jamming up in the tube. In contrass itmpossible to pull out
ball-like structures through the narrow tube.

We define tube size to measure how much entanglement is almaepological 1D

structures as:

T(k) = k/|S] (2.7)
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Note that tube siz@'(k) is independent of cycle length. Intuitively, the tube siesatibes
how ‘thick’ the cycle is: the thinner the cycle is, the easeepull it out through the tube.
T (k) reaches minimum of /| S| whenk = 1. Finally, we combine minimization of all the
above three criteria into maximization of score (2.3).

One way to visualize the three criteria is to observe thesiras of matrixP (Fig. 2.4(c)).
SelectingS amounts to choosing a sub-block®f External cut removes all the links out-
side the sub-block. After permutatidh internal cut removes all the links outside the sub-
band of P’s diagonals.k is exactly the width of this sub-band. Therefore, eq. (2@)sb
down to finding a sub-block aP, a permutation and a bandwidth such that the fewest
links are left outside the sub-band. Note that standardrgcap algorithms€.g.(Shi &
Malik, 2000)) only consider external cut, but do not takesintl cut and cycle thickness

into account.

2.2.3 Circular Embedding

Optimizing eg. (2.3) essentially performs segmentatiah@arameterization on the graph
simultaneouslyWe only cut out a subset of nodes with a good parameterizatoorder.
This is a hard combinatorial task. Our strategy is to embedjthph into a circular space,

such that the three criteria in (2.3) can be encoded and edexfkectively.

Definition of circular embedding. Circular embedding is a mapping from the vertex set

V' of the original graph to a circle plus the origin:
Ocirc V= (T, 09) : Ocirc@) =T, = (7’@', 092) (28)

Herer; is the circle radius which can only take a positive fixed vatuer 0. 6, is the angle
associated with each node. Circular embedding can easilydenboth thecut and the
order of graph nodesS = {v; : r; = r} specifies the nodes being cut out, as in eq. (2.4).
Angle ¢; specifies the order. We simplify the embedding by restrictin= 27i/|S| (see
Fig. 2.4),i.e. x; is distributed uniformly on the circle. It is important torée z; to spread
out in the circular embedding. When all ofs are mapped to the same point, no order

information can be obtained. We also define the maximal jagnpngl€d,,.... on how far

19



(a) Image (b) Graph (c) Weight matrix (d) Circular embedding

Figure 2.4: Finding 1D topological cycles in circular embed). Three canonical cases
are shown: a perfect cycle (green) shown in row 1, a cycle sptiradic distracting edges
(red) in row 2, and with 2D clutter (red) in row 3. (a) Canonicaage cases. (b) Di-
rected graph constructed from edgels. (c) Random walkitransnatrix P (white for
strong links). (d) The optimal circular embedding. Distnag edges and 2D clutter are
embedded into the origin.

it can jump from one node to another on the circle.

We seek a circular embedding such that 1D topological straés mapped to the cir-
cle while background is mapped to the origin. The optimaludar embedding maximizes

the following score:
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Circular Embedding Score (Max over r,6,60,,.. )

1
Celr.buc) = 3, PylIS| 2.9)
0; <9j <O0;+O0max max
r; >0, T‘j>0

r:  Circle indicator withr; € {rg,0}.

0: Angles on the circle specifying an order.

Omaz:  Maximal jumping angle.

With the above definition, Circular Embedding Score (ed®))2is equivalent to Un-
tangling Cycle Cut Score (eq. (2.3)). We interpret the thuatangling cycle criteria in the

new embedding space as follows.

1. External Cutrequires that there are minimal links from the circle to thgia.
BecauseS = {v; : r; = ro} specifies foreground nodes ahd- S = {v; : r; = 0}
specifies background nodes, all links involvedsp,; are those from the circle to

the origin.

2. Internal Cutrequires angles spanned by links on the circle to be smatje&th the
original graph are mapped to chords on the circle. The amgarsed by the chord
ist,—0; = %(i —j). Therefore, links involved id.,; are those with either negative

angle (backward links) or large positive angle (fast formanks).

3. Tube sizas given by the maximal jumping angle,.... Recall that: gives the upper
bound determining which links are forward. In circular emiimg, it means the

angle difference of forward links does not excéed%r‘.

Opas = 27 - k/S = 21 - T(k) (2.10)

Now we can rewrite the score function (2.3) in circular enthed, expressed by
(r,0) and the maximal jumping angt,,,. BecauseP,; is row normalized (eq. (2.2)),

>, Pij/|S| = 1. Since non-forward links are either includedfip,(S) or I...(S, O, k),
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1 — E.u(S) — L.,(S, O, k) is essentially counting how many forward links are left. The

numerator of eq. (2.3) can be expressed in terms 6fndd,,, . :

B,
1— Ecut(,r) - Icut(r7 07 emam) - Z |—Sj| (211)
9i<9j Sei"‘emaw
r; >0, T‘j>0

The forward links are chords with spanning angles no mome@ha.. Combining eq. (2.10),

(2.11), maximizing eq. (2.3) reduces to maximizing eq. \thZircular embedding.

2.3 Complex Eigenvectors: A Continuous Relaxation

Now we are ready to derive a computational solution. We gadizerthe discrete circular
embedding (2.8) by mapping the graph into the complex pldiwe optimal continuous
circular embedding turns out to be given by the complex aigetors of the random walk
matrix.

First we relax both- and# in eq. (2.9) to continuous values. Our goal is to find the
optimal mappingOep : V' — C, Opnpi(v;) = z; = rje%, which approximates the
optimalr andé in eq. (2.9). Here'; = ||z;|| and#; are magnitude and phase angle of the
complex numbet;.

In order to capture the dominant mode of phase angle chawgedsfroduce thaver-

age jumping anglef the links as:

Af =0,

J

— 0, (2.12)

Note that the average only courits;j) where there is an edde, j) in the original con-
tour grouping graph. Since angleencodes the ordef\d describes how far one node is
expected to jump through the links.
In the desired embedding with a fixéxh, the term
Z Pjcos(0; — 6, — A9) = Z PyRe(z}z; - e 49) /r2
i, i,J
is a good approximation of the sum of forward links (numeratoeq. (2.11)). When

the angle differencé; — 6; equals the average jumping angié, the weight reaches the
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maximum of 1. Wher; — 6, deviates fromAd, the weight gradually dies off. Then the
score function (2.11) becomes:

Zij PyjRe(zjz; - e72%) - 1o

(2.13)
> |zl
where the denominator is exactly| in the discrete case. Hetg= 1/0,,4.-
Expressed in a matrix form, eq. (2.13) becomes
H L4 —iAG
max  Rele P - toe™ ) (2.14)

AGER,z€Cn zHy

Here X = (X*)T denotes the conjugate transpose of matrix/ve&tor
Solving eq. (2.14) is not an easy task. Moreover, we are ngtinterested in the best
solution of eq. (2.14), but all local optima. These localimat will generate all the 1D

structures in the graph. Our first step to tackle this probketa fix Ad to be a constant.

Hp, . o—iAd
E(Af) = max Re(x § )
zeCn Tr-x

(2.15)

The local optima of the orginal problem must also be the lagaima of F(A#). The
restricted problem can be solved by computing the eigeaveof a matrix parameterized

by Aé as shown by the following theorem:

Theorem 2.1. The necessary condition for the critical points (local nmaa) of the fol-

lowing optimization problem

Re(zH Pz - e7129)

sein My (2.16)
is thatx is an eigenvector of
1 A _
M(A9) = 5(P- eI pT . i) (2.17)

Moreoever, the corresponding local maximal value is theriglue\ (M (A9)).
Proof. See Appendix. ]

One possibility of finding all the local optima of the orgirsalore function eq. (2.14) is

to compute the local maxima of eigenvalugs\//(A#)) with respect to average jumping
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gl | T T 3T ¢
(a) 1D contours (b) Returning probability of persistentlegc

R ol | T o7 3T 1
(c) 2D clutter (d) Returning probability of non-persistegtles

Figure 2.5: Persistent cycles. (a) 1D contours correspomgpbdd cycles. (b) Returning
probability Pr(i,¢) on 1D contours has period peaks since random walk on it temds t
return in a fixed time. (c) 2D clutter corresponds to bad c/c{d) Returning probability
Pr(i, t) of random walk on 2D clutter is flat.

angle Ad. However, this approach is computationally intensive. #eo alternative is
to examine the eigenvectors #fdirectly as a proxy to the local maxima of the orginal
problem. Notice that sinc® is asymmetric, the left and right eigenvectors (eigenwscto
of PT) are in general different. If bot® and PT permitz as a (left) eigenvectérz is

also an eigenvector df/ (Af) simply because

1 , , 1 : : 1 . .
§(P6—2A9 + PTGZAG)I’ — §(P£L' X 6—2A9 + PTZL' . ezAG) — §[A(P)6—ZA9 + )\(PT)QZAG]JJ

(2.18)

Thereforer is indeed a local maximum by Theorem 2.1. In the subsequetibes, we
will be focusing on computational solution from embeddipgee given by eigenvectors

of P.
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2.4 Random Walk Interpretation

A random walk provides an alternative view to see why complgenvectors are useful
for untangling cycles. Random walks have been shown to leetéfé in analyzing region
segmentation (Meila & Shi, 2000). Unlike traditional randevalk analysis, we are in-
terested in periodicity of the states rather than the cgarere behavior. Periodicity is a

good indication that there exist persistent cycles in tlaglgr

2.4.1 Periodicity

Following traditional random walk analysis, the transitimatrix ? = D~'W (eq. (2.2))
encodes the probability of switching states. In other woids is the probability that
a particle starts from nodg and randomly walks to nodein one step. Note thaP is
asymmetric because the random walk is directional.

According to our graph setup in Section 2.2, both open angsedamage contours be-
come directed cycles in the contour graph. Finding imagéotoe amounts to searching
cycles in this directed graph. However, there are numeroaishgcycles and not all cy-
cles correspond to 1D image contours. Now the key questioVisat is the appropriate
saliency measure for good cycles (1D contour) and bad cy2le<lutter)?

We first notice an obvious necessary condition. If the rand@ik starting at a node
comes back to itself with high probability, then it is likellyat there is a cycle passing

through it. We denote the returning probability by
Pr(i,t) =Y Pr(i,t|[(| = 1) (2.19)
)4

Here/ is a random walk cycle with lengthpassing through. However, this condition
alone is not enough to identify 1D cycles. Consider the cds@there are many distract-
ing branches of the main cycle. In this case, paths througlbtanches will still return to
the same node but with different path lengths. Therefoiig,ribt sufficient to require the

paths to return only, but return in tlsame period

’Note: this does not mean th@& has to be a normal matrix, as only part of its subspaces are
diagonalizable.
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Pr(i,t) | | S, Pr(i, kT)

T or 3T ¢

Figure 2.6: Peakness measulgi, T') measures the 'peakness’ of the returning probabil-
ity Pr(i,T") of random walk in the graph. It can be shown tiit, ") is dominated by
complex eigenvalues of the random walk matfix

2.4.2 Persistent Cycles

We have found that 1D cycles have a special pattern of retgnmiobabilityPr (i, t) (see
Fig. 2.5). From analysis of Section 2.2, one step of randoifk waa 1D cycle tends to
stay in the cycle (external cut to be small), and move a fixedwarhforward in the cyclic
order (internal cut to be small). If one starts a random wadkifa node in a 1D cycle, it
is very likely to return at multiple times of a certain peridffe call such cyclepersistent
cycles Our task is to separate persistent cycles from other rarvdalincycles.

To quantify the above observation, we introduce the foltayipeakness’ measure of

the random walk probability pattern (see Fig. 2.6):

, >y P4, RT)
R(i,T) = kZ‘;O D) (2.20)

Here we compute the probability that the random walk retatrsteps of multiples df.
R(i,T) being high indicates there are 1D cycles passing througk hod
The key observation is thak(i, ') closely relates to complex eigenvaluegfinstead

of real eigenvalues.

Theorem 2.2. (Peakness of Random Walk Cyclé&g), T') can be computed by the eigen-

values of transition matrix’:

AT
RG.T) > Re(kJAjT - UijVij) 2.21)
1,T) = )
Zj Re(%)\j ) Ui"/;j)

Proof. See Appendix. ]
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Figure 2.7: lllustration of computational solution.(a) Alephant with a detected contour
grouping (green) and endpoints (yellow) on its tusk. (b) Tdpen. eigenvalues sorted by

their real components. Their phase angles relate to the itkniss of cycles. We look

for complex ones with large magnitudes but small phase amgticating the existence of

thin 1D structures. (c) The complex eigenvector correspantb the selected eigenvalue
in (b) (red circle) is plotted. The detected tusk contoundedded into a geometric cycle
plotted in red. We find discretization in this embedding gplhyg seeking the maximum

circular cover shown in (d).

T
A _
1=X5

Theorem 2.2 shows thai(i, T') is the “average” off (\;,7') = Re( -UijVij)/Re(l%Aj-
U;;Vij). Forreal;, f(\;,T) < 1/T. Forcomplex\;, f(A;,T) can be large. For example,
when); = s-e?/T s - 1,U; = V;; =a € R, f(\;,T) — oo. Hence it is the complex
eigenvalue with proper phase angle and magnitude that teadpeated peaks. Complex
eigenvalues and eigenvectors Bfindeed carry important information on persistent 1D

cycles.

Because the random walk will eventually converge to thedstessate,Pr (i, 7) con-
verges to a constant. This means tRét, 7') — 1/7 no matter what the graph structure
is. We can alleviate this technical issue by multiplying aalefactory. Namely, we use
n*Pr(i, k) to replacePr (i, k). Responses with longer time are weighted lower because the
peaks become more and more blurred. This amounts to reglatioy nP and all the

above analysis.
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2.5 Tracing Contours

The complex eigenvector is an approximation of the optinraléar embedding and will
not produce exact 1D cycles. Therefore, we still need tackefar 1D cycles in this space.
We will introduce a discretization method and give the olleratangling cycle procedure

in this section.

2.5.1 Discretization

For each of the top complex eigenvectors, we seek discrptédgical cycles separated
from the background. First, we can read off the tube sizectliré&rom the phase angle of
its corresponding eigenvalue. This determines the “treskik of our cycle. Since we
prefer thin 1D cycles, we will only examine top eigenvectort small phase angles.
Once knowing the existence of a 1D cycle, we search for itsncamplex eigen-
vector whose components arél), ...v(2n). The topological graph cycles are mapped
to the geometric cycles in this embedding space. The lalgecycle is geometrically,
the better the 1D graph cycle is topologically. Therefore, stould search for a se-
quences(1),s(2),...,s(h),s(h + 1) = s(1) such that the re-ordered embedding points
u(l) = v(s(1)),u(2) = v(s(2)),...,u(h) = v(s(h)) satisfy two criteria: 1) the magni-
tudes|u(1)], ..., |u(h)| are large and; 2) the phase angts(1)),...,6(u(h)) are in an
increasing order. This can be tackled by finding the sequencl®sing the largest area in

the complex plane:
max A(u(y),u(j +1)) (2.22)

HereA(u(j), u(j+ 1)) = 3Im(u(j)* - u(j + 1)) is the signed area of the triangle spanned
by u(j),u(j + 1) and0.

To accelerate the search, we padk) into bins By, ..., B,,, according to their phase
angles. Suppose there is an edgg) in the original graph. Ifu(i) is in a properly
ordered cycle, the phase angle differefice(;j)) — 0(u(i)) will, on average, be equal to

Af. Hence, we can safely assume that all its neighbgjsare at most one bin apart from
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u (1) if the bin size is chosen properlg.g.2A0). Furthermore, we group nodes within the
same bin by their spatial connectivity. This greatly reduitee computational cost.

The maximal enclosed area problem can be solved by the shpeth algorithm (see
Fig. 2.7). Notice that the sequenegl), ..., u(h),u(h + 1) = u(1) produces a closed loop
around the origin. Suppose it only wraps around the origiteorror each pair af, 7 in
neighboring bins, set; = $[0(v(j)) — 0(v(2))] - R* — A(v(i),v(j)). The numberR is

chosen sufficiently large to guarantee > 0 for all 7,5. Then eq. (2.22) can be reduced to

7TR2 - min ng(j)s(jJrl) (223)
j_

This shortest cycle problem can be broken into two partsfiteeshortest path from
s(1) in bin B; to a nodes(a) in bin By, and the second one froma) back tos(1). Hence,

the second termin, . sh+1) Z’L Ly()s(i+1) 1N €. (2.23) becomes

7=1

min Z Csi)si+1) + Z Csysi+n) (2.24)

s(1)eB1,s(a)eB2 ~
5(1) ..... s(h+1) J=1

where each summation itself is a shortest path.

2.5.2 Untangling Cycle Algorithm

In summary, our untangled cycle algorithm has three steps:

Algorithm 1 (Untangling Cycle Algorithm)
1: GRAPH SETUPR. Construct the directed graghand compute transition matriX by

eg. (2.1) and (2.2).

2: CoMPLEX EMBEDDING. Compute the first, complex eigenvectors aP. Each
complex eigenvector produces a complex circular embeddjhg v(2), ...v(2n) €
C.

3: CYCLE TRACING. Foru(1),v(2),...v(2n), use shortest path to find a cycte C

{1, ...,2n} minimizing (eq. (2.23)).
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Figure 2.8: Precision recall curve on the Berkeley benchmaith comparison to Pb,

CRF and min cover. We use probability boundary with low thodg to produce graph

nodes, and seek untangling 1D topological cycles for cargoauping. The same set of
parameters are used to generate all the results.

2.6 Experiments

We tested our untangling cycle algorithm on a variety of lemajing real images. The
test datasets includes Berkeley Segmentation DatasetifMal., 2001) (see Fig. 2.9),
Weizmann horse database (Borenstein & Ullman, 2002) (se2Hi0), Berkeley baseball
player dataset (Moet al., 2004a) (see Fig. 2.11), and ETHZ Shape Classes (Fetralri,
2007b) in which we will utilize contours for shape detectioiChapter 3. Our untangling
cycle algorithm is capable of extracting contours even wimamy of the images have
significant clutter (see Fig. 2.9). We output all contoued #re open or closed, straight or
bent. These experiments are performed using the same satawhpters and we show all
the detected contours without any post-processing. Extetests show that our algorithm
is effective in discovering one-dimensional topologidalistures in real images.

The implementation details of the algorithm are explainetbdows.

1. Graph Setup. The edgel graph is constructed by threstgoRb at a low value)(03)

to ensure high recall. Other edge detectors can be applled@as they output edge
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tangents/normals. Graph weights are computed witl2ih & 21 neighborhood for
each edgell0% of the weights is added to the reverse edges as backwardat@mme
Whack to close the open contours in topology. The graph matrix isnadized by

column to generate a random walk matrix.

. Complex Embedding. We compu280 to 400 eigenvectors of the graph random
walk matrix. The real eigenvectors are pruned because th&gin no information
on the contour ordering, as shown in Section 2.4. EigengalMd®se phase angle is
too large or whose magnitude is too small are also discar@iedse indicates bad
cycles with untangling cycle cut score. After eliminatingeoof the eigenvalue in

each conjugate pair, typically less than 100 eigenvaligesigectors survive.

. Cycle Tracing. We run the shortest cycle algorithm ecZPon the embedding
space generated by the remaining eigenvectors. Each coepleedding space is
divided uniformly into8 bins by phase angle. A cycle is broken into two shortest
paths as in eq. (2.24). one from binto bin 2, and the other from bi to bin

8 back to binl. We choose the top 5 cycles in each eigenvector, and combine
the redundant ones. The final output contains partiallylapeing contours due
to multiple possibilities at junctions, instead of disjpaontours. These additional

hypotheses are very important for constructing shapesinétt chapter.

The current unoptimized Matlab implementation takes aBaainutes on @00 x 400 im-

age. The bottleneck of the computation is solving the corigenvectors. Similar to the

eigenvalue problem in NCut, techniques of multi-scale gr@gpouret al., 2005) or GPU

implementation (Catanzaset al., 2009) can be explored to accelerate the computation in

the future.

Our results are significantly better than those of statérefart, particularly on clut-

tered images. To quantify our performance, we compare aoigon-recall curve on

the Berkeley benchmark with two top contour grouping aldns: CRF (Reret al. ,

2005b) and Min Cover (Felzenszwalb & McAllester, 2006). @esults are well above
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these approaches by abagtt in the medium to high precision part (see Fig. 2.8). Visually
our results produce much cleaner contours as shown in BegR.21. Many of the false
positives are shading edges, which are not labelled by hsmidowever, once they are
grouped, they could be easily to pruned in later recognpi@tess. These are the advan-
tages not reflected by the metric in the Berkeley benchmahmigiwcounts matched pixels

independently.

2.7 Summary

To our knowledge, this is the first major attack on contoumuging using a topological
formulation. Our grouping criterion of untangling cyclegpits the inherent topological
1D structure of salient contours to extract them from theentise 2D image clutter.
We made this precise by defining a directed graph linkinglledgels. We encode the
untangling cycle criterion by circular embedding. Compiotaally, this reduces to finding
the top complex eigenvectors of the random walk matrix. Wealgstrate significant

improvements over state-of-the-art approaches on cluafigmeal images.
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Figure 2.9: Contour grouping results on real images. Ouhoteprunes clutter edges
(dark), and groups salient contours (bright). We focus aaplgrtopology, and detect

contours that are either open or closed, straight or bended.
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Figure 2.10: Contour grouping results on Weizmann horsabdete. All detected binary
edges are shown (right). Our method prune clutter edgeg)(dard groups salient con-
tours (bright). We use no edge magnitude information fougnoeg, and can detect faint
but salient contours under significant clutter. We focus caply topology, and detect
contours that are both open or closed, straight or bent.
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Figure 2.11: Contour grouping results on Berkeley basgitajler dataset.
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Chapter 3

Contour Packing

Visual objects can be represented in a variety of levelsmfthe signal level of filter
responses to the symbolic level of object parts (Ullman,6)9%e focus on the repre-
sentation based on shape that is closer to the symbolic El@lving abstract geometric
reasoning of objects. Shape-based object descriptiorvasiant to color, texture, and
brightness changes, and dramatically reduces the numheioing examples required,

without sacrificing the detection accuracy.

This chapter presents the contour packing framework thastloally detects and
matches a model shape by packing a set of image contours teamediate level of
object representation. We build this framework on top of @umtour grouping approach
in Chapter 2, which suppresses 2D clutter and produces tpuajdgically 1D contours.
We develop a set-to-set contour matching formulation tdd®ithe representation gap
between the image and the model due to unpredictable fragtmears of bottom-up con-
tours. The global shape configuration of a contour set isacii@rized bycontext selective
shape featuresonstructed from contours within a large spatial contextlike traditional
shape features such as (Belongiel., 2002) which are precomputed regardless of con-
text changes, context selective shape features anljuitte flydepending on which set of
image contours participate in matching. The generatedestegpures can be encoded in a
linear form of figure/ground contour selection. This enaltlee combinatorial search aris-

ing in set-to-set contour matching to be approximated ahetde@fficiently by an instance
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(a) Accidental alignment (b) Missing critical parts

Figure 3.1: Typical false positives can be traced to two esuél) Accidental alignment
shown in (a). Our algorithm prunes it by exploiting contoniregrity,i.e. requiring con-
tours to be whole-in/whole-out. Contours violating thisistraint is marked in white on
the image. (2) Missing critical object parts indicates ttiet matching is a false posi-
tive. In (b), after removing the accidental alignment to #pple logo outline (marked in
white), only the body can find possible matches and the netkeo$wan is completely
missing shown at the top-right corner of (b). Our approagécts this type of detection
by checking missing critical model contours after joint wur selection.

of Linear Programming (LP).

3.1 Overview

Detecting objects using shape alone is not an easy task. Mape matching algorithms
are susceptible taccidental alignmenthallucinating objects in the clutter by matching
random edges (Amir & Lindenbaum, 1998). To avoid foregrochdter (.g. surface
marking on objects) and background clutter, shape descsipire often computed within
a window of a limited spatial extent. Local window features discriminative enough for
detecting objects such as faces, cars and bicycles. Howewenany objects with simple
shapes, such as swans, mugs or bottles, local featuressafédient.

To overcome the accidental alignment, our contour packargists of the following

three key ingredients:

1. Contour integrity. We detect salient contours using bottom-up contour graupin
Long contours themselves are more distinctive, and maimigcontours as integral
tokens for matching eliminates many false positives duetidantal alignment to

unrelated edges.
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2. Holistic shape matching. We measure shape features from a large spatial extent,
as well as long-range contextual relationships among opgats. Accidental align-

ment of holistic shape descriptors between image and msdsllikely.

3. Model configuration checking. We break the model shape into its informative
semantic parts, and explicitly check which subset of modeisgs matched. Miss-
ing critical model parts can signal an accidental alignnietiveen the image and

model.

We start with salient contours extracted by bottom-up congwouping in Chapter 2.
Shape matching with contours composed of orderly, groupleg® instead of isolated
edges has several advantages. Long salient contours haeedistinctive shapes, which
leads to efficiency of the search as well as the accuracy geshratching. Furthermore,
by requiring the entire contour to be matched as a whole, waredte accidental align-
ment causing false positive detections shown in Fig. 3.1 {&jng contour grouping as
the starting point of shape matching carries risk as welht@ars could be mis-detected,
or accidentally leaking to background. Therefore, a goattaar grouping algorithm is
essential for shape matching. We have demonstrated the ggoémrmance of our con-
tour grouping algorithm in cluttered images. These corg@ue not disjoint, providing
multiple hypotheses at junctions where contours can palgnlieak to other objects.

The main technical challenge is that image and model costdomot have one-to-
one correspondence. Contours detected from bottom-upor@@and segmentation are
different from the semantically meaningful contours in thedel. However, as a whole
they will have a match (see Fig. 3.2). The holistic matchioguss only by considering a
set of “figure” contours together. To formulate this ses&t-matching task, we introduce
control points sampled on and around image and model catdiMe compute shape
features on the control points from the “figure” contourshivita large neighborhood (see
Fig. 3.2). The task boils down to finding the correct figurelgrd contour selection, such
that there is an optimal one-to-one matching of the conwoits. The set-to-set matching

potentially requires searching over exponentially marmyias of figure/ground selection
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on contours. We simplify this task by encoding the shaperg#sc algebraically in a
linear form of contour selection variables, allowing thigogént optimization technique of
LP.

To evaluate shape matching, one needs to measure the gcotiaéignment, and more
importantly, determingvhichmodel parts have actually been aligned. For simple shapes,
missing a small but critical object part can indicate a catemismatch (see Fig. 3.1 (b)).
We manually divide the model into contours which corresotaddistinctive parts. Just
as image contours, we require model contours to be wholewhole-out.

The rest of the chapter is organized as follows. Sectionr@®@duces the contour
packing formulation and the key concept of context seresivape features. We present
the computational solution for this framework using Lin€aogramming (LP) in Sec-
tion 3.3. Section 3.4 describes related works and comp@isBection 3.5 demonstrates
our approach on the challenging task of detecting non-ngctar and wiry shaped ob-

jects, followed by the conclusion in Section 3.6.

3.2 Set-to-Set Contour Matching

In this section we develop the set-to-set contour matchiethod. The computational
task of set-to-set contour matching consists of parallatcdees over image contours and
model contours to obtain the maximal match of the image andeirghapes.

3.2.1 Problem Formulation

We start with formulating the shape detection as the folhgnproblem:

Definition of set-to-set contour matching.Given an imag& and a model\M represented

by two sets of contours:
o Image:Z = {C{,C3,...Cl,}, Cl is thek™ contour;
e Model: M = {C,C),...,C{}, ] is thel™ contour.

we would like to select the maximal contour subse¥é C 7 and Mt C M, such that

object shapes composed b§' and M*¢ match (see Fig. 3.2 for an image example).
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Figure 3.2: Using a single line drawing object model showicixn we detect object in-
stances in images with background clutter in (a) using shBpgom-up contour grouping
provides tokens of shape matching. Long salient contoufl)isan generate distinctive
shape descriptions, allowing both efficient and accuratieimmag. Image and model con-
tours, shown by different colors in (b) and (c), do not have-tmone correspondences.
We formulate shape detection as a set-to-set matchingrigshk consisting of: (1) corre-
spondences between control points, and (2) selection edamithat contribute contextual
shape features to those control points, within a disk neagtndod.

Matching constraint: contour integrity. The above formulation implies that each con-
tour is restricted to be an integral unit in matching. FolhezantourC} = {pgk),p(f), ...,p((;k)}
wherepgk)’s are edge points, there are only two choices: either aktye point$§"’) par-
ticipate in the matching, or none of them are included. Bilytmatched contours are not
allowed. The same constraint applies to model contouystias well. We introduce con-

tour selection indicators*® € {0, 1}//*1 in the entire test image and* € {0, 1}MIx!
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in the model defined as

1, if contourC/ is selected

(IMAGE CONTOUR SELECTOR) zp =
0, otherwise.
(3.1)
z 1, if contourC} is selected
(MODEL CONTOUR SELECTOR) Yo =
0, otherwise.
(3.2)

Control point correspondence. While contours themselves do not correspond one-to-
one, their overall shape configuration can be evaluatedaaibgeontrol points, and those
control points do have one-to-one correspondences. Segposrol pointgp;, pa, ..., pm}
are sampled from the image af@g, ¢-, . . ., ¢, } are sampled from the model. We define

the correspondence matri&“"),,,, from the image to the model as:

1, if p; matchesgy;
U = b i (3.3)
0, otherwise

Note that these control points can be located anywhere imthge, not limited to contour
points. Computing dense point correspondences is unragessstead, rough matching

of a few control points is sufficient to select and match cangetsZ*¢! and M*<.

Feature representation: holistic shape featuresThe important question is, what will

be the appropriate shape feature for matching these cqgranots, and how to compute
shape dissimilarity/distandg;;. In order to be matched, the shape feature has to share a
common description between the image and the model. Siece tho not exist one-to-
one correspondences between contours, the feature destrgpmore appropriate on the
contour set or global shape level rather than on the indalidantour level. We propose

a holistic shape representation at the control points cogerot only nearby contours but
also faraway contours (see Fig. 3.3).

The holistic shape representation immediately poses thtelgm offigure/ground se-

lection since figure/ground segmentation is unknown and the shagteréeis likely to
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include both foreground and background contours. Withbatdorrect segmentation,
background clutter and contours from other objects carupbthe shape feature. This
poses great difficulties to any shape features with a fixedegbn A fixed context fea-

ture cannot adapt to the combinatorial possibilities ofiegground selection, with each
generating a different feature. Our strategy is to adjwesttntext of the holistic shape fea-
tures during matching depending on the figure/ground setectherefore, we are able to

compute the right features and determine the figure/groaguhentation simultaneously.

3.2.2 Context Selective Shape Features

We are ready to introduce the holistic shape representeditbed context selective shape
features determined by the figure/ground selection of theotwsz*¢! andy**!. We choose
Shape Contexts (SC) (Belongg¢ al., 2002) as the basic shape feature descriptor. Mea-
suring global shape requires the scope of SC to be large artoupver the entire object.
Definesc! = [scl(1), scl(2), ..., scl(b)]T to be the vector of SC histogram centered at con-
trol point p;, i.e. sc! (k) = # of points in bink. We introduce a contribution matrix;

with size (#bin) (#contour) to encode the contribution of each contour td e of sc!:
VI(k,1) = # of points in bin k from contour C; (3.4)

Similar notationssc;” andV} are defined for SC at control poigtin the model.

The key observation is that shape featwéswill be differentdepending on context
x*?, i.e.they are not fixed. Since each contour can have 2 choicesy sighected or not
selected, there exis®8 possible contexts — exponential in the number of contou@ne
advantage of histogram features such as SC is that the exjphemany combinations

of contexts can be written in a simple linear form:
scl(k) = Vi(k 1) - i = (V- 2%, (3.5)
l

This allows us to cast the complex search as an optimizatiaigm later.
Our goal is to findz*“* andy*¢ such that they produce similar shape featurés::

2%~ VjM -y*!. We evaluate and compare these two features by the contasitige
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Image Contour Selection

Model Contour Selection

Figure 3.3: lllustration of our computational solution fet-to-set contour matching on
shape detection example from Fig. 3.2. The top and the batb@nshows the image and
model contour candidate sets marked in gray. Each contaurilsotes its shape informa-
tion to nearbycontrol pointsin the form of Shape Context histogram, shown on the right.
By selecting different contours:{¢/, 3*¢!), each control point can take on a set of possible
Shape Context descriptionsc(, sc™). With the correct contour selection in the image
and model (marked by colors), there is a one-to-one corretfgpwe/; " between (a sub-
set of) image and model control points (marked by symbol$)s T a computationally
difficult search problem. The efficient algorithm we develdps based on an encoding
of Shape Context description (which could take on expoaéyntmany possible values)
using linear algebraic formulation on the contour selectimlicator:sc’ = V! . z*¢!. This
leads to the LP optimization solution.
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dissimilarity:

(SHAPE DISSIMILARITY) Dyj(scl, sciy = Dy (Vi a*, VM o (3.6)

The shape dissimilarityp,; not only depends on the local attributegppfindg;, but more
importantly, on the context given by*’ andy**’. Matching object shapes boils down to

minimizing D;;, which is a combinatorial search problemot andy*.

3.2.3 Contour Packing Cost

Finding the set-to-set contour matching finally becomesirat gearch over correspon-

denced/*" and contour selection®, y*¢ by minimizing the following cost:

(Contour Packing Cost)

1
: cor sel ~sel\ __ cor I _sel M _ sel
Ucorm!g el Cpacking(U YUY ) - E E Uij DZ](V xz 7V Y ) (37)
“or xse Y € ..

2¥]

st. U ed

wherem = Zi,j Uier is the number of control point correspondences. Corresprores
U< from different object parts should have geometric consisteWe use a star model
graph for checking global geometric consistency. Eachespwndencép;, ¢;) can predict
an object center;;. For the correct set of correspondences, all the predietetics should
form a cluster.e. close to their average centet(U") = > c;;Ui wi;/ Y Ui wyj,
wherew;;’s are the weights on correspondences. Thus corresporgiéfic¢esatisfying

the geometric consistency constraint can be expressed as:

(GEOMETRIC CONSISTENCY) G = {[[c(U*”") — csU" || < dimas if U7" =1}

1

(3.8)

whered,,... is the maximum distance allowed for deviation from the cente
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(d) Correspondences

=

Figure 3.4: lllustration of contour packing for shape dgtec From input image (a),
we detect long salient contours shown in (b). For each cbptimt correspondence in
(c), we select foreground contours whose global shape i$ simogdar to the model, with
selectionz**! shown in gray scale (the brighter, the largét). Voting maps in (c) prune
geometrically inconsistent correspondences. (d) shoetmsistent correspondences
marked by different colors. The optimal joint contour séltatis shown in (e). Note in
the last example, model selection allows us to detect faksemon the face.
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3.3 Computational Solution via Linear Programming

Direct optimization of contour packing cost function eq.7(3is a hard combinatorial
search problem. The shape dissimiladidy; (V7 - 25/, VM . y*!) can only be evaluated
given correspondencés™”. However, finding the correct correspondentié¥ requires
z*t andy*®’. Therefore, the inference problem becomes circular. Weaxppate this
joint optimization by breaking the loop into two stegsngle point figure/ground selec-
tion andjoint contour selectior{see Fig. 3.4). The first step focuses on finding reliable
correspondencelSs“” (maybe sparse) by matching image contours to the whole model
Note that even this subroutine is a combinatorial searcth @iponentially many combi-
nations of figure/ground selection. The second step seteat®urs simultaneously from
both image contours labelled as figure and all the model costoeing matched, based
on the correspondences computed in the first step. Thiosgutesents the relaxation of

both steps as an instance of Linear Programming (LP).

3.3.1 Single Point Figure/Ground Selection

Our first step discovers all potential control point cor@sgpencesd/;; and computes the
corresponding figure/ground selectioif’ for them. We fixy*® = 1 to encourage match-
ing to the full model as much as possible. In this step, darteches are undesired since
the correspondences they produce are much less reliableis¥e simpld.;-norm as
the dissimilarityD,;. Accordingly, the contour packing cost eq. (3.16) redutesthe

following problem:

min V72— VM|, 2 e {0, 17 (3.9)

rsel

A brute force approach of the above problem is formidableévemid-size problems
with 20 to 30 contours. We compute an approximate solution by relaxiedthary vari-

ablesz*¢ to continuous values) < z*¢ < 1. Since the norm in the cost functionis?.

1BesidesL, other distance functions such As andy? for shape context can also be used. However,
the relaxations will be computationally much more inteasiWe will see discussion oh, in later this
section and Appendix.
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By introducing slack variables™, b= > 0 such tha/Z - 2! — VM .yl = b+ — b, we

can reduce the problem to a standard LP:

(CONTOUR PACKING LP) min 176" + 1Tp~ (3.10)

$sel7b+7b7
st VIgsel - yMysel — pt -

0§xsel<1

bt b~ >0

This LP problem can be solved efficiently by off-the-self Ldd&rs such as Mosek (An-
dersen & Andersen, 2000). We will see even more efficientt&wis using primal-dual
algorithms in the next chapter.
Lo-norm Dissimilarity: A MaxCut Approach

The choice of shape dissimilarith;; has a significant impact on solving the com-
binatorial problem of contour packing. One alternativetie £,-norm used in eq. (3.9)
is to haveL,-norm: ||[VZ . gt — M. ysl||2 We have discovered that this can be re-
duced to MaxCut, with a proved bound on approximation via iefmite Programming
(SDP) (Goemans & Williamson, 1995). The derivation of thesgection is summarized

in following theorem:

Theorem 3.1. Construct a graphGpciing = (V, E,W) withV = Z U M U A and
Wi = al-Taj, where
Vi, if nodei € 7

a; = q VM if nodei € M (3.11)

(0,..,0,] >, Vi = >, Vi1,0,...,007 if nodei € A

\

Here V! (k, i) is the feature contribution of contourto the histogram birk defined in
eq. (3.4). Vectori;/({’i) and V(J”f) represents thé” columns of’/ and VM.

The optimal subset! and S with the best matching coft/? - x5! — VM. y*||2 is
given by the maximum cut of the gra@h,ccin,. If (C1, Cs) is the cut withV € Cs, the

optimal subsets are given I8/ = 7N C, andSM = M N C,.
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Proof. Please see Appendix. ]

Although the relaxation of SDP provides a tighter approstiorain theory, L,-norm
is not as good.,-norm as a distance function for feature descriptidn-norm is sus-
ceptible to large values in the histogram bins, and hencertdsist to image outliers and
noises. Therefore, thie,-norm dissimilarity and the LP relaxation is adopted in thiese-
guent sections. We will revisit the SDP relaxation in Chaptevhich provides additional

expressive power for region packing.

Correspondences found from single point figure/groundctiele might not satisfy
geometric consistency eq. (3.8). Therefore, we enforcengéic consistency by pruning
hypotheses of control point correspondences via a votiaggalure (Wangt al., 2007).
Each image control point can predict an object center usgigast match to model con-
trol points computed by eq. (3.9). These predictions geeexaes weighted by the shape
dissimilarity, and accumulates to a voting map. We extréageat centers from the local
maxima and further back-trace the voters to identify geoicadty consistent correspon-

dences.

3.3.2 Joint Contour Selection

Once obtaining a group of geometrically consistent comadpnces, we seek a subset
of contours that match well consistently across all cowesiences in eq. (3.7). In single
point figure/ground selection, the selected contours #dreifit control points are not guar-
anteed to be the same. The shape feature centered at eaa pomit essentially covers
the whole object. However, the sensitivity of shape desorpdiffers: close-by shape
descriptions are more precise to be discriminative, anddtsvay ones are more blurry
to tolerate deformations. A unification of these descrigifrom different control points
can generate an overview of the shape without losing thdlslet@iven a list of con-

trol point correspondences(1), j(1)), (i(2), j(2)), ..., (i(k), j(k)) whereUg .y = 1,

i(s),5(s)

we can stack the all the contribution matrices for image @orgt into one matrix, and
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similarly for the model side:

Vil Vi
VI VI

VI _ i(2) ’ VM — J.(2 (312)
Vil Vit

The contour packing cost in eq. (3.7) can be written in thisbahg matrix form:

Z || e - € M . yselHl — ||VI X xsel . V]\/f X yselHl (313)

J(s

Note that this is an optimization problem with exactly thenegform as eq. (3.9). There-

fore the previous LP-based computational solution applikstly.

Maximal matching cost. Recall that our problem is to search for the maximal common
subsets from the image and model contours such that thgieslaae similatWhat is the
right matching costD;;(V;" - z°¢, V' - 4y**!) that can enforce the maximal conditian®

straightforward cost function, such as the-norm used previouslyD;; (V;’ - 2, VJ.M :

ysel) _ ||Vzl . psel VjM y
empty sets from both sidesd. z* = 0, y*¢ = 0). In fact all the norms as well as
y? distance will suffer from the same problem. We introducesrtfaximal matching
costfor D;; which balances the maximal requirement on the contour seteand the
quality of the match. We seek to match as many model contaipoasible while the
difference between image and model contours is small. Befescribing the details, we

first introduce a few variables. Set

o sc¥” = vV Myl to be the shape context centered at model ppiiselecting the

full model, wherey/" = 1,4 means selecting all model contours;
o scl = VIz* to be the shape context with selectioti on image ap;;
o sci' = VMy*! to be the shape context with selectigtf on model ay;.

We usesc; (k), scf (k), sc}’ (k) to denote thé bin in the shape context.
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Our maximal matching cost consists of two termassandmismatch(see Fig. 3.3).
To match as many model contours as possible, the followifigrdnce between the num-

ber of matched points and that of full model points should lr@mized:

miss,(;j) = scf/lf(k:) — min(sc! (k), scj”(k)) (3.14)

Heremin(sc/ (k), sc}’(k)) counts the number of matched contour points between the im-
age and model in shape context kin

The above ternmiss,(fj) alone does not measure how well the selected image contours
match to the selected model contours. To ensure the matcjuality, the amount of
difference between the number of image and model contountgo all shape context

bins needs to be minimized:
mismatchgj) = |scl (k) — sc;-w(k)| (3.15)

By combining eq. (3.14) and eq. (3.15), we have the follovdisgimilarity:

Ek[missgj) +43- mismatchgj)]
>k 567 (k)

whereg > 1is afactor balancing the two types of costs. WeE:,Cescj"‘f(k) to normalize

Dij =

(3.16)

the costD;; such that it is invariant to the number of contour points.
LP can also be used to solve eq. (3.7) for contour contextteteby relaxingz*

andy® to real value vectors. eqg. (3.16) and eq. (3.7) translateeddlowing problem:

min Z {% Z[sc{vm(k)— min(sc! (k), scj\/[(k))] + EHSCZI — sc?/[Hl}

xsel7ysel Uicfr:1 i B NZ
I I sel M M sel
st.ose; =V 2™ sei =V -y

whereN; = >, scM7 (k) is a normalization constant andn(z, y) computes the element-
wise min of vectors: andy. The two terms in the summation atgéss andmismatch in
eg. (3.16) respectively. The above problem can be relaxad tostance of LP by adding
slack variables;;, > sc/ (k) ands;;, > sc}’ (k) for min(sc/ (k), sc}’ (k)).

We have obtained the rough corresponderi¢c&s from the previous step. We opti-

mize the contour selection cost eq. (akt. 2°¢, y*¢ to prune false positives and detect
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objects. The outcome includes both the matching €gst.;,, and model contours actu-
ally matched, indicated by*¢’. Both of them can be used to prune false positives. Note
that it is not required to have a complete correspondendé“éesince the cost eq. (3.16)

has been normalized by the number of correspondences.

Model configuration checking. The selected model contours from joint contour selec-
tion form a shape configuration that are actually matchethege contours. Because the
number of object model contours is typically very limited@ally 6 to 8), we can specify

a dictionary of all possible configurations of true posisiv®etection of model contours
with bad configurations, e.g. missing critical parts, ajeated. This configuration check-
ing together with the matching co§t,, i, can prune most of the false positives while

preserving true positives. The last row in Fig. 3.4 show$sucase.

3.4 Related Work and Discussion

Salient contours and their configurations are more disti@than individual edge points
for shape matching. The works (Ferratial., 2007b; Ferraret al., 2007a) represent
objects by learning a codebook of Pairs of Adjacent Segmeviigch are consecutive
roughly straight contour fragments. They achieve detactising a bag-of-words ap-
proach. In (Shottoret al., 2005), boosted contour-based shape features are leamned f
object detection. These efforts utilize mostly short canfoagments, and therefore have
to rely on many training examples to boost the discrimireatiower of shape features. In
contrast, our work takes the advantage of contour groupicy as (Zhuet al., 2007)
to detect long salient contours, capturing more global ggdminformation of objects.
More importantly, we constrain these long contours to ad asole unit,i.e. they can
either be entirely matched to an object, or entirely belanthe background. This char-
acteristic makes shape matching more immune to accidelgalngent to background
clutter. Similar properties are exploited by groupingdshserification approaches (Amir

& Lindenbaum, 1998), and the recent work (Felzenszwalb &&ete, 2007).

From a broader perspective, our recognition framework getiaon shape matching,
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Applelogos

Bottles

Giraffes

Mugs

Swans

Contour Packin

349.3%/86.4%

65.4%/92.7%

69.3%/70.3%

25.7%/83.4%

31.3%/93.9%

Ferrariet al., 07

32.6%/86.4%

33.3%/92.7%

43.9%/70.3%

40.9%/83.4%

23.3%/93.9%

Table 3.1: Comparison of Precision/Recall (P/R). We comple precision of our ap-
proach to the precision in (Ferrati al.., 2007) at the same recall (lower recall in (Ferrari
et al., 2007)). We convert the result of (Ferraiti al.., 2007) reported in DR/FPPI into
P/R since the number of images in each class is known. Oupnpegihce is significantly
better than (Ferraet al.., 2007) in four out of five classes. The other class "Mugs“ehav
some instances that are too small to be detected by contoupigg. Note that we did not
use magnitude information which plays an important rold=er(ariet al.., 2007).

which has a long history in vision. A large amount of resedrat been done on different
levels of shape information. Early works (Zahn & Roskies72;9Gdalyahu & Wein-
shall, 1999) focused on silhouettes which are relativetypde for representing shape.
Silhouette-based approaches are limited to objects wiihglesclosed contour without
any interior edges with occlusions. Objects in real imagesnaore complex, and may
be embedded in heavy clutter. Efforts on dense matchingeoétlye points often focus
on spatial configurations of key points, such as geometsbihg (Lamdaret al., 1990),
decision tree (Amit & Wilder, 1997) and Active Shape ModeRoéteset al., 1995).
However, key-points alone are insufficient to distinguisieots shapes in cluttered im-

ages (Belongiet al., 2002).

Feature representation and shape similarity measuremeetiteakey issues for match-
ing. Shape Context (Belongat al., 2002) uses spatial distribution of edges points relative
to a given point to describe shape. Inner Distance ShapeeofbSC) refines it to ac-
count for articulated objects (Ling & Jacobs, 2005). We dwlr basic shape feature
representation on Shape Context, with contour as the umitugh larger context window
covering the whole object enables our approach to capta@agkhape configurations.
We introduce a novel contour selection mechanism to exgiabil shape features against

background clutter.
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3.5 Experiments

We demonstrate our detection approach using only one heavahdnodel without nega-
tive training images, To evaluate our performance, we chtiuschallenging ETHZ Shape
Classes (Ferrast al., 2007a) containing five diverse object categories with 2&&ges in
total. Each image has one or more object instances. All oatghave significant scale
variances, illumination changes and intra-class vamatioMoreover, many objects are
surrounded by extensive background clutter and have antsurface markings. We have
the same experimental setup as (Ferearal., 2007a), using only a single hand-drawn
model for each class and all 255 images as test set. To adpgeoscale variance, we
resize the model in 5 to 8 scales with a ratio step.8ffor each class.

We first use contour grouping developed in Chapter 2 to gémkrag salient contours
from images. Contours can have overlaps due to multiplelplesgroupings at junctions.
The Shape Context (SC) used for contour selection coversritiee model shape with a
large spatial extent. The SC histogram has 12 polar bingjialrbins and 4 edge orien-
tation bins. To tolerate shape deformation and eliminagebtbrder artifact of histogram
binning, bin counts are blurred as in (Wagitgal., 2007). This refinement can be encoded
into contribution matrice¥’?, VM as well.

We sample control point hypotheses on image contours umijowith an interval
equal tol/10 of the model bounding box diagonal. The number of image cbptints
sampled in each scale ranges frétto 400. The numbers of model control points vary
from 15 to 30 depending on the complexity of the target shape. LPs arfsorg single
point figure/ground selection as well as joint contour s&acare solved by the interior
point method. The computation time for each hypothesizespondence in single point
figure/ground selection is within 0.1 sec.

After selecting figure contours, each correspondence Yotabe object center with
the weight inversely proportional to the shape matchind.c@¢e collect the votes into
a voting map and extract its local maxima above certain biuigsto generate object hy-

potheses. Since the correct object scale is unknown befodgivoting is performed in a
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Figure 3.5: Precision vs. recall curves on five classes of EBHape Classes. Our
precisions on "Applelogos”, "Bottles”, "Giraffes” and "Sams” are considerably better
than results in (Ferragt al.., 2007): 49.3%/32.6% (Applelogos), 65.4%/33.3% (Bojtles
69.3%/43.9% (Giraffes) and 31.3%/23.3% (Swans). Alsocedthat we boost the perfor-
mance by large amount compared to local shape context weithgut contour selection.

multi-scale fashion, with non-maximum suppression on Ipaisition and scale.

Currently the model shape is manually decomposedands contours at high curva-
ture places. The contour partition respects the semanjgciparts e.g.two sides of the
swan neck and the dent of the applelogo are kept as singlelmaat®urs. As described
in Section 3.3, configurations of matched model contoursised to reject false positives
in addition to the packing score. In principle, the dictignaf valid configurations can be
automatically learned from detections in training imad&sce the shape models usually
have very few contours, we manually construct a diction&gcoeptable configuratiohs

Precision vs. recall (P/R) curve is used for quantitativa@ation. To compare with
the results in (Ferragt al., 2007a) which is evaluated by detection rate (DR) vs. fatse p

itive per image (FPPI), we translate their results into PARigs. We choose P/R instead

2We further bind some model contours, reducing the contoonber to a maximum of, so tha® = 64
dictionary entries can be numerated by hand.
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of DR/FPPI because DR/FPPI depends on the ratio of the nuofipesitive and negative
test images and hence is biased. Our final results on thisetatan be seen in Fig. 3.5.
Results of the two steps of our framework are both evaluggewle point figure/ground
labeling only uses matching cost as the final evaluation &ection, while joint con-
tour selection uses both matching cost and the detecte@ sloajfiguration. Compared to
the latest result in (Ferraet al., 2007a), our performance is considerably better on four
classes out of five. We also compare voting using simple &ltape context with our first
step of contour selection. Contour selection greatly impsaletection performances (see
Fig. 3.5).

Our shape matching algorithm can reliably extract and seectours of object in-
stances in test images, robust to background clutter ansingisontours. Image results

of detection with selected object and model contours areotdisirated in Fig. 3.6.

3.6 Summary

We have introduced a novel shape-based recognition frankevatled Contour Packing
We construct context sensitive shape features dependisglected contours and propose
a method to search for the best match. Joint selection onilnaitpe and model contours
ensures detection to be robust to background clutter andeattel alignment. We are able
to detect object in cluttered images using only one traiexgmple. Experiments on hard

object detection task demonstrate promising results.
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False positives pruned by model contour selection Failases

Figure 3.6: Examples of contour context selection on modelimage contours in ETHZ
Shape Classes. The first five rows show detected objects fraagd with significant

background clutter. In the last row, the first four cases algefpositives successfully
pruned by our algorithm by checking the configurations oésteld model contours. The
last two are failure cases. Each image only displays one@et®bject instance.
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Chapter 4

The Primal-Dual Packing Algorithm

In the previous chapter, we developed the set-to-set comatching framework and de-
rived a computational solution based on LP. The core of thetisa is to encode the
overall shapes at several control points in a linear formguirg/ground contour selec-
tion, which do have one-to-one correspondences. Sinceotiteot point correspondences
are unknown, searching for the correct ones results in m&sy ane for each correspon-
dence hypothesis. A natural question arises: do we reaby me solve all LPs for the

figure/ground contour selection precisely?

This chapter will show that this is unnecessary for most eftime. We introduce
primal-dual combinatorial algorithms which have genafdtest algorithms for a large
class of packing and covering problems. The contour padkihgan be reduced to a bin
covering LP, where these primal-dual ideas can be readgiiexp By exploiting the dual-
ity between contours and feature bins, the algorithm is tbther find an approximate
solution, or declare a lower bound on the optimum of the amsttion. Therefore, most
suboptimal solutions can be knocked out without runningLiReo the end. Each itera-
tion of the primal-dual algorithm only involves a simple og@igon of sorting the contours,

making it very fast to generate approximate solutions.
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4.1 Primal-Dual Combinatorial Algorithms

Linear programming (LP) has been widely used for analyziognl@inatorial problems
and designing fast approximation algorithms. The LP foatiah leads to principled ap-
proaches for a large class of packing and covering probl&askin et al., 1995; Young,
1995), multi-commodity flow (Plotkiret al., 1995; Leightonet al., 1991), Travelling
Salesman Problem (TSP) (Khandekar, 2004), faculty longMazirani, 2004), etc. The
power of LP-based algorithms is largely attributed to thuality which simultaneously
considers two different but coupled problems: the primal #re dual. Each one of them
serves as a guidance and bound on solving its counterpavidprg a different perspec-
tive to the original problem.

In a seminal work (Plotkiret al., 1995), Plotkiret al. proposed grimal-dual combi-
natorial algorithmfor fractional packing and covering, which greatly outpenfied previ-
ous approaches on a large set of problems such as minimahatistommodity flow, the
Held-Karp bound for TSP, and cutting stock. The key idea igéal the current estimate
of the dual to improve the primal during iterations, and wieesa. On the primal side, one
solves an oracle with partial constraints and a simplifiest éonction induced by dual
variables. This provides the freedom of designing oractizgpeed to different problems
and can employ existing efficient combinatorial algorithrs the dual side, dual vari-
ables are adjusted by a multiplicative update rule accgrtbnthe "feedback” from the
oracle. The updated dual variables thus give a tighter bautite next iteration.

The primal-dual formulation provides more insights to thelgpem than just treating
LP as a black-box. Computationally, while solving LP usirengral purpose solutions
(Vaidya, 1996; Nesterov, Y. E. & Nemirovsky, A. S., 1993; ght, 1997) €.g.interior
point methods) has shown some degree of successhinatorialalgorithms built on the
primal-dual formulation can exploit specific structuresngrate much more efficient ap-
proximation solutions, and provide explicit manipulattorthe computational routine.

The LP formulation has been extensively used in generalmmag@roblems. In (Jiang

et al., 2007; Jiang & Martin, 2008), an LP relaxation was proposedrietric labeling
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with L;-norm regularization in image matching. A simplex-baselditszn and an effi-
cient successive convexification implementation were ldpesl. Alternatively, interior
point method was applied in a related formulation in imaggsteation (Taylor & Bhus-
nurmath, 2008). The structure of the problem was exploitedeneffectively in solving
the linear systems using specific matrix structures. LP Jvss @sed in the inner loop
of iterative algorithms of Integer Quadratic Programmil@H) arising in matching (Ren
et al., 2005a; Berget al., 2005). Although also formulated as an LP, our problem dif-
fers from previous ones in that set-to-set matching instéaxhe-to-one correspondence
on feature points is performed. The selection variablestrisset matching are more

densely related to each other, resulting in a fundamenté#figrent matrix structure.

The rest of this chapter is organized as follows. Sectionwdl2eview primal-dual
algorithms for general fractional packing and coverindytems, and lay down the founda-
tion for applying these ideas subsequently in the contockipg problem. In Section 4.3
we reduce the single point figure/ground selection LP to axng problem, and pro-
pose a primal-dual algorithm that enables pruning sub@tsolutions early. Section 4.4

describes details of how to apply the algorithm to contoukpay.

4.2 Primal-Dual Algorithms for Packing and Covering

The packing problem studies how to optimally fill a knapsaglkchoosing the most valu-
able objects from a list. Suppose there arebjects whose prices afg (i = 1,...,n).

One would like to choose a subset of these items maximizieig tbtal price, subject to
m capacity constraints such as weight, dimension, etc. [Reti@ maximum value of
each capacity constraint asand the contribution from itemasW ;. Finding the optimal

packing can be written as the following integer programngrzplem:

PACKING IP max i Ly
( ) X

s.t. ZWJZ.CCZ < Cj,s j = 1, .., m (41)
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where x; is the0/1 indicator of whether object is selected. By relaxing the integer
constraintz € {0,1}"to 0 < x < 1, we obtain a linear program callé&ctional packing

which provides a lower bound to eq. (4.2):

(PACKING LP) max plx (4.2)

zeR™

st. A-x<e¢, >0
Here A = [W;I] andc = [cy,...,cm, 1, ..., 1]T. Hence the constraint < 1 has been

folded into the matrix constrait - = < e

The covering problem is to find sets with minimal total costéwer elements. Let the
¢;'s be the costs of the sets. Each sgtcovers elementfor IW;; times. The multiplicity
of each elemenitto be covered is required to be at lepstLety; be the number of copies
of setj that are selected (choosing multiple copies are allowad)il&ly to packing, the

covering problem can be written as an integer program, dagled tofractional covering

(COVERING IP) min Z il (4.3)
J

s.t. ijyj >pi, t=1,...,n
J

(COVERING LP) min ¢y (4.4)

yeRn

st. AT.y>p y>0

The fractional packing problem eq. (4.2) and fractionalesow eq. (4.4) are actu-
ally Lagrangian duals. By introducing nonnegative Lagiangnultipliers(y, A) to the
constraintsA - x < c andx > 0 respectively, the Lagrangian functia®(z, y, \) =
ptx +yT(c — Az) + ATz always serves as an upper bound of the fractional packirtg cos
functionp®z, whenever is feasible or not. Thereforepax, £(z,y, \) bounds the op-
timum of eq. (4.2). By strong duality of linear program, thaiomum of eq. (4.2) and
eq. (4.4) coincides (Boyd & Vandenberghe, 2004). Therefaeking and covering are
essentially flipped sides of the same coin: solving one iesgdhe other.

Primal and dual formulations provide different perspeztion the problem: for the

feasibility version, primal solution serves as “yes” dectite while the dual solution serves
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as “no” certificate. Just as the divide-and-conquer styat@ge would like to generate a
series of yes and no certificates to narrow down the searadesgderefore, primal and
dual need to communicate, and use one to update the other.

We start with a feasibility version of the fractional padiproblem:

(Feasibility Problem) Given a convex seP C R"™, anm x n constraint matrix4

and amn x 1 vectore, determine whether there existss P such that

ajx—c¢; <0, j=1,..m (4.5)

Herea] is the;jth row of matrix A.

For the packing problem (4.2), the convex $&is a simple polytope:
P={z:p'z>a 0<2<1} (4.6)

wherea is a constant. If eq. (4.5) is feasible, then the optimal @alfi of eq. (4.2) is
at leasto. Otherwise it is less than. By a binary search on, one can find g1 + ()
approximation to the optimization problem within(log ). Our discussion will focus on

eg. (4.5) in the subsequent sections.

4.2.1 Multiplicative Weight Update: From Primal to Dual

Suppose we are given a primal estimate and its correspordsigas feedback, how can
we update the current dual estimate? We start with consigl@n online prediction prob-

lem.

Online Prediction. There aren experts who make predictions on uncertain events in
the world. Our goal is to construct the best strategy ovee tirom these experts. At
timet¢ (t = 0,1,2,...), if the prediction from theth expert is taken, the event (possibly
adversarial) incurs a positiveward R§ and a negativéoss —£§.. Hence the nevalue
gained isV; = R} — L.. One can construct a mixed strategy from these experts by
linearly combining their predictions. A mixed strategy sifies positives weightg’ =

(y1,---ym)" on all the experts. The total net value of the strategy wilbbe= 3. 7,V
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wherey® = y'/ >~ y; are the normalized weights. Consider the event sequenetiinee
t=0toT. Attimet, the strategy chooses weightson the experts based on all previous
observationsR* and £* with 0 < k£ < t — 1, and gains a valu®*. One would like to
maximize the cumulative value over time= ", V.

Intuitively, experts making correct predictions previlyshould be up-weighted while
experts predicting incorrectly should be down-weighted. other words, the weights
should be updated according to the “feedback” of the exdesta the worIdV]t-. We

introduce a multiplicative weight update scheme to guidestinategy from the feedback:

(Multiplicative Weight Update) Initialize weightsy® = (1,...,1)T. At time
t, prediction from experj produces a value of; € [-1,1]. Given a constant
€ (0,1), update the weightg ™ at timet + 1 by

yj.“ = yj exp(eV;) (4.7)

Theorem 4.1. (Littlestone & Warmuth, 1989) (Perturbed Value of the Siggh) LetR =
Y2 YR and £ = Y7, 57 yi LY be the cumulative reward and loss of the strategy
using eg. (4.7). The perturbed value of the strategy giveady4.7) is worse than the

performance of best pure strategy onlylﬁéjﬂ, as stated in the following inequality:

logm

max V; < exp(e)R — exp(—e)L + (4.8)
J

Proof. Please see Appendix. ]

Theorem 4.1 is essential in the complexity analysis in thHesequent sections. It
proves the quality of the multiplicative update rule (4 3ince the average strategy given
by the update rule cannot exceed the best strategy in theightdwe would like the gap
between their valuesiax; » -, V; and} , V' to be small. This value is calledgretof the
strategy. The theorem proves the fact that the regret is al aglog m /e. We can bound

the regret over time by the following corollary:
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Corollary 4.2. (Regret Over Time) IV, € [—p, p| for all j, then we have a bound on the

average valu@’/T"

o<
mjax < — 4+

plogm
el

+ peexp(e) (4.9)
Proof. Please see Appendix ]

The above bound shows that the regret over time consistsodiEnms: the terrr—‘flj%
which can be “washed out” by time and the other teseexp(e) which cannot. If we
would like to diminish the regret over time, for example psamnal to a small numbey,
we can set ~ ¢/p andT ~ p*/6%. However, ifV only contains reward or loss, the result

can be strengthened as:

Corollary 4.3. (Regret for Reward Only) P} € [0, p] for all j, i.e. £; = 0 for all ¢ and

j, then we have a bound on the average valé&":

V; YV  plogm
AP .
mjax < exp(e) T T

(4.10)

The corollary is a direct consequence of eq. (4.8). It maksganger claims than
Corollary 4.2 since we only need to st~ p/é to make the regret over time small,
instead ofl" ~ p/d6. This is the fundamental difference between packing/éogeand

general LP, in which the latter has higher complexity.

4.2.2 The Oracle: From Dual to Primal

From the dual formulation, we would like to improve the cutrprimal solution by mini-

mizing . y; f;().

(Oracle) Given a convexconstraint set P C R", a dual variablgy € R™ and a
set of functiong/;(z) (j = 1, ..., m). Optimize the linear combination of;(z) in

the constraint seP:
min > " y; V() (4.11)
j

zeP
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The constraints in the original problem have been sepanatetvo parts. Constraints
easy to check and optimize are pushed inNGTRAINT SET P, making the oracle ef-
ficient to compute. Hard constraints are left outside andoaig approximated by the
Lagrangian as in eq. (4.11). It is a design choice how to diti two.

T

In the case of packing” is given by eq. (4.6). Defin&;(r) = a;x — ¢; for j =

1,...,m. Notice thaty " y;V;(z) = (ATy) "z — ¢y, giveny*, the oracle becomes

min (ATy) (4.12)
s.t.cT:U:a, 0<zx<1
If ¢ > 0andA > 0, one can solve eq. (4.12) by simply sorting’y);/c; in ascending
order, and choosing; = 1 according to the order untif'z = « is satisfied. The oracle
(4.11) simply reduces to sorting, whose complexit®is: logn).
4.2.3 Complexity Analysis

So far we have all the ingredients of primal dual combinalaigorithms. We summarize

the primal-dual algorithm for packing as follows:

Algorithm 2 (Primal Dual Algorithm)

1: Initialize y° = (1,...,1)",t = 0,5 =0, e = 6/3p. Definef;(x) = ajz — ¢;.

2: repeat

3 Run oracle (4.11) and obtain the optimusand optimal point?.
4 if u* > 0then

5: return infeasible

6 end if

7: Computew’ := 1/ max; | f;(z)|.

8: Run multiplicative weight update (4.7);*" := y! exp(ew' f;(a))
9: Si=S+uw,t:=t+1.

10: until S > 9plogm/d—2

11: return feasible solutiorr = Zi:u;ft
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Theorem 4.4.(Complexity of the Primal Dual Algorithm) Algorithm 2 eittaeclares that
the fractional packing eq. (4.2) is infeasible, or outputsagpproximate feasible solution

7 satisfying
aj—c; <6 (4.13)

forall j = 1,...,m. The total number of calls to the oracled¥ p*5—2log m) with p =

max; max,ep | f;()].

Proof. Please see Appendix. ]

Variant 1. If A, c > 0, we can improve the running time of Algorithm 2% p5—* logm)
by changing the termination condition $6> pd~'e~'logm and setf;(z) = a} z/c;.
Variant 2. If f;(x) > 0 for z € P, we can improve the running time of Algorithm 2 to
O(pd—'tlogm) by changing the termination condition $6> pd—te~!log m.

In both cases, we can apply Corollary 4.3. Eq. (A.33) hastadighoundnax; [ajTa_: —

¢j] < 22 the rest of the analysis falls through.

4.3 Primal-Dual Formulation for Contour Packing

This section presents an alternative formulation of conpacking as oppose to the direct
LP relaxation in Chapter 3. Applying the primal-dual ideasdeneral packing/covering
in the previous section leads to an efficient, and increnhatike search algorithm.
Consider the single point figure/ground selection eq. (3viith full model sc™ =
VM. 1. We introduce normalized slacks, s~ > 0 such that the surplus and deficit of the
bins areb™ = Diag(scM)s™ andb~ = Diag(sc™)s~ respectively. The main constraint in

eg. (3.10) can be written as:
Vg — s¢M = Diag(sc™)st — Diag(scM)s™ (4.14)

The termDiag(sc™)s™ represents the amount of over-packed edge points in theréeat
bins andDiag(sc™)s~ represents the amount of the under-packed. Sintes~ > 0,

we have a covering constraibt/z*¢ + Diag(scM)s™ = sc™ + Diag(sc™)st > sc.
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By substitutingDiag(sc™)s* = VIz*! — scM 4 Diag(sc™)s~, the contour figure/ground

selection cost eq. (3.10) becomes

||VI . xsel o SCM||1 — lT[Diag(scM)s+ + Diag(scM)s_]
= 17[2 - Diag(sc™)s™ + VIz* — 5cM]

—9. (SCJM)TSf + ]_TVIZL‘SSZ o ]_TSCJM

The last termiTscM is a constant and hence can be dropped. Moreover, the uadieg
slack variables~ is bounded byl. Notice that at most one of ands; needs to be
strictly positive. Otherwise subtract the minimum £f ands; will drive one of them
down to0, but with a lower cost. I; > 0, thens; = 0. and the constraint eq. (4.14)
impliesscMs; = scM — (VIzs); < scM, which means; < 1 for eachi. By putting the
cost function and the constraints together, we simplify(8dL0) to a standard covering

problem on the bins:
(BIN COVERING) min 1TV gt 4 2. (s¢M)Ts™ (4.15)

s.t. Vz* + Diag(sc™)s™ > scM

0< :Esel,s_ <1

The primal-dual method iterates between 1) the oracle taes the packing oracle,
which boils down to sorting the contours and bins in this gaéhe multiplicative update
that changes dual variablgdy multiplication.

Oracle

The oracle for contour packing has the following form:

(ORACLE: PACKING) max y' [VI2* + Diag(sc™)s] (4.16)

1‘56l787
st. 1TVIzs 1 2. (s™Mts™ < fy

0§x86l787<1

Letz = (2% s7), ¢ = (VI1;2 - sc™) and A = (V! Diag(sc™)). This problem can

be written asmax, y* Az subject toc'z < f; and0 < x < 1. A greedy algorithm
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that packse according to the sorted value/capacity réﬁéﬂ can efficiently acheive the
global optimum.
Multiplicative Update

The update is similar to the general packing/covering nobl
(UPDATE) y—y-exp(8), 0= (sc™ — Ax)-¢ (4.17)

with § representing how much violation is incurred for each cavgegonstraint.
By combining Algorithm 2, eq. (4.15) and eq. (4.16), we sumingathe primal-dual

contour packing algorithm as follows:

Algorithm 3 (Primal Dual Contour Packing)

1: Initialize x = (0,...,0)T, 4 = (1,.., 1), t=0,5 = 0.
2: fort=1,2,...,T,,,, do
3 u = ATy, 2t .= (0,...,0)%, f = fo.

4 Sortu;/c; in descending order, with indices$l), s(2), ..., s(n).
5: fori=1,2,...,nandf > 0do

6 k= s(i), 2t .= a2t +min(f/c, 1), f:= f — cpalk.

7 end for

8: if yT(Az® — scM) < 0then

9 return infeasible

10: end if

11: w' := 1/ max; |d;(z)|.

12: Run multiplicative weight updatgs ™" := y! exp(ew! f;(z")).
13: ri=z+wat,S: =S +uwt:=t+1.

14: if c'z/S < fo then

15: return feasiblewith the solutionz/S.

16: end if

17: end for

18: return thebest primal solutiorn:/S.

In line 3-7, the algorithm uses sorting to solve the oracle(éd5). Note that each
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iteration involves only one matrix vector multiplicatiom (ine 3) and one sorting oper-
ation (in line 4). This is faster by orders of magnitude coregao one iteration of the
standard interior point LP solvers, which involves solvanlinear system (Wright, 1997).
Additionally, the sorting can be updated from the previdasation, which provides more
speed-up to algorithm. The rest of the algorithm is similggokithm 2, except for early

stopping via checking the current solution in line 13.

4.4 Implementation

We apply the primal-dual packing algorithm to the singlenpdigure/ground selection in
Section 3.3. This is the most time-consuming step becawmgaamount of LP instances
need to be solved in our original formulation. In each scalenage control points and
m model control points will generate x m correspondence hypotheses, with each one
as an LP. An important observation is that many of these hgsas are competing with
each other. Notice that the correspondefgg in eq. (3.7) has to be one-to-one. If
correspondencg, j) has the best cost (3.9), then all other correspondeficessharing
the same image control pointwvill be suboptimal and should be discarded from eq. (3.7).
In other words, the current estimation @ny;) provides an upper bound on the optimum,
making it possible to prune correspondenges) early. Algorithm 3 we developed in the
previous section computes a coarse bound efficiently, andehis a perfect candidate for
this purpose. The above intuitions are summarized in Algori4.

In this template, we leave several steps open for problemifgpeptimizations.

1. The order enumerating control point pdifsj) in line 2 can be arbitrary. The sooner
to encounter a good solution, the more correspondences nvproae early. One
way is to sort their current best estimation by running Aitjon 3 for just a small
fixed number of steps. We found this a good heuristic in practhecause the most

important contours tend to be packed first.

2. The bounds3; in line 1 can be extended to enable more pruning. For exarapée,

could introduceB; for all the correspondencgs, j) that votes for the same object

68



Algorithm 4 (Single Point Figure/Ground Selection — A Faster Version)

1: Initialize B; = inf, 7 =1, ..., n.
2: for (i,7),1 <i<nandl <j <mdo
3: Run Algorithm 3 forf, = B;.

4 if infeasiblethen

5: break

6 else

7 Compute optimal value* in eq. (3.10).
8: B; := min(B;, c*).

9: end if
10: end for

center, ensuring unique matching on the model side. Aditlg, it can be used to

encode non-maximal suppression.

3. The final step of computing an optimal primal solution imeli7 can be any algo-
rithm, include the standard LP solutions. Although in piatethe same primal-dual
algorithm can be continued, it might requires many morettens to converge to a
final accurate. In practice we adopt a path following intepioint method (Wright,
1997). The Newton'’s iterations in interior point methods particularly suited for
this purpose since it is closer to the optimum, and hencerfasinvergence can be
expected. This results in a hybrid implementation thatsaavantages from both

sides.

The complexity of Algorithm 4 depends on the portion of cependences pruned in
line 5. How much overall speed up can we gain from this prichadt packing algorithm?
We test it on ETHZ images used in Section 3.5. We plot the nummhiéerations and time
used by primal-dual pruning in line 3 and the interior poirgthod in line 7, varying the
number of model control points. As shown in Fig. 4.1, the iporof solutions pruned by
the primal-dual packing algorithm increases with more nhadatrol points, leading to

bigger speed-up. Thanks to the efficient combinatoriallerdabe primal-dual iteration is
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Figure 4.1: Performance of primal-dual packing algorith8ingle point figure/ground
selection is run irg scales to detect the swan shape in (a). The number of modebton
points ranges from to 35. (b) shows the number of hypotheses to search in all thescale
when the number of model control point2i§ with scalet marked in diamond (the scale

in which the swan is detected). (c) shows the proportion ofespondences handled by
primal-dual iterations (line 3) and interior point iteats (line 7) in Algorithm 4. In (d),
the running time of the entire algorithm is shown and comghémehe one without primal-
dual pruning. Note that the rejection by primal-dual itemas consumes very little time

in the algorithm.

at least two orders of magnitude faster than the interiontpgeration on average. This

makes it suitable for fast pruning suboptimal solutions.
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4.5 Summary

We have shown that the LPs arising from contour packing daeet to be solved ex-
actly for most of the time. The contour packing LP is first regldi to a fractional cover-
ing problem. We borrow the idea of primal-dual combinatioaigorithms that are able
to prune and bound packing and covering problems throughty@and efficient ora-

cles. We develop an algorithm applying these ideas to spwl& figure/ground selection
which involves massive LP instances. Most of these LPs cagiflmgently pruned by the
primal-dual combinatorial algorithm, without resorting golve the original LPs explic-
itly. Preliminary results confirm that the primal-dual aljoms can greatly relieve the
computational burden from standard LP solvers. We plan pboe& more applications of

the algorithm in set-to-set matching.
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Chapter 5

Contour Packing with Model Selection

So far we have developed a framework that detects a subsetagfei contours matched
to a model shape in a holistic manner. Shape models involvétkiprevious chapter are
simply exemplars composed of a few contours. Although tivosset matching method
endows the model the ability to accommodate different aomtagmentations, a fixed
target shape cannot handle large object deformations igasmaDeformations often gen-
erate a combinatorial configuration space with expondyntrabny poses. This makes
brute-force search for the best exemplar prohibitive ircfica. Moreover, it deepens
the discrepancy between the model and image shape descsijecause both side have

exponentially many configurations now.

In this chapter we push contour packing further to relatednotup contours to top-
down deformable parts beyond exemplars, addressing arbiggeesentation gap. We
study the challenging problem of articulated human posenasbn from unsegmented
images. A compact model representation is developed taere@onentially many poses
via a few configuration selection variables on a tree. Thesset matching method ex-
tended for this new model representation can search andarerhplistic shape features
of both image contours and model parts on the fly. This altesighe reliance on local
shape features of parts, which often causes many falsetidetem clutter. The parallel
search over holistic shape features can be efficiently appeded by an LP-based com-

putational solution. We demonstrate results of human psseation on baseball player
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images with wild pose variations.

5.1 Overview

Estimating poses for deformable or articulated objectsahalenging problem for two

reasons. The first reason is the large number of degreeseafdine to be estimated. Due
to the extreme pose variations, prior knowledge is of lichitese in guiding the search.
Second, images are often cluttered and bottom-up deteafiparts is usually prone to
error. Again this is due to the fact that shape is a globalgyre a part is seldom salient

without the whole shape.

For articulated objects, contour is a compact and effestiape representation. How-
ever, finding the foreground contours and estimating theatlgoses or articulations is a
circular problem. One individual bottom-up contour candtyacover the entire object by
itself. If we know the right set of contours composing theefinround object, then we can
recognize the object by matching against a set of candidatels or exemplars. On the
other hand, this becomes circular because grouping canitiaran object shape requires
the correct model. We can think of this problem as a puzzlevofgarallel searches, one
for finding the right foreground contour grouping and onegenerating the correct object

model. A naive approach to this would result in an exponéséarch.

We propose an active search method that finds the correcttauojetour grouping and
model configuration in one step. To encode this search, vemexihe selection variables
which can be turned ON and OFF in Chapter 3. On the image sad, @ntour acts as
an integral unit that can either be selected or discardedvesote. On the model side,
we deform a decomposable articulated model. Recognitianhgved if the model pose
matches the image foreground. We have developed a methagef@rating a holistic
shape descriptor based on these ON/OFF selection varigbtesputationally this leads
to solving an integer program and a subsequent linear prograg relaxation. A discrete
solution can be recovered using dynamic programming (DE)dcretize the continuous

solution of linear programming relaxation.
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(a) Originalimage  (b) Contours on Pb edge map (c) Estimabsé p

Figure 5.1: Given an image (a), salient contours are exddai) from the edge map of
Pb Having contours as our unit, we use a coupled optimizgtionedure of foreground
contour selection and model deformation to recover the pbsa articulated baseball

player (c).

The key contribution of our approach is unificationedfiolistic shape scoring scheme
and a compositional modelMVe take advantage of the compositional power of a simple
tree structured model while scoring shape similarity in Astic way during our search.
This is in contrast to a typical part-based model, which angasures shape similarity as
sum of its local part matches. Matching global shape requogrect foreground contour
selection to remove the effect of clutter. Furthermore, global shape descriptors vary
depending on each composition of foreground contours. cBewy for the correct seg-
mentation/grouping is a hard combinatorial problem. Asafamwe are aware, this is the
first approach that extracts global shape features withooivkng the correct segmenta-
tion and modifies the shape descriptors according to thgfouad selection at each step

of the estimation process, making them robust to backgranddnterior clutter.

The rest of the chapter is organized as follows. Section &s2ribes related work and
comparisons. Section 5.3 and 5.4 present the problem ofgstgseation combining fore-
ground search and model deformation and an efficient LPebes@putational solution.
Section 5.5 demonstrates our approach on the problem ofgsbigeation on the baseball

dataset (Moret al., 2004b), followed by conclusion in Section 5.6.
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5.2 Related Work

Pose estimation of articulated objects remains an impbuasolved problem in vision.
There has been a large amount of previous work on this topiere kve review only
some of the most representative examples. (Felzenszwallit&Rocher, 2005) devel-
oped the well-known pictorial structures (PS) and applieéd human pose estimation. In
the original formulation, PS performs probabilistic irdace in a tree-structured graphical
model. In this model, the overall cost function for a poseomegoses across the edges
and nodes of the tree, usually with the torso as the root. ofdighh our method exhibits
the compositional power of a similar tree-structured gregdhmodel, our score function
measures shape holisticalnd not as the sum of local similarities as (Felzenszwalb &
Huttenlocher, 2005; Ramanan, 2007). Many approaches @tati, 2004b; Cour & Shi,
2007; Mori, 2005; Lee & Cohen, 2004; Zhaeg al., 2006; Ronfarcet al., 2002) are
based on part detection and search. Due to the fact that @i@ttdrs are prone to error,
some authors have used additional cues like skin color,iwimevever limits the general-
ity of the approach. Search approaches need to use heststieal efficiently with the
combinatorial nature of the problem. In our method, we areb@ased on local decision
to guide the search. Instead, the model is compared as a afaiest the image at each
step, and this is done efficiently using an LP formulatiorrini8asan & Shi, 2007) uses
hand written compositional rules for augmenting partialypmasks which are compared
against exemplars at each stage and correspondencesarpuged. Although the body
is measured as a whole, the method suffers from the explosiire number of hypothe-
ses as in usual search-based parsing approaches, due tusémsea of a good heuristic
function. (Renet al., 2005a) used bottom-up detection of parallel lines in thagenas
part hypotheses, and then combined these hypotheses udtdbadly configuration via an
integer quadratic program.

Many of the above approaches ignore the representation g@peén parts in the
model and bottom-up extraction results, and treat the re$a bottom-up process, like

segmentation or parallel line detector, as exactly comedmg to body parts. This is far
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Figure 5.2: Holistic shape matching. Our search has twdlphpaocess, each encoded
by a selection variable. On the image side (left), contolect®n variables turn image
contours ON and OFF assigning them to foreground or backgreespectively. This
results in all feasible shapes on the image side. On the nsdiel selection variables
assign configurations to each model part in the tree streiciiire two shapes, one derived
from the image and one from the model, are compared to eaeh using a holistic shape
feature. When the two match, recognition and pose estimatie achieved. Therefore
the recognition task amounts to finding the optimal selectio both the image and the
model side.

from being true in many cases. For example, in a straightdegcannot expect to obtain
the upper and lower part of the leg separately. Our holisga\of shape surpasses this

difficulty,

5.3 Holistic Shape Matching

In this section, we first present the pose estimation fortrarian terms of image contours
and model parts. Then we introduce our articulated modeésgmtation, with an active
shape description built in. The design of the active modapshdescriptor is the key to

holistic shape matching.

5.3.1 Formulation of Pose Estimation Problem

Starting with contours as our basic units in the image, weldgvthe following formula-

tion.
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Pose Estimation Problem.Given imageZ represented by a set of contours and model

represented by a set of parts:
e Image:Z = {C{,C3,...Cl,}, Cl is thek™ contour;

e Model: M = {PP, PP, ... P}, } whereP? is thek™ part of the model an@ is a

family of global parameters controlling model deformation

We would like to select the best subggt! C 7 and® such that the shapes composed
by Z*¢ and model partd’>? are most similar as scored by global shape descriptors (see
Fig. 5.2). Note that this is anotheet-to-setnatching since there might not exist a one-
to-one mapping between selected image contours and cerabunodel configurations,
even though they have similar overall shapes. For examjdagated contours might
span multiple parts. We introduce the contour selectiorcatdr 25! € {0, 1}//1** over

all contours in theentiretest image defined as

l 1 Contour Cf is selected
(IMAGE CONTOUR SELECTION) ;% = (5.1)

0 otherwise

Accordingly we introduce a set of configuration selectiodi¢atorsy”™* = {y&} over all

partsP? in the model as

1 Part Py selects config. o € ©
(MODEL CONFIGURATION SELECTION) ¢* =

0 otherwise

(5.2)

Notice that since there is an infinite number of poses defiyed,wesulting in an infinite
number of choices for our selection variables. We will shatel that the selectiogf on
model articulation can be decomposed and simplified to éidh@hoices by borrowing the
compositional power of a tree structure model. This probé¢atement is similar to the
one in Section 3.2. Parts with different configuratiop&”) replace contoursy() as

tokens in model representation to handle articulation. Siteges generated from the two
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(@) The articulated model (b) Sample points of joints (c)ePsleetch

Figure 5.3: Object model and articulation. The model defdiom © is controlled by
joint positions. Once positions of two adjacent jointandb are determined, shown in
andj in (b), the part can deform accordingly. This type of defdioracan be encoded
by the selection variabl;@?f on the model side. Continuous relaxation using LP produces
sketch-like rough pose estimations of parts, marked bywdfit colors in (c). Note that
for most parts, the values @ff’ are very small. (b) also shows the sumygﬁ‘ at all the
sample locations for one joint, with red for large values bha for small values. These
values give the confidence of the joint locations. In thise¢c#@scorrectly locates the knee.

independent selection processes are then compared uslrag ghape descriptors (see the

middle part of Fig. 5.2).

Unknown segmentation/grouping presents a great challengeyfixedimage shape
descriptorsé€.g.shape context). Fixed shape descriptors cannot adapt tothieinatorial
possibilities of grouping, each generating a differenttegth Without the correct group-
ing, background clutter and contours from other objectseeasily corrupt the useful shape

information and prevent global shape reasoning.

5.3.2 Generation of Model Active Descriptors

We first construct a model representation to handle the pnoloif object articulations.

Model representation. We introduce a tree structured part based model anchored by
a collection of joint points. For the articulated human botie set of joint positions
J controls the articulation of the model while the rectanigte-parts remain rigid. An

example of this model is shown in Fig. 5.3.
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Each model part includes two joint poinisb and a set of contours whose relative
positions to these joints are fixed. Therefore each mode¢lgpgrears to be a rigid shape
template, described b, = {C*(a,b)} whereC*(a,b)’s are contours as a function of
a,b. The image positions(a), j(b) of the two joint points uniquely determine a rigid
transformation (translation, rotation, and scaling) & thodel part. In practice, we found
it sufficient to describe object deformation, though moietjpoints could be added in
general.

The collection of joint points, b, ¢, ... of all model parts uniquely defines a legal pose
if the resulting template isonnectedat joint points. For example, the lower joint point
of a thigh has to be hooked with the upper joint point of a ldgi{a knee). The model
participates in the matching process as a set of contoursahgose the parts, which are
a function of the compatible configuration of the joint pasi@is shown in Fig. 5.3. We
need to clarify that it is not important in which way the camt® are fragmented on the
model side, as long as all together it composes a legal caafign of joint points. Hence
the shape is measured as a whole and all the contours on thed sidel participate in the
matching process.

With the exact model representation, we refine our part cordtgon selection variable

y* in eq. (5.2) to encode the selection of a model part configamats follows:

b 1 Jointa is mapped to image sample poirdandb mapped tg (5.3)
Yij = .

0 otherwise
The model can also be defined as a set of part configuratigns {P,,(i,7) : a,b €
J, i,j € S} with J and.S being the set of joint points and the set of sample points. The
sample points are the possible placement of the model joimtg The setS could be
as simple as rectangular grid locations. We would like teceh set of legal one-to-
one correspondences betweémnd S, such that the shape of the model resulting from
these configurations is as close as possible to the shapeosenhpy the selected image
contours.

Now we are ready to express the holistic shapes by these madetonfigurations.
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Shape Contexts (SC) centered at sample points are chosen laasic shape descriptors,
which is ideal for capturing the bending and rotation of bpdyts such as limbs. A model
contribution matrixV* at sample point is defined similar to the image contribution

matrix V' in eq. (3.4):
VM (k1) = # of points in bink from partP, (5.4)
Recall that the image SC is written as follows in eq. (3.5):

sci (k) = (Vi 2%, (5.5)

)

It is straightforward to see that SC on mode}’ can be generated similar to eq. (3.5),

depending on exponentially many combinations of model @amfigurations:

sei (k) = (VM- g7 (5.6)

7

We treaty”*"* as a selection vector by concatenating all the joint poiletcsi®n indicators

yineq. (5.3).

5.4 Computational Solution for Matching Holistic Fea-

tures

Our goal is to findz*¢ and y*"* such that they produce similar global shape context
features at the view points considered. For the model waé structure defined above,
we present an efficient computational solution. The halistatching of selected image
contours and model deformation amounts to minimize thesudifice betweenc! and

scM. This can be summarized by putting eg. (3.5) and eq. (5.@&they:

(CONTOUR PACKING LP WITH MODEL SELECTION)

min Dy(scl, s ZHVI 5 P (5.7)

rsel ypa'rt

s.t. Zz Z 2y, Vj € J (Connectivity between parts) (5.8)

Z zfjb =1, Va,b (Uniqueness of part assignment) (5.9)

ij
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The first constraint ensures the connectivity between tighbering parts of the model.
The second constraint ensures that each model part is pr&g¢ean relax this constraint
to account for possibly occluding or missing parts, esaéinintroducing selection on the

model side. We omit this extension for simplicity.

Direct optimization of the integer programming eq. (5.9 lsard combinatorial search
problem. Basically at each step of the search we need to @ pdatshape descriptors ac-
cording to the current image contour selection and modard&idtion and compare them
using eg. (5.7). To deal with the combinatorial nature ofgheblem we relax and solve
it using linear programming (LP). Essentially we exploridar form of shape context
descriptors to formulate the holistic matching with comtand part selection. This tech-
nique enables us to generate the space of all the combialdaiures via precomputing

contribution matriced’ ! andV M.

Discretization via Dynamic Programming (DP).Holistic search using the above com-
putational solution produces sketch-style rough estwonadif the poses and locations of
joints (see Fig. 5.3). Rounding the linear programming tsofuof y**"* directly does not
guarantee the selected model parts to be connected. Trere®search for assignments
of joints to image locations with the largest sum of conrmti,”*"* while maintaining the
model structure. We optimizE(%b)eJ y%b whereygjb is the linear programming solution.

Since the model has a tree structure, the optimum can be fopadimple DP.

Our treatment is different from performing pictorial sttue directly in two aspects.
First, searching for the optimaP®* has taken into account the global context beyond
pairwise part connections. In contrast, the pairwise costains much less information
and hence has limited discriminative power. Second we deetahutilize salient image
structures such as long contours and large regions debpisemantic gap between them
and the model parts. Hence we do not need to design part detduich itself could be a

much harder problem than recognizing the whole shape.

Bottom-up driven sampling of joint points. The holistic search of pose should not

start purely in a top-down sense, and bottom-up groupingldhze exploited as much as
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possible. Contours and regions are grouped into symmeéthoms. Therefore, we detect
termination points on medial axis of these ribbons as catdglof the protrusion points
(e.g. foot). We start sampling all possible locations ofeofjoint points w.r.t these points
under part rotation and stretching (see Fig. 5.3). Thesethgses suggest possible model

part deformations and they are further verified by the holsgtarch.

5.5 Experiments

Our approach is tested on a challenging dataset of basdagdrgmages collected from
the web as well as the one used in (Metial., 2004b). The dataset contains a wide
range of pose variations and severe background clutteiHge®&.1 for an example). The

combination of these two factors makes pose estimationareitenging.

We start with contour grouping described in Chapter 2. Idpies 100 contours for
each image on average. Since arms are often missing in tte@boip contour detection
due to occlusion and confusion with background, we use thaetrantaining only head,
torso, and lower body with 7 joint points. For this experimeme take rough bounding
boxes as inputs since our focus is pose estimation ratheryyaothesis generation. We
sample candidates of joints in head, torso and upper leg fdpoints in the image.
Additional sample joint points are extracted from termiopoint of medial axis. Each
joints have roughly 50 sample points, which will gener#iex 100 = 7.8'3 hypotheses if
brute force search was done. Our linear programming searefficient: typically 20-30

seconds per images by itself.

We run our method using global shape context without imageoco selection and
the results are much worse due to overwhelming backgrouwntecl We also test our
method using a smaller shape context window without s@ectirhe results are better
than the global one without selection but worse than largevath selection. This verifies
the importance of holistic matching. Active shape featwesntroduce are robust against
clutter and can accurately recover the correct poses. Quitseoutperform (Ramanan,

2007) which uses iterative PS, as shown in Fig. 5.4 (d), (e).
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5.6 Summary and Future Work

We have presented a holistic shape matching technique wddfamable template for
pose estimation and segmentation of articulated objectsintkbduce the concept of ac-
tive context features and present an efficient computdtioaaework for their compar-
ison. We demonstrate results in the baseball dataset butppuoach is general enough
for any other category of articulated objects. Future wowd{udes the incorporation of
additional constraints on model deformation to furthetrresthe search space and the in-
troduction of part selection on the model side to deal withsimg parts due to occlusion.
Future work also includes the incorporation of further bottup cues like segments to

help guide the model deformation.
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Figure 5.4: Comparison on baseball dataset. Joints withaheges are displayed on
top of the image. Subplots from left to right are: (a) Oridimaage; (b) Results of our
approach using large shape context window but without strgelection; (c) Results
of our approach using a small window again without contel¢ct®n; (d) Results in

(Ramanan, 2007); (e) Results of our approach. Our apprsadiie to discover the correct
rough poses in spite of large pose variations.
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Figure 5.5: More results on baseball dataset. Joints wittiahexes are displayed on
top of the image. Subplots from left to right are: (a) Oridimaage; (b) Results of our
approach using large shape context window but without corgelection; (c) Results
of our approach using a small window again without contel@ct®mn; (d) Results in

(Ramanan, 2007); (e) Results of our approach. Our apprsatiie to discover the correct
rough poses in spite of large pose variations.
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Chapter 6

Region Packing

Salient objects tend to pop out as contigueegions— a group of pixels that delineate
themselves from the rest of the image. As a complement tcooosit regions play an
important role in object detection. First of all, regionsweey global shape information
which is not available from local image features. Boundaakregions often contain half
complete object silhouettes whose shapes are clearlymeaaige. Secondly, unlike con-
tours that could be open ended, regions are closed anddhesgiecify the figure/ground
labeling of the image. The figure/ground segmentation esstire right spatial support
of objects, and blocks irrelevant features from clutterirdllg, segmenting the image into
regions helps to arouse visual attention to certain ohjé&othaustive search such as scan-

ning the entire image could be avoided by reasoning sakgmns and their surroundings.

In this chapter, we develop a packing framework that dethotsstic shapes from
bottom-up regions, extending contour packing in the prneviohapters. Starting from
region segments with bags of shape features, we try to paagemand model features
into histograms. A subset of regions are matched to the mbthedy can pack the same
set of features as the model. Due to the different topologgegfons, the underlying
combinatorial problem is relaxed to Semi-Definite Progrg88P) instead of LPs. This
formulation not only tackles the problem of region fragnaiuins, but is also able to

incorporate bottom-up grouping saliency into a unified fearark.
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6.1 Overview

The importance of regions to object recognition has longlveiced by many researchers
(Basri & Jacobs, 1997). Regions along with their boundaresused extensively to build
shape descriptions in medial axis (Blum, 1967), and itsesssurs such as shock graphs
(Siddigiet al., 1999), conformal mapping (Sharon & Mumford, 2006), ancsBon equa-
tion based descriptors (Goreligl al., 2006). Regions provide a global account for ob-
ject shapes since they are large enough to capture the émygigeometric dependency.
They are also shown to be useful for searching and parsingra&al parts (Srinivasan &
Shi, 2007), as well as handling object deformation (Ling &alas, 2005). However, all
these methods assume that the segmentation of the entaet cbjn be obtainea priori,
which is rarely the case in detection. The global regioredagescriptors change drasti-
cally when fragmentations and leakages occur in real imatjesnot clear how a shape
descriptor can guide the search over exponentially marigrdiit segmentations for the

desired shape.

Many works based on Bag-of-Features (BoF) exploit regiosomfbottom-up seg-
mentation as the spatial support of local featureseflal., 2009; Gupta & Davis, 2008;
Galleguilloset al., 2008; Malisiewicz & Efros, 2008). However, geometry as lvasl
object part information is completely missing in BoF. Sphtiistogram on local features,
e.g.HOG (Dalal & Triggs, 2005) has put geometry back to the regmetion. However,
the extraction of these local features is independent of threlerlying spatial support.
Selecting the right features associated with the foregtaahes on discriminative classi-
fiers, which usually requires a large number of training eplesy The fixed, rectangular
spatial histogram also poses the problem of object alignni®egions have been used in
verifying hypotheses from top-down classifiers in (Waat@l., 2007; Ramanan, 2007),

showing the potential of reasoning the spatial support téaton.

Inspired by all the previous approaches, we propeg®n packinga shape matching

method that reasons the holistic shape composed by a sgiaf i'egments, and provides
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an efficient search over their combinations. Region packeays the same spirit as ear-
lier works that the overall rather than the individual shapeegion boundaries should be
measured. It incorporates a different shape descriptiam thedial axisetc using spatial
histograms with a large spatial extent developed in Ch&pt&his representation enables
exploiting the composition and closure of regions, such tdoanbinatorially many seg-
mentations can be encoded compactly, and an efficient searche performed without

enumerating all the hypotheses.

The main technical challenge is the unpredictable fragatmts of region segments.
Boundaries between two segments can be either real or fglendiang on which segment
is foreground. Removing these fake boundaries (and hencgimgehe regions) is com-
plicated by different fragmentations of images. To overedhis challenge, two recent
works (Guet al., 2009) and (Todorovic & Ahuja, 2008) are most related to quoraach.

In (Guetal., 2009), discriminative shape features are learned fromestypical” object
segments, and combined in a BoF way. In (Todorovic & Ahuj@80subgraphs in the
segmentation hierarchy are explicitly compared duringpstmaatching, which amounts to
memorizing all possible different fragmentations. Howesguctures of these subgraphs
might not be repeatable with limited training images. Ragiacking adjusts shape fea-
tures according to the set of regions that are merged to foenforeground, and therefore
unaffected by fragmentations. Unlike (@ual., 2009), we do not assume that individ-
ual region segments are simultaneously distinctive andatable. We also noticed that
regions are not fragmented randomly, hence they shouldenotdyged blindly. The pref-

erences from various bottom-up grouping cues can naturaiihto the framework.

The rest of this chapter is organized as follows. We staith Wit basic holistic re-
gion matching in Section 6.2. This problem is formulated dspartite graph packing
due to the topology of region. Then we develop an SDP-basggimation which can
compactly express bipartite graph packing. In Sectionv@e3show that various grouping
cues such as figure/ground, boundary saliency and junctiofigurations can be read-

ily incorporated into the framework. The proposed appraadhsted on the challenging
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ETHZ Shape Classes in Section 6.4, producing comparahlisds the state-of-the-art

region-based methods.

6.2 Holistic Region Matching

The main problem to solve is to match object shapes compogeegions in a holistic
way, without knowing which regions belong to foreground. ¥tart by formalizing this

problem as follows.

Definition of holistic region matching. Given an imag& and a mode/M decomposed

into two sets of disjoint regions:

e Image:Z = R{ U R, U... U R, with R} being thek"" region andR] N R} = 0

for any two regiong # j;

e Model: M = RYUR}'U.. .UR/Y,, with R} being thd" region and?' N R} = 0

for any two regionsg # j,

we would like to find region subse® C {R!} and M* C {RM}, such that their
boundary shapeB(Z*°') and B(M?*¢) match. Each regiom®! and R} contains a con-
nected set of pixels. The operat(-) is defined as the boundary generated by the mask
of a region set. This can be written formally as:
B(R)={z: N@x)n | J Ri#0, Nz)nZ\ (] R)# 0} (6.1)
R;eR R;eR

Herex is a pixel andV (=) represents the set of its neighboring pix8ls § neighborhood).
Since bottom-up region segmentation could also have uigadde fragmentations that
are different from the model (see Fig. 6.1), we adapt thacseet matching paradigm
developed in Chapter 3 to overcome this representatiorigoroim the following sections.

Before diving into the solutions to the problem, we woulcklito highlight two key
conceptual differences between region packing and compi@acking. First, using regions
as the basic units in packing explo@®sure a stronger constraint than its contour peer:

the object boundaries have to be closed. In contrast, a seperf contours could be
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Figure 6.1: Overview of region packing. The first row shows thput image and
model with different boundary fragmentations. In the secoow, we construct bipar-
tite subgraphs whose nodes are foreground and backgrogiushsaespectively. The fig-
ure/ground partitioning generates bipartite subgraphese edges correspond to bound-
ary fragments (marked with color in the graph). Our goal ipdok these bipartite edges
such that the overall shapes from image and model are a gowmthma

disconnected due to gaps, and susceptible to accidergahatint. Regions rule out this
possibility by completing contours into a closed object taary. Second, regions bind
far-away contours that are not linked by bottom-up contaouging. For example, the
contours on the left and the right side of the mug handle cacobeected by a region
in Fig. 6.1. With these combined contours, ribbon-like ss®pecome much easier to

recognize.

6.2.1 Bipartite Graph Packing

Our goal is to detect a set of object regions whose boundmiesa shape similar to the
model. Fundamentally the overall shape of the region segétisrchined by both of the
foreground and background regions. A boundary fragmerggmts in the shape if and
only if exactly one of its two adjacent regions belongs toftireground. It is this unique
topology that brings us to the bipartite graph packing repnéation.

We consider the following combinatorial problem for hatisiegion matching:
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Definition. Given a graplG = (V, E)) where
e Graph node¥” = {R;, R,, ..., R, } represent image regions.

e Graphedge® = {B;; : B;; = B(R;)NB(R,)} correspond to boundary fragments

shared by adjacent regions.

Given any partition of region¥ = ' U I’ with F as foreground and’ as background,
we evaluate a shape cost functiop( F, F') to measure the shape similarity of boundaries
formed byF and F compared to the object model. For holistic shape matchiegese
the question: can we find an optimal bipartite subgr@ph (F, F') minimizing shape cost
C,(F, F)? We refer to this general problem bipartite graph packingsince the cost
C,(F, F) is determined over a biparitite subgraph.

An appropriate shape cost functioh(F, F) plays an important role conceptually and
computationally. If there exists one-to-one correspoodsrbetween image and model
boundaries, one can defifg F, F) as a linear combination of cosig;; on the edge%’;;.
Minimizing a linear cost results in standard graph-cut pFots (MinCut or MaxCut).
Because of the unpredictable fragmentations of image melgoaindaries (see Fig. 6.1),
set-to-set matching on region boundaries arises. A simal cost on bipartite graph is
insufficient to match the holistic shapes of two set of bouleda We adopt the Context

Selective Shape Features in Chapter 3 as:
C,(F,F) = ||V -z —scM|,, € {0,1}F (6.2)

with z;, = 1 if and only if edgeFE}, is a bipartite edgd,e. E;, € E(F, F).
The bipartite graph packing with cost eq. (6.2) can be redluoecardinality con-
strained and multicriteria cut problems (Bruglieti al., 2004; Bentzet al., 2009), as

stated by the following theorem:

Theorem 6.1. The bipartite region graph packing problem consists in figdan optimal
bipartite subgraphG,,,(F, F) of the region graplG, which minimizes cost,(F, F') de-
finedin eq. (6.2). It can be reduced to a cardinality constesi and multicriteria cut prob-

lem on a graplG’ associated witlRk positive edge weight functions®,... ") according
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to R criteria. The cardinality constrained and multicriteriatproblem seeks a cat with
. . . . . . g . (k)
cardinality at leastl: }_,, .- 1 > d, and all R criteria are satisfied . . w;;" < p(k)

fork=1,2,...,R.
Proof. Please see Appendix for details of the reduction. O

The cardinality constrained and multicriteria multicubplems are in general NP-
hard, as shown in (Bentet al., 2009). Therefore, finding a computationally feasible

approximation is the key to solve the original problem.

6.2.2 Approximation via Semidefinite Program (SDP)

We seek a relaxation to the above bipartite graph packingdtation via Semidefinite
Program (SDP), which has provided polynomial time apprations to many NP-hard
problems such as MaxCut (Goemans & Williamson, 1995). IfdHewing sections, we
will also demonstrate various constraints such as junatmfigurations can be conve-
niently encoded in the SDP formulation.

First we define the region selection indicator R™ as:

+1, ifregion R; € foreground
(REGION SELECTION INDICATOR) 1; = (6.3)

—1, otherwise.

Note that the definition of is different from thed/1 contour selection indicator in Chap-
ter 3 for simplicity in the subsequent formulation.
Next we introduce a graph indicator mattdxc R"*" to be the Gram matrix of the

region selection indicator.
(GRAPH INDICATOR) Z =rrt (6.4)

Each entryZ;; is also a+1/ —1 indicator, with the diagonal to be one&;;, = 1. The
graph indicatotZ fully characterizes a bipartite subgraph with nodés- {i : r; = 1},

F = {i: r; = —1}, and bipartite edgeB (F, F') = {(i,j) : Z; = —1}. Moreover,Z is a

However, MinCut which represents a single criteriawithoutany cardinality contraints, can be solved
in polynomial time.
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positive semidefinite matriX = 0 because for any vectar, we haveu™ Zu = vTrrtu =
(rTu)? > 0. a counterpart of the contour selector, we usg hselection indicaton*

to specify figure/ground labels on boundary fragments thatshared by two adjacent
regions. These boundary fragments serve as the basicrigbtbcks of the object shapes
just as contours in Chapter 3. Boundary fragments behafexetiftly than contours in that
they can only be packed if exactly one of its two adjacentaiegiappears as foreground,

ie.
I'Zel:].@(ri:1Arj:_1)v(ri:_1/\rj:1) (65)

This constraint can be rephrased in term&pof1 — Z;;)/2 = z;¢ sinceZ;; = r;r;.

The overall shape composed by selected regions needs tdibchtly matched to
the model shape. We adopt the contour packing cost eq. (8.feapacking function
C,(F, F) on bipartite edges, measuring the shape dissimilarity et afsboundary frag-
ments generated by the selected regidns For each control point correspondence, the
shape dissimilarity V! - z°¢ — scM ||, depends on which boundary fragments are selected
by z*¢, with the contribution matrix of boundary fragmenité precomputed. We sum-

marize all the above components into the following SDP:

(REGION SELECTION SDP)

max (VT ast — scM ||, (6.6)
s.t. % =23, VR;, R; separated by fragmeht (6.7)
diag(Z) = 1 (6.8)

Z =0 (6.9)

If the rank of matrixZ is 1, the optimal SDP solution is exactly the optimum of bipartit
graph packing. The non-convex constraiatk(Z) = 1 is dropped to obtain an SDP
problem, which is solvable by off-the-shelf SDP packagedterAsolving the optimal
graph matrixZ*, we recover by computing its largest eigenvector. A binary selection on

regions can be obtained by thresholding the continuouseagpeor.
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(a) Object boundary (b) True boundary 1 (c) True boundary PFéise boundary

Figure 6.2: Figure/ground labeling on boundaries. The bdamnhof a swan along with
its foreground region is shown in (a). In the circled areffiedent figure/ground configu-
rations exist and need to be distinguished. Two true boueslarth opposite directions
in (b) and (c) appear due to the parallelism. (d) shows a fatsendary with incorrect
figure/ground labeling.

For the convenience of further discussion, we introducecéovization operatosvec :

S" — R™"+1/2 on the symmetric matrix € S™ as:
SVGC(Z) = [Zn’ \/5212, 22, s \/§Z(n71)n7 Znn]T (6.10)

An important property of the operatevec is that it translates matrix inner product into

vector inner producttr(Y Z) = svec(Y)Tsvec(Z). This allows us to define a transfor-

mation matrix?” € R™**5™ to represent all the linear constraints in eq. (6.7) such tha

T - svec(Z) = x*?'. Note that sinceZ;; = 1, every entryr;” = =74 in eq. (6.7) can be
written as a linear form igvec(Z). With the above notations, region selection eq. (6.6)

can be expressed more compactly as:

max VT -svec(Z) — scM||y (6.11)

st. diag(Z) =1, Z*=0

6.3 Representing Grouping Constraints

Expressing bipartite graph packing in a SDP form enablesrakimportant extensions to

bottom-up grouping constraints.
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6.3.1 Figure/Ground

Up to this point we have not taken into account the figure/gdolabeling of boundary
fragments. Selection of a boundary fragment does not gpetiich side of the fragment
belongs to the foreground object. In eq. (6.6), flipping thgion indicator from- to —r
produces the san&, and hence does not change the packing cost. This meansdonelg
and background are exchangeable for region packing. Todgthés problem, we add a
fictitious noder, = 1 to represent the foreground. Any regions partitioned tosthme
side as the fictitious node will be labeled as foreground.s Bmendment adds one row
and one column t& with Z;, = r;. Accordingly, boundary fragments become directional:
the foreground region is always located on the right siddefltoundary. The boundary

selection indicators are split into two copies’ = =} + z;* defined as follows:

T’i+1.1—7ﬂj ZiO_ZjO_Zij+1

SUZi:<TZ:1)/\<Tj:_1): 5 9 = A (612)
B 1—r, ri4+1  —Zp+Zjo—Zii+1
Bl = (=) Al =1)=—— Fo— == (6.13)

Indicesi, j, k+, k— are organized in the following way. When traveling along tie
rection ofk-+, the positive one of;, r; (foreground region) lies on the right side of the
boundary; it lies on the left side when traveling aldng (see Fig. 6.3).

The shape features also need changes to be compatible filguhe/ground specifi-
cation. We split each edge orientation bin of shape conteattivo bins, encoding edges
pointing opposite directions. Now the contributionsigf andx; to the shape descrip-

tors are separated, and therefore a mismatch of figure/dneiinbe penalized.

6.3.2 Boundary Saliency

True objects not only match model well, but pop out from thekigaound. Saliency of
segmentation can reduce many false positives by penaliamdgomly packed segments,
and favoring segments that can be easily cut out of the baakgr(see Fig. 6.3.2). There-

fore, we introduce region grouping edg€s whose weights encode how well the regions
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(a) Original Image (b) Segmentation with 60 regions  (c) Biany saliency

Figure 6.3: Binary region boundaries alone are insufficiergop up object shapes. (a)
shows an image containing mugs and bowls clearly discerriibim background. Re-
stricted to binary region boundaries in (b), objects areaurded by fake boundaries in
the background (lower part of the image), and hence becassesldient. In (c), boundary
saliency helps to re-group over-fragmentations of objeSegmentation boundaries are
colored by strengths from low (blue) to high (red).

can be grouped together. We denote the bipartite edgeopstyidefined for packing as
E = E,. The two different types of edges, packing edggsand region grouping edges
E,, encode independent information: one for the global shapissity to the top-down

model, and one for the saliency from bottom-up grouping.

Our goal is to minimize the cost,(F, F) over the packing edges aig(F, F') over
the region grouping edges simultaneously, with both deforedhe bipartite subgraph
(F, F). The costC,(F, F) is represented as the cut betwdémnd F in the graph as in
the graph partitioning framework such as NCut (Shi & Malik0R). In terms of graph
indicator matrixZ, the cut costC,(F, F) can be written asr(W, - Z) whereW, is the
weight matrix of the region grouping edges. As well known magh partitioning, the
cut cost alone biases on “shorter” boundaries (Shi & MalQ@ and smaller regions.
We introduce a normalization factd,(F, F) = 1T - VI . T - svec(Z) analogous to the
degree in the graph partitioning setting. The normalizefid@tor measures the total length
of selected boundaries, and hence approadhi&éso foreground regions are selected.

In summary, we would like to optimize the following cost whicombines packing and
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grouping:

@%Eﬁ:%mgg%ff)

VT -svec(Z) — scM||y + B - svec(W,) Tsvec(Z)

= 6.15
1T-VI.T - svec(Z) ( )

(6.14)

In spite of the normalization, the optimization problem @15) can still be formu-
lated as SDP by introducing a normalized mafrix= Z/[1TVIT - svec(Z)]. Because
the normalization factot™ VT - svec(Z) > 0, the matrixY” is also positive semidefinite,

resulting in the following SDP:

max VT T - svee(Y) — sc™ - Yiy ||y + B+ svec(W,) Tsvee(Y) (6.16)
st. 1TVIT -svec(Y) =1 (6.17)
diag(Y) = Y11 (6.18)

Y =0 (6.19)

Since we construct the graphs on the region segments ratemhage pixels, group-
ing weightslV, directly include global grouping saliency. The weidh(7, j) between
region segment; andr; are computed by:

2

dz,
W,(i,j) = exp(—T‘JQﬂCut(n, ;)| (6.20)

where |Cut(r;, ;)| is defined as the boundary length between the two segments. Th
termd,; is the geodesic distance in the eigenvector embedding sfdd¢€uts between
cluster centers of;, andr;. The geodesic distance computes the shortest path distance
on weights defined as the point density in the embedding dpagced by eigenvectors.
This measures how well the two regions can be separated. W ike to pointed

out the advantage of definirif, on the output of segmentation rather than original edge
magnitude, which makes the overall cost insensitive to er@mtrast changes. Moreover,
because entries i/, are normalized by the corresponding boundary lengths,hieet

termsCp(F, F), Co(F, F), andDp(F, F) in eq. (6.14) are balanced.
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6.3.3 Junction Configurations

Over-segmentation of regions can cause many false pasitivéhe case of over-segmentation,
the selection on region boundary fragments has too mucddree- the selected bound-
aries can easily hallucinate a model shape by making anpitnans. Boundary saliency

cost avoids fake boundaries to some extent, but the adgémralty in eq. (6.20) loses its
power when the fake boundaries are short. Fig. 6.4(a) shoypsaal example. The short-

cut at the boundary fragment on the mug handle enables adatsetion. The selection

on the boundary fragment only pays a small penalty, yet hagréfisant effect on the

overall shape structure.

Junctions formed by several adjacent regions are goodgtadaspect. We have no-
ticed that the undesired shortcut usually occurs at junstiormed by two salient bound-
aries and one weak boundary (see Fig. 6.4(b)), This indidht the two regions sepa-
rated by the weak boundary tend to merge in the coarser légebmentation. Restricting

the region selection not to segment the two regions may eechany false positives. This

(a) Image | (b) Invalid junction (c) Image 1l (d) Valid junoin

Figure 6.4: lllustration of the junction configuration andaése positive. (a) shows an
accidental alignment of the swan, where the region bouedganake a wrong turn without
paying large penalties (marked in yellow rectangles). Towenolary strengths computed
by eq. (6.20) are also displayed on the figure, increasing totue to red. A schematic
diagram of regions is shown in (b). Region packing only clesasgionr; (+1/ — 1
means foreground/background). This creates an incormotdary fragment and makes
the strong boundary leak to the background. Note that agtonndary leaking to the
foreground is very likely due to a salient object part (topt pathe mug in (c), (d)), and a
weak object boundary.
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grouping cue is asymmetric for figure and ground. The stranmbaries are more likely
to extend to the foreground when it surrounds a salient olpjat (see Fig. 6.4(c)), than
leak to the background. Leakage to the background couldratcawsalient object in the
background is occluded by another object with a weak boyndBut in practice this
scenario is very rare.

This figure/ground constraint can be written as a logic statg on the neighboring
regions. Letr;,r;,r, € {£1} be the selection indicators on the incident regions at the
junction, with regionsR;, R; separated by a weak boundary fragment. Then a valid

configuration satisfies:

(ri=—-1)=(r; =ry) (6.21)

The above logic statement rules out cases whgre 1 and exactly one of; andr;, be-
longs to the backgrouna (# r.), implying the strong boundary leaks to the background.

Expressed by the graph indicatgy this becomes a simple linear constraint:
Zoi + Zj, > 0 (6.22)

An alternative to the above constraint is to utilize the quéhie cost function. This can
be done by adding slack variables to eq. (6.22) and minimittie sum of these slacks in
addition to the original cost.

Generally, other types checking on junction configuratemegpossible. Any cost func-
tion involving a 2-CNF (conjunctive normal form) logic statent over the regions can be
tightly encoded in SDP (Goemans & Williamson, 1995), sidgeand1 — Z;, represent
XOR and NOT logic respectively. Higher order CNFs can alwdgsomposed into 2-CNF

via auxiliary variables, but with weaker relaxations andenexpensive computations.

6.4 Experiments

Region packing is demonstrated by detection using onlyesifiegtures on ETHZ Shape
Classes (Ferraet al., 2007a). A similar experimental setup as Chapter 3 is addpte

this task.
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6.4.1 Implementation

We start with region segmentation from multi-scale Normedi Cuts (Couet al., 2005).
Boundary saliency of regions defined in Section 6.3 is useatdition to binary region
boundaries. For the finest scale of detection, 60 segmeaissad for region packing to
capture small objects. The number of segments are invepseportional to the detec-
tion scale, down to 30 segments for the coarsest scale. Tie Window shape context
descriptor consists of 12 polar angles, 5 radial bins andgg extientations. Note that
edge orientations different by encode the same boundary fragments with opposite fig-
ure/ground labels. Hence the number of edge orientatiashsubled compared to the one
in contour packing.

We generate object hypotheses by a voting process. Cowirds@are uniformly sam-
pled on image region boundaries as well as the model shapedhou The correspon-
dences of these control points give alignment of the modgbsio the image. The spatial
extent of regions gives great advantages on the searchtmveotrespondences. Regions
which have a signification portion of boundary outside thgeabbounding box can be
pruned. Selection on the leftover segments can be evaleatexuistively if their number
is small € 12). This enables reduction of correspondence hypothesigai@n from
around 4000 down to under 500 on average per scale. For eadiniag correspon-
dence, we use the publicly available solver SeDuMi (Sturé99) to compute the SDP
solution in eq. (6.6). To adapt to scale variance, votinglgéct centers is performed in 5
to 7 scales for each category. After identifying object eetypotheses from the voting
map, regions are selected jointly across all corresporedathat agree on the object center,
similar to eq. (3.12). The final region packing cost is coregutising these consistently
selected foreground regions.

Region boundaries do not contribute equally to the holsiect shape — some parts
are more salient than the others. For example, the handheahtig is critical for recog-
nizing its shape. The region packing cost from differenttoarpoints and shape context

bins should reflect this distinction. We borrow the idea friatent SVM (Felzenszwalb
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et al., 2008) to learn shape feature weights that are most distame for classifying
positives and negatives. The feature weights are definedderypacked and over-packed
valuesb™, b~ at each bin. Note thdt", b~ depend on the region selection. We learn the
weights in a coordinate descent way which optimizes featights and region selections
alternatively. The feature weights are optimized by:

) 1
min §Hw|]2 +CY ¢ (6.23)
J

w=(wt;w™)
sty (@) + (W) = 1=

wh, wm >0

The iterations converge in 3 to 5 steps. We split the datagetiaining and test set in the
following way. For each category, half of the positive imagee used for training, with
the other half for testing. The same number of negative image added to the training

set, sampled uniformly from the other 4 negative categories

6.4.2 Quantitative Comparison

We quantitatively evaluate the performance of region pagkind compare with state-of-
the-art via Precision vs. Recall (P/R) curie Region packing achieves overall results
superior or on par with the previous state-of-the-art w@Maji & Malik, 2009; Guet al.

, 2009; Felzenszwalbt al., 2008; Luet al., 2009). Table 6.1 summarizes the Average
Precision (AP) on each category and the whole dataset. Artwsg works, (Get al.

, 2009) is most related to our approach since it is also regased. Unlike (Guet al. ,
2009) which has texture and color features in addition tpeheegion packing only uses
shape feature. This shows that our framework does captergltibal shape of region
segments despite different fragmentations, because sthape on individual segments is
not distinctive. If necessary, other features such as texnd color can be incorporated

to region packing in the same way. Also we would like to padimiit that our training set

2We choose Precision vs. Recall (P/R) instead of Detectida ®Ra False Positive Per Image (DR/FPPI)
because DR/FPPI depends on the ratio of the number of positid negative test images and hence could
introduce bias to the measure.
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Applelogos| Bottles | Giraffes | Mugs | Swans|| Average

Region Packing 0.866 0.902 | 0.715 | 0.786| 0.730 0.800

Region Packing (50% split) 0.878 0.908 | 0.772 | 0.829| 0.890 0.855

(Srinivasaret al., 2010) 0.845 0.916 | 0.787 | 0.888| 0.922 | 0.872
(Toshevet al., 2010) 0.983 0.936 | 0.713 | 0.718| 0.973 | 0.865
(Maji & Malik, 2009) 0.869 0.724 | 0.742 | 0.806| 0.716 | 0.771

(Guetal., 2009) 0.772 0.906 | 0.742 | 0.760| 0.606 | 0.757
(Lu et al., 2009) 0.844 0.641 | 0.617 | 0.643| 0.798 | 0.709

(Felzenszwalket al., 2008) 0.891 0.950 | 0.608 | 0.721| 0.391 | 0.712

Table 6.1: Comparison of region packing and the latest stlafgetion works on average
precision (AP);: Same train/test split as (Srinivasatral. 2010),i.e. taking 50% positives
as training examples, with the same number of negativesoralydsampled from other
categories.§: Same region packing algorithm @sbut split train/test as (Toshest al.
2010), which includes 50% images as training set (largar (Bainivasaret al. 2010)).

is smaller than (Get al., 2009) (but the same as (Maji & Malik, 2009)), containing é&w
negative and the same number of positives. This means tfiatreacking will have better
P/R if the train/test split follows (Get al., 2009). The recent work of (Srinivasanal.,
2010) uses contour packing presented in Chapter 3, but wgthichinative SVM training.
Contours give a strong boost to objects with elongated &tres such as Swans and hence
outperform its region counterpart (see Table 6.1). Alsmdudes an extra refinement
stage on control point correspondences to better handje tdject deformations, such as

aspect changes (Mugs) and articulations (Swans and Giyaffe

Region packing presented in this chapter is conceptuatiyiai to boundary structure
segmentation in (Toshest al., 2010), but developed independently. Both approaches
leverage regions as integral tokens for object shape rémgand match region bound-
aries using holistic shape features. Computationally 8efimite Programs (SDP) provide
an approximated solution to the combinatorial matchindpfenm. Also both uses SVM on

top of holistic shape matching to boost the discriminatige/@r of the shape descriptor.
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The major differences between the two methods are: 1) thedasy feature in (Toshev
et al., 2010) is a correspondence-less spatial histogram, whépescontexts in region
packing depend on the correspondence of the center poimp&®d to shape contexts,
the boundary feature in (Toshetal., 2010) imposes a coarser binning to the spatial re-
lationship of contour points. Hence it has the advantagdficfent detection without the
burden of an explicit correspondence search. On the otht, lits discriminative power
on shape can be limited because unrelated pairwise spaettibns can fall into the same
bin. 2) our region packing feature does not include locakettintrast as in (Tosheat al.

, 2010), which is sensitive to specific datasets. Note thaethbedding distance in Sec-
tion 6.3.2 is a global boundary measure rather than a loaal and immune to image
contrast change. Due to the common philosophy and algouisign, the two methods
achieve comparable results on ETHZ dataset with the sanmétéist split, as shown in

Table 6.1.

Region packing successfully identifies the correct figumigd selection in most im-
ages (see Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9, Fig. 6.1Qdprdetections). The selected
foreground regions generate a boundary shape that is isualilar to the target shape,
and follows the grouping preference as well. In severalxaseh as bottles and mugs,
regions break into many segments with complicated shapegalinterior marking of
the objects. Local shapes are insufficient to choose thé fagbground, and reasoning
boundary continuity is easily confused by numerous jumstio Typical false positives
have similar global shape to the model, but lacking the rigtailed shapes, or violating
region connectivity. We expect a significant improvememnéfinement on the correspon-
dence search and detailed shape matching is employed. Mestsroccur due to large

shape deformations as shown in Fig. 6.11.

We also tested influences of different components in regamkipg in Table 6.2 and
Fig. 6.5. Latent SVM learning significantly improves the i@age AP from 0.665 (voting
only) and 0.659 (with grouping cue) to 0.800 (with both). &l¢hat the figure/ground

group cue could hurt the precision for deformable objecthsas Giraffes. However,
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(a) Applelogos (b) Bottles (c) Giraffes (d) Mugs (e) Swans

Figure 6.5: Precision vs. Recall curves (PR).

w/o SVM | w/o grouping| Full system

Overall AP 0.665 0.659 0.800

Table 6.2: The effect of different factors in region packing

since the constraint regularizes the region selection,alkes learning feature weights

easier and hence gain significant boost after training.

6.5 Summary

In this chapter, we have proposed a novel feature packingeingork using bottom-up
regions to recognize shapes. Starting from fragmentedmsgwe try to assemble a subset
of them into the model shape such that their overall bounslaapes are similar. A subset
of regions are holistically matched to the model if they cackpthe same set of shape
boundary features as the model. Due to the topologicaloelstip between regions and
their boundaries, the holistic shape matching is formdla® a bipartite graph packing
problem. The combinatorial search of bipartite graph pagkian be approximated and
solved efficiently via SDP. We extend the formulation to inmate various grouping
cues, and unify all these components in the graph partitgpsetting. The framework
has shown results on ETHZ Shape Classes comparable withatteeas-the-art region-
based methods, with less reliance on features other thgreshBhe promising results
are largely attributed to the ability to overcome arbitreggion fragmentation and utilize

region-based grouping cues.
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Think different.

Figure 6.6: Top 20 detections on Applelogos. Detectionsareed by scores from high to
low. The continuous values of region selection indicater@iored on the corresponding
regions from white{1) to red (1).
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Figure 6.7: Top 20 detections for Bottles. Detections argesidby scores from high to
low. The continuous values of region selection indicateralored on the corresponding

regions from white {1) to red ().
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Figure 6.8: Top 20 detections for Giraffes. Detections antesl by scores from high to

low. The continuous values of region selection indicateralored on the corresponding

regions from white £ 1) to red ().
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Figure 6.9: Top 20 detections for Mugs. Detections are ddoiescores from high to
low. The continuous values of region selection indicater@iored on the corresponding
regions from white{1) to red (1).
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Figure 6.10: Top 20 detections for Swans. Detections arteddry scores from high to
low. The continuous values of region selection indicateraiored on the corresponding
regions from white {1) to red ().
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(a) Applelogos (b) Bottles  (c) Giraffes  (d) Mugs (e) Swans
Figure 6.11: Typical misses for all five categories. Trueifpes with the lowest scores.
The figures are sorted by score in ascending order from topttori.
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Chapter 7

Conclusion

Exploiting global contexts to detect and recognize complatterns while keeping the
search computationally tractable has been a fundamesta isot only in computer vi-

sion, but also in the broad area of artificial intelligence.this thesis, we consider this
problem in the setting of detecting shapes from natural esagth various complexities.

Unlike other patterns such as textures which may be loceltpgnizable, shape is typi-
cally perceived as a whole — it is fundamentally about thégllgeometric arrangement of
a set of entities. With few distinctive local shape featureasoning on individual entities

without examining their surroundings is bound to be unbdéa

Traditional contextual models such as Markov Random Fig#iRF) face two diffi-
culties on this problem. First, only short range contextakdtions are usually considered
in these models. Pixels are connected within a small neididoal, and model parts have
constraints only if they are nearbg.§.pictorial structures). This limited scope is caused
by either the fact that background can corrupt the long raalgions, or lacking cues to
generate such constraints. Second, the contextual medadi@ often restricted to pairwise
constraints to ensure computational tractability. Howewest shape configurations can-
not be decomposed into the summation of pairwise checkssifiy@est case is a straight
line whose valid verification involves at least three paidtsy pair of two points can form
a line and therefore does not give any information on the thgsis. In general, robustly

matching a shape requires simultaneous reasoning over emditigs. In this thesis, we
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have developed a principled approach that addresses thext@sue from the following

aspects:

1. We identifies the underlying generic structures thatwahe inherent correlations
of a long sequence of points, independent of the model. Sgaty, Chapter 2
introduces a novel topological formulation for groupingitmurs. The mechanism
is able to extract topologically 1D image contours robustitter and broken edges,
and generally applicable to grouping and segmenting dataihg a parameterized
structure (.e.a manifold). Part of the work in Chapter 2 was published inu&tal.

, 2007).

2. The set-to-set matching method we developed in Chapt@eBsa path towards
utilizing the context arising from a set, going beyond treglitional pairwise con-
straints on tokens. This was made feasible by a holisticesifegiture that can be
adjusted on-the-fly according to the context from figuredgiebselection. The re-
sulting combinatorial problem of matching can be optimiaed bounded by LP-
based primal-dual algorithms presented in Chapter 4. Péneovork in Chapter 3
was published in (Zhet al., 2008; Srinivasaet al., 2010). The review on primal

dual algorithms in Chapter 4 is based on (Zhu, 2009).

3. Additionally, we are able to incorporate more sophisédastructures into the con-
textual shape reasoning. Chapter 5 extends the holistimapip to match image
contours with an articulation model represented liyea In Chapter 6, the basic
shape tokeng,e. regions, do not generate shape features by themselvesth# is
differenceof a region and its neighbors in terms of figure/ground selegiroduce

boundaries forming object shapes. This property bringsgartite graph packing.

We have noticed several future directions worthy of furiésguloration:

1. Interaction between grouping and shape matching. Aghdhe holistic shape rea-

soning requires extraction of discrete, big structuresifbmttom-up grouping, this
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does not mean that grouping and shape matching have to lmerped in a sequen-
tial, feed-forward way. The feedback from top-down shap&hiag can potentially
resolve ambiguities in bottom-up grouping. For example,edl matched incom-
plete shape can guide the search for missing segments damtddundaries and

leakages. The integration of the decisions on the two psesais preferred.

. Integration of regions and contours into the packing taark. We have devel-
oped and demonstrated contour packing and region packipagagely in Chapter 3
and Chapter 6. Contours express elongated boundary s&aatiile regions cap-
ture boundary closure and figure/ground segregation. Theplamentary role of
contours and regions suggests that combining the two intoghescomputational

framework would further reduce false shape detections.

. Designing better deformable model representation. fdeliased model we used
in Chapter 5 is a special case of AND/OR graph (Zhu & Mumfo@D®&), which is
more suitable for representing models with multiple prgpets and occlusions. Itis
also important to consider how to exploit features gendratam the intermediate

level of AND/OR graph.

. Finding common shapes in multiple images. In all the caatjpnnal paradigms, we
dealt with holistic matching between only two shapes. Discimg common shapes
from multiple images would be interesting from both praait&nd theoretical point
of views. In addition to spatial context contained withirclkeandividual image,

context across all the images needs to be investigatedifopribblem.

. Extension of primal-dual algorithms to model selectiow @#egion packing. We
have merely scratched the surface of employing these idesssatch and bound the
resulting general packing problem. Additional structwsesh as bipartite graph on
the image side and tree or AND/OR graph on the model side drexpioited. We
believe that more efficient combinatorial algorithms analedures can be designed

by incorporating these new structures into the oracle.
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Appendix

A.1 Proof of Theorem 2.1

Theorem 2.1 The necessary condition for the critical points (local nmaa) of the fol-

lowing optimization problem

Re(zHPx - e7129)

secn xHx A1)
is thatx is an eigenvector of
1 ) _
M(A) = (P eI pT . A (A.2)

Moreover, the corresponding local maximal value is the eigdue\ (M (A0)).

Proof. Letz = z, + i - x. wherez, andz. are the real and imaginary partsof The

original problem can be rewritten as

max (z! Pz, + ) Px,)cos AQ + (z} Px, — x} Px,)sin A9 (A.3)
st. xla, +atr, =1 (A.4)
T, xe € R" (A.5)

Hence, the Lagrangian has the following form witlas the multiplier on the constraint:
L = (' Pz, + 2} Px.) cos AO + (v} Px. — ) Px,)sin A0 + \(xrz, + 2}z, — 1)
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By taking derivatives of the Lagrangian, we have

L

g = (PT + P)cos A0 -z, + (P — PT)sin AQ - z. + 2\x, = 0 (A.6)
x?“
L

g = (P" + P)cos A -z, + (P — P)sin A0 -z, + 2z, = 0 (A7)
‘/'EC

Setting the above derivatives togives all the local maxima of the original problem
(2.1). Notice thatP is a real matrix, we obtain the following equation by combai
eg. (A.6) and eq. (A.7):

P+ PT PT—p
+2 -cos AO + 1 -

[ -sinAQ |- (x, +i-2.) = =N, +i-2z.) (A.8)

Thereforer = z, + ¢ - x.. is a real eigenvector of matrix:

P+ PT pPr—p
+ -cos AQ +1-

M(Af) = - sin Af (A.9)

1 ‘ |
= 5(P- e84 P11 (A.10)

with eigenvalue-\. Notice that) (A#) is a Hermitian matrix and hence all its eigenval-
ues are real. By substituting eq. (A.6) and eq. (A.7) backeoariginal cost function we

have
(xf Px, + 2} Px.) cos AO + (x} Pz, — x} Px,)sin A0 = —\(a)z, + 2 1) = =\
(A.11)

The local optimal values are exactly the correspondingreigiees ofAM (A).

A.2 Proof of Theorem 2.2

First we prove the following lemma:
Lemma 1 Pr(i,m) can be expressed in terms of eigenvalues and eigenvectoassition
matrix P 1

Pri,m)= > N'U;Vi+ > Re(\'UyVy) (A.12)

Aj real Aj complex

To simplify the analysis, we assume tifats diagonalizable inC™*™ and achieve this by perturbing
P. For anye € R, there exists diagonalizabl@ such that| P — Q|| < e.
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where )\, is the j** eigenvalues of? and U;; is the:'" entry of thej*" right eigenvector
j J g J

andV;; is thei'" entry of thej™" left eigenvector.
Proof. By simple induction one can prove that

Here(P™),; represents the entry at ravand columry.

Consider the eigenvalue decompositionfof
P=UxU"! (A.14)

HereX = diag(\,...,\,) andU is a nonsingular complex matrix whose columns are
corresponding eigenvectous, ..., u,,. Since eigenvectors are not necessarily orthogonal,
U~'is not equal to/” in general. However, rows df ~! are left eigenvectors aoP,

i.e. (U™ = V. The power ofP can be easily computed by

We can write( P™);; as
(P™)y; = (US™U™ )y (A.16)
— Z Uj - NI"- Vg (A.17)
J
= Z AU Vi + Z Re(\]"Ui;Vis) (A.18)
Aj real Aj complex

Eq (A.18) comes from the fact that; andV;; are all real if); is real and all complex

eigenvalues appear in pairs. O

With Lemma 1we can easily prov&éheorem 2

Theorem 2.2(Peakness of Random Walk Cyclé&X), T') can be computed by the eigen-
values of transition matrix’:

A
Zj Re(ﬁ -Ui;Vij)

R, T) =
Ej Re(%)\j -UiVi)

(A.19)
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(a) Packing one bin (b) The corresponding graph cut

Figure A.1: Reduction from packing to MaxCut. (a) is a simga@se where there is only
one bin. The red blocks represent image contours nddekhe green blocks are nodes
for model partsM and the yellow nodes is the fictitious nodl&,}. Image or model
background nodes are shaded. (b) shows the corresponeiply gut of the packing.

Proof. FromLemma 1it is straight forward to get

> Pr(i,kT) =Y Re(\] /(1= \])-UyViy) (A.20)

k=1 J
Pr(i,k) =Y Re(1/(1 = X;) - U Vi) (A.21)

k=1 J

Finally we have
AT
RGT) > Re(k&g - UiiVij) (A22)
2, = .
Zj Re(%)\j ) Ui"/;j)

O

A.3 Proof of Theorem 3.1

In this section we show that the contour packing problem camealuced to MaxCut
when the dissimilarity functiorD;;(-) in eq. (3.7) isL,. This reformulation leads to a
computational solution via SDP, with a proved bound on théwgd cost.
A simple example with one bin

First we start with the simplified case containing one binyorh this case the bin

contains one single value of feature counts. For convegrieme denote:

o t =3, o v; to be the total contribution of selected image contdifrso the bin;
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o ¢ =3",.q vitobe the contribution frominselecte¢ontoursZ \ S”;
e m =) . cu u; t0 be the total contribution of selected model paits;

e M =) .4 u; t0 be the contribution frominselectednodel parts\ \ SM,

With the above notations, optimizing e@? can be reduced to minimizing:
(t=m)?® = _vi— > w) (A.23)
€St ieSM
We balance the total contributions of the image and modeltsidhe bin by adding a
dummy nodé;,. Without loss of generality, we assurhe, u; > > . v; and the contribu-
tion of V; to the binis) , u; — >, v;. V;, can be regarded as a virtual contour which can
neverbe packed. By including this special node, we are ready abésh the connection

between the packing and MaxCut:

Lemma A.1. Set graphG ,cking = (V. E,W) withV = Z U M U {V} andw;; = a,a;,
where

(

Vj if Vel

a; = U; Zf‘/ZGM

\Zkuk_zkvk Zf‘/;:‘/b

The optimal subsef! and S with the best matching coét — m)? in eq. (A.23) is given
by the maximum cut of the packing gra@h,cring- If (C1, Cs) is the cut withl;, € Cs, the
optimal subsets are given 8§/ = 7 N C; andSM = M N C, (see Fig. A.3).

Proof. Since the total contributions & U {1} and .M are the same to the bin, we can
simply includel; into Z. Any cut (C, C5) of the graphG,acring With Vo € Cs uniquely
defines the selection dhand M asS! = Z N C; andSM = M N C,. Also notice that
C,=STuM\ SM)yandC, = SM U (T )\ ST). Recall that, ¢, m andm represent the
total contributions front?, 7\ S, S™ and M \ SM respectively. Becausé contributes

tot,wecanset =t+t=m -+ m.
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The cut valueC'ut(C, Cy) can be computed by

C’ut(C’l, CQ) = Z Wi; = Z Qi

1€C1,j€C2 1€C1,j€C2
=D a) () ay) = (t+m)(T+m) (A.24)
i€Cy j€Cs

> icc, @ = t 4+ m comes from equalities;, = S*U (M \ SM), t = 37, o a; and
m = ,qqu a;. Similarly we can prové .., a; = + m.
Finally, a simple calculation shows that the cut value ardntfatching cost sum up to

a constant?:
t+m)(E+m)=c>—(t—m)’

Therefore, minimizing¢ — m)? is equivalent to finding the maximum cut @#,,cxing,

whose cut value is given by + m)(t + m). O

Note that without any constraint, the system can choosalrsolution of packing
nothing from image and model. This corresponds to the cwdetZ and M. This
can be alleviated by fixing the model nodes since we know whaiatk on the model
side. We also have the freedom of multiple choices on modaésiowhich is essential
for articulation model in Section 4.2. These modificatioas @ll be encoded as hard
constraints on the MaxCut.

Reduction of the full problem

Lemma A.1 can be naturally generalized to multiple knapsaElach bin inf; intro-
duces an extra node. Sdtto be the set of all these nodes. Now we would like to consider
the cut on the graph with nod&s M and.A. This is captured by Theorem 3.1:

Construct a graphG pucking = (V, E,W) withV = ZU M U A andw;; = a! aj,

where
)
Vi, if nodei € 7
a; = VM if nodei € M (A.25)
(0,...,0,| >, ViE =5, VaM,0,...,0)7 if nodei € A

\
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HereV;(k, i) is the feature contribution of image segmetat the histogram bitk. VM (k. i)
is defined similarlyV!,, andV/"}, are thei" columns ofv’" and V.

The optimal subset! and S} with the best matching coSt, (¢, —my.)? in eq. (A.23)
is given by the maximum cut of the gra@h, xing- If (C1, C2) is the cut withl;, € Cs, the

optimal subsets are given I8/ = 7N C, andSY = M N C,.

Proof. Let Gpucring = G1 U ... U G; whereG),'s are graphs induced by bindefined in

Lemma A.1. Applying Lemma A.1 to all these subgraphs. O

A.4 Proof of Theorem 4.1

Theorem A.2. (Littlestone & Warmuth, 1989) (Perturbed Value of the Sigg) LetR =
2 U R and £ = 37, 57 yi LY be the cumulative reward and loss of the strategy
using eg. (4.7). The perturbed value of the strategy giveady4.7) is worse than the

performance of best pure strategy onlylﬁijﬂ, as stated in the following inequality:

1
max V; < exp(€)R — exp(—e€)L + e (A.26)
J
Proof. Consider the potential functioh® = y/.
On the one hand, we can compute it using the update rule:
o=y
j
t
= > yO [ explev}] (Update rule (4.7))
j k=1
t
= expley V] W =1)
j k=1
t
> exple - Z V]k] (A.27)
k=1
Note the above inequality holds for anyTherefore @' is bounded below by
®' > exple - max V] (A.28)
J
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On the other hand, we have

Yt =yt = y'lexp(eV)) — 1]
<y' - (eV)) - exp(eV;)
= y'[eexp(eV)) R} — eexp(eV]) L]
< yffeexp(R] — eexp(—e)L!]

= ytevf

Here ]7;? = exp(e)R} — exp(—e€)L} is the “perturbed” version of valu¥;. The first
inequality holds becausep(z) — 1 < x - exp(x) for anyz. The second inequality is due

to the fact that; € [-1,1].

By summing up the above inequality ovgwe have

V= Y )

J

< Yo

J
=ed' - Zyj?fj/Zy; + ®*
j j

= 314 V)

< ' exp(eV) (1+ z < exp(x))
Using induction ovet and®’ = m, we boundd’ above by

P <m- exp(z %) (A.29)

k

Finally combining eq. (A.28), (A.29) yields

e-maxV; <logm + Z WV (A.30)
! k

which is equivalent to eq. (4.8).
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A.5 Proof of Corollary 4.2

Corollary A.3. (Regret Over Time) W} € [—p, p| for all j, then we have a bound on the

average value’ /T

V, V plogm
2« 2
maxo STt T

+ peexp(e) (A.31)
Proof. SinceV; € [—p, p|, we can substitut®; by V;/p and prove the following inequal-
ity for V; € [-1,1]:

1
maxV; <V + 28T 4 Te exp(e)
j €

We setR! = max(0,V}) andL} = max(0, —V;), which satisfies)} = R} — L.

Under these simplifications, we can apply Theorem 4.2on

logm

max V; < V+
j €

v logm

+ (exp(€) — )R — (exp(—e) — 1)L
1
<V @ + eexp(e) [V
1
<V+ L eexp(e)T
€

The firstinequality uses the fact thad) = R+L, exp(e)—1 < eexp(e) andl—exp(—e) <

€ < eexp(e). O

A.6 Proof of Theorem 4.4

Theorem A.4. (Complexity of the Primal Dual Algorithm) Algorithm 2 eith@eclares
that the fractional packing eq. (4.2) is infeasible, or autpan approximate feasible solu-

tion z satisfying

a;T—c; <6 (A.32)

J

forall j = 1,...,m. The total number of calls to the oracle¥p*s—2logm) with p =

max; maxyep | f;(z)|.
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Proof. We build our proof based on Corollary 4.2. First notice tHiagt'i > 0 at some
time t, then the eq. (4.2) is indeed infeasible. Otherwise suppuse existst! such
that f;(z") = ajz' — ¢; < 0for all j. Because,' > 0 throughout the algorithmy" <
>, y;fi(z') <0, acontradiction.

Suppose the algorithm runs to the end and outputset V; = w'f;(z") be the value

incurred by the update. Notice thrij’t € [—1,1]. By applying Corollary 4.2, we have

t(, T .t
max[a]T:E — ¢;] = max 2wy :ct —4)
j j Do w
a2tV
IR AT
Ly lem g
< V4 B 4 T exp(e)
< s [FE 4 T exp(e)
1 log

(A.33)

The first inequality uses the fact that = (w'/ 3", y) >, yifi(a") = w'p'/ 37, 48 <
0 for everyt since the oracle never fails. The last inequality is due ®tdrmination
conditionS > 9plogm/6-2,T/S =T/ >, w' < pande = 3§ /p.

Therefore,r returned by the algorithm satisfies the approximate felggibig. (4.13).
Finally, each time the algorithm collecis > 1/p and it terminates whefi = >, w; >

S > 9plogm/d—2, so the total number of iterations is at mexi?*5—2 log m). O

A.7 Proof of Theorem 6.1

Theorem A.5. The bipartite region graph packing problem consists in figdan optimal
bipartite subgraphG,,,(F, F) of the region graplG, which minimizes cost,(F, F') de-
finedin eq. (6.2). It can be reduced to a cardinality constesi and multicriteria cut prob-
lem on a graplG’ associated withR positive edge weight functions? ... according

to R criteria. The cardinality constrained and multicriteriatproblem seeks a cat with
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. . . N T (k)
cardinality at leastd: EEZ,]EC 1 > d, and all R criteria are satlsfled.ZEijec w;;” < bk)

fork=1,2,...,R.

Proof. We first transform bipartite region graph packing problero ia simpler linear
form, and notice that the main hurdle is the bipartite grapbking costC,(F, F) is an
Ly-norm. Using a similar technique which converts contourkpag into primal-dual

packing in eq. (4.15), we have:

min_ VT2 — s, = 17 [Diag(sc™)s™ + Diag(sc™)s™] (A.34)
st. Vg — sc™ = Diag(sc™)s™ — Diag(sc™)s™ (A.35)

z e {0,1}FOI st 57 e[0,1]™ (A.36)

Herest ands— are normalized slack variables on the feature bins. Furtbeg, this can

be rewritten as:

max V42 1TDiag(sc™)(1 — sT) (A.37)
st. V'z + Diag(sc™)(1 — s7) < sc™ (A.38)
z € {0, 1}POl st cl0,1]™ (A.39)

by substituting the constraint in eq. (A.35) and using the faats— is nonnegative. We
can further make the continuous slack variglile s™) € [0, 1]™ a binary one by splitting
it into units of 1,2,4,...2° pixels for each bin. Since ultimately the cost is measured as
multiples of a pixel, the binary representation is suffiti@nreproduce any integer slack.
We group these slack variables into a single vegtor

If one would like to bound the objective function eq. (A.3@)feasibility problem
arises by changing the objective function into a constrdint 2- 1" Diag(sc™)(1—sT) >

c for a constant:

Feasibility(x,s) : VI +2.-pTs>c (A.40)
Vie 4+ pts < scM (A.41)
z e {0, 1}EGO s e 0,1 (A.42)
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wherep; is the number of pixels included in slagk. Now the feasibility problem appears
to be the same as a cardinality constrained and multiaitrt problem except that the
binary indicatorsr and s have to be defined on graph edges &ngs) must represent a
cut to the graph.

Construct a grapty’ with additional node$’ (G’) = {V}, V, } UV (G)U.S with follow-
ing specifications: 1) Twd’,V;, are the source and sink terminals of the graph representing
foreground and background respectively}2)=) are the nodes from the region gragh
and a node belongs to foreground if on the same sidé asthe cut; 3)S denotes the bin
slack variables and the slack is applied if on the same sidé/as the cut. Define edge
weight functionsw® to beV.! for edgeE; in G2, andp; for edge betweer; andV;. The
left side of each constraint Feasibility (z, s) is the sum of weights in a cut a&'.

The above problem is exactly a cardinality constrained aoHicniteria cut problem

with cardinality defined by the cost function and criteridiked by the feature bins. [J

2Unary terms used in Section 6.3 can be represented as edgesb® (G) and{V;, V,}
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