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Abstract
We propose a detection-free system for segmenting multi-

ple interacting and deforming people in a video. People de-
tectors often fail under close agent interaction, limiting the
performance of detection based tracking methods. Motion
information often fails to separate similarly moving agents
or to group distinctly moving articulated body parts. We
formulate video segmentation as graph partitioning in the
trajectory domain. We classify trajectories as foreground
or background based on trajectory saliencies, and use fore-
ground trajectories as graph nodes. We incorporate ob-
ject connectedness constraints into our trajectory weight
matrix based on topology of foreground: we set repulsive
weights between trajectories that belong to different con-
nected components in any frame of their time intersection.
Attractive weights are set between similarly moving trajec-
tories. Information from foreground topology complements
motion information and our spatiotemporal segments can
be interpreted as connected moving entities rather than just
trajectory groups of similar motion. All our cues are com-
puted on trajectories and naturally encode large temporal
context, which is crucial for resolving local in time ambi-
guities. We present results of our approach on challenging
datasets outperforming by far the state of the art.

1. Introduction
Our goal is to segment and track closely interacting and

deforming agents in a video. Many recent tracking frame-
works link and propagate detections over time with an ap-
pearance model learnt and updated on the fly. Frequent de-
tections are needed for preventing drifting in tracking. We
can group the tracking approaches into the following two
categories:
• No explicit pose representation ([11], [10], [2]). These

trackers use a bounding box for the object being
tracked. Detectors that do not model pose explicitly
fail under body deformation and articulation. More-
over, the use of bounding boxes has its own draw-
backs: 1) It does not provide exact boundary of the

Figure 1. Top: Detection results from [7]. Detectors often fail
under large body deformation or agent entanglement. Bottom: Our
approach. Our bottom-up tracklets are semantically meaningful,
exhibiting often one to one correspondence with the moving agents
without any model guidance.

object. Consequently, appearance features aggregated
from the bounding box interior are often corrupted by
background and thus are less discriminative. 2) When
agents come close, the corresponding bounding boxes
overlap. Then the features extracted leak from one
agent to the other leading to drifting.
• Explicit representation of agent’s pose (articulated

tracking) ([23]). As the number of agents increases,
there is combinatorial explosion of the number of mod-
els to test. Most importantly, the features used (edge
map) are often too weak to pick the right model.

We propose a system that builds an explicit figure-
ground representation of the video. Foreground topol-
ogy and motion determine repulsive and attractive weights
between foreground trajectories. The resulting spatio-
temporal segments from partitioning the trajectory weight
matrix can serve for later top-down reasoning for tracking
or weakly supervised learning.
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There is large body of work on spatio-temporal group-
ing, though dealing mostly with rigid motions or a few iso-
lated moving objects. To tackle challenging real-life sce-
narios we employ novel cues and representations:

1. We use dense point trajectories as our basic units.
Point trajectories aggregate information from large time
windows and are more informative than static image cues
or per frame optical flow. Under entanglement, static image
boundaries are often faint and unreliable. Appearance infor-
mation leads to over-fragmentation in cases of non uniform
object appearance or leakage across object boundaries in
cases of accidental across object appearance similarity. On
the other hand, per frame optical flow measurements may
not be informative for most of the frames. Important mo-
tion information for segmenting the video is not evenly dis-
tributed across the video frames. Computing motion sim-
ilarity on trajectories naturally exploits maximum motion
information available during their lifespans.

Previous work misses the importance of the imbalance of
trajectory lifespans. In articulated motion some body parts
deform less than others, for example the head deforms less
than the legs. The resulting trajectories thus vary a lot in
length. Our main insight is that this imbalance (asymmetry)
can have a strong impact on the grouping result: affinities
between long trajectories incorporate larger temporal con-
text and are more reliable than those between short ones. If
we cluster all trajectories at once, noisy affinities of short
trajectpries can confuse the partitioning. Instead, we use a
two step clustering, where in the first step we recover the
basic scene skeleton by clustering the longest trajectories
and in the second step we densify the representation (fill in
the details).

2. We compute a novel figure-ground representation
based on trajectory saliencies. For each frame, we com-
pute center-surround saliency of the frame optical flow field.
Then, pixel saliency values are aggregated along trajec-
tories. Trajectory saliency computation incorporates long
range rather than local motion contrast. Segmenting figure
and ground using trajectory rather than video pixels salien-
cies provides time consistent figure-ground segmentation
result without resorting to appearance models.

3. We untangle the moving agents by imposing object
connectedness constraints. Moving agents that are closely
interacting sooner or later will separate. We introduce re-
pulsive forces between trajectories belonging to different
connected components of the foreground map of any frame,
and let these forces propagate in time through transitivity.
Topology driven repulsion is an additional grouping cue,
byproduct of our figure-ground reasoning.

We tested our framework on moseg, a recently released
dataset for motion segmentation ([4]). We introduce a
new challenging dataset comprised of basketball videos ex-
tracted from [19], with large body deformation and frequent

occlusions. Our method outperforms by far the state of the
art. We provide extensive evaluation of our different system
components, quantifying the value of each one in isolation.

2. Related work
The observation that motion provides a strong cue for

perceptual organization dates back to the Gestaltists ([22])
that suggested the grouping principle of “common fate”.
Various approaches have been proposed for exploiting this
principle for spatio-temporal grouping. Part of video seg-
mentation methods ([20, 17, 21]) are based on two frame
optical flow. They rely on short time horizon and as such
they are dependent on choosing the pair of frames with clear
motion difference between the objects. If object motion is
not consistent during the shot, the results are not expected to
be time consistent either. Works of [14] and [24] combine
flow estimation with an appearance model to propagate mo-
tion information across multiple frames for time consistent
segmentation.

In order to take advantage of longer time horizon (multi-
ple frames) many approaches use point trajectories. Multi-
body factorization methods ([5, 25, 6, 16]) can distinguish
the motion of rigid objects relying on properties of an affine
camera model. Apart from being restricted to rigid motions,
these methods require all trajectories to have same length,
which is not feasible under frequent occlusions or body de-
formation. Works of [6] and [16] have tried to recover from
this requirement to a certain extent. However, deformable
or articulated motion still poses challenges to the factoriza-
tion framework. Authors of [26] obtain automatic back-
ground subtraction under a projective camera model by esti-
mating the trajectory basis for background trajectories using
RANSAC. Works of [4], [8] and [3] use clustering of trajec-
tories and do not require them to be full length. The use of
trajectories in contrast to per frame segmentation, provides
time consistent clusters since grouping naturally propagates
over time and does not depend on motion information ex-
tracted from a particular frame.

Apart from the gestaltic principle of common fate, psy-
chophysics experiments of Nothdurft in [13] have shown
that local motion contrast drives perception of simple vi-
sual concepts (bars) as a group when viewed in background
of similar concepts that dier from them in motion or orien-
tation. This suggests motion perception depends not only
on motion similarity but also on local motion segregation.
Numerous approaches have exploited center-surround mo-
tion saliency for automatic background subtraction ([12, 9])
or foreground object segmentation ([15]).

3. Graph setup
We cast video segmentation as graph partitioning in the

trajectory domain. We define a trajectory tri to be a se-
quence of space time points:

tri = {(pi
k, t

i
k), k = 1 · · · |tri|}, i = 1 · · · |T |
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Figure 2. Graph setup. Affinities between long trajectories are more reliable since they reflect larger temporal context. In addition, they
propagate further in time thanks to the large spatio-temporal neighborhoods of long trajectories.

where T is the set of trajectories in a video, |tri| is the
length of tri, image pixel pi

k = (xik, y
i
k) is a vector of spa-

tial coordinates corresponding to the kth point of tri and tik
is the frame index for the kth point of tri. We obtain our
trajectories using a recently proposed approach that tracks
densely using optical flow ([18]). Using dense rather than
sparse corner trajectories results in denser coverage of the
tracked objects.

We classify trajectories as foreground or background
based on their saliency. For each trajectory, the trajectory
saliency is the maximum of the saliency values of its points.
Non salient trajectories are assigned to background without
further consideration.

Our graph nodes are foreground trajectories. Our graph
weights are attractive and repulsive forces between tra-
jectories. Motion similarity (common fate) introduces at-
traction Aij between trajectories having similar motion.
Topology of foreground maps introduces repulsion Rij be-
tween trajectories that belong to different connected com-
ponents in any frame of their time intersection. We seek
a graph partitioning that maximizes within-group attraction
and between-group repulsion. We segment our trajectory
graph using the normalized cut criterion:

max ε = within-group A
total degree A + between-group R

total degree R

We follow the solution proposed in [27] and calculate the
K largest generalized eigenvectors of (Weq, Deq) where
Weq = A − R + DR and Deq = DA + DR. DW

stands for the degree matrix of W, a diagonal matrix with
DW(i, i) =

∑
j W(i, j). See [27] for the derivation de-

tails. We obtain our final segmentation by clustering our
trajectories in the embedding space. We use repulsion R to
guide our discretization by discarding clusters with interior
repulsion and merging clusters with no interior repulsion.

In section 3.1 we present our figure-ground representa-
tion. Sections 3.1.2 and 3.2 present our repulsive and at-
tractive weights respectively. Section 3.3 presents priority

clustering for exploiting trajectory asymmetry and section
3.3.1 presents our discretization procedure. We show re-
sults of our approach in section 4 and conclude in section
5.

3.1. Figure-ground spatio-temporal segmentation

We define foreground (figure) to be the ensemble of
moving agents and background (ground) the static world
scene that embraces them. We are not interested in seg-
menting the static scene into different layers as layer motion
segmentation approaches. Rather, we concentrate on untan-
gling the moving agents. Cameras can be moving freely.

Our system computes motion saliencies on trajectories
and produces a figure-ground segmentation by assigning
non-salient trajectories to background. Figure-ground rep-
resentation is a central piece of our work:

1. It reflects the different kinematic nature of figure and
ground: Trajectories covering a moving agent form a mo-
tion cluster or a set of clusters (torso and articulated limbs)
depending on whether the agent moves rigidly or articu-
lates. On the other hand, the ground, comprised of differ-
ent planes and surfaces, usually has a motion that changes
smoothly in space. As such, ground trajectories do not
form compact motion clusters. Approaches clustering fig-
ure and ground trajectories simultaneously, often need to
merge background clusters together in post processing. In
contrast, our system exploits motion contrast from large
temporal context encoded in motion saliencies of trajecto-
ries to produce a figure-ground segmentation for the video.
Then clusters only what is found as foreground.

2. It naturally provides an idea about object scale: affini-
ties between trajectories are often chosen proportional to
euclidean distance. By clustering only foreground trajec-
tories, different objects naturally pop out since free space
between objects causes sudden drop of the affinity values,
which becomes more prominent after normalization of the
affinity matrix (normalized cut).

3. It provides us with additional cues for segmentation
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Figure 3. Trajectory based motion saliency. Notice the correction on the player in blue: information flows through trajectory point cor-
respondences from informative frames of large motion difference between figure-ground to frames where agents are stationary, without
using an appearance model. Our system makes no assumptions concerning camera motion.

by exploiting connectedness of objects as described in sec-
tion 3.1.2.

4. It offers computational benefits: it suggests using mo-
tion not only as a grouping cue but also as a resource allo-
cation mechanism.

3.1.1 Trajectory motion saliency
Most previous approaches on motion saliency use single
frame optical flow measurements as features in a center-
surround differencing operation. That is, they exploit per
frame motion contrast to find what moves saliently in each
video frame. We define per frame motion saliency of a
video pixel as a function: salp : P → [0, 1], where P is
the set of video pixels (p, t) = (x, y, t).

However, taking advantage of large time horizon is cru-
cial: an agent that appears stationary initially may move
later on. By computing a motion saliency map for each
frame in isolation, we end up erroneously assigning the par-
tial stationary agent to the background in the initial frames.
We circumvent this problem by computing motion saliency
of trajectories rather than video pixels. In this way, our
saliency maps are computed based on large time range mo-
tion contast. We define trajectory saliency as:

saltr : T → [0, 1], saltr(tr
i) = max

k:1···|tri|
sal((p

i
k, t

i
k))

In practice, we set the saliency of a trajectory to be the 90th
percentile of the saliencies of its points, since the maximum
value may be noisy. Then, we define the foreground map fl
of frame l as the set of points of the salient trajectories:

fl = {pi
indi(l)

: ∀ i s. t. saltr(tr
i) > smin}

where smin is a saliency threshold and indi(l) is the func-
tion that maps a frame index l to the trajectory point index of
tri or to 0 if the trajectory is not on for that frame. By com-
puting motion saliency over trajectories rather than pixels,

the resulting figure-ground segmentation maps are consis-
tent over time without resorting to appearance models (see
also Fig. 3). For computing single frame motion saliency
maps we used the publicly available code of [15] for center-
surround differencing on optical flow magnitude field.

3.1.2 Topology driven repulsion R

For the resulting spatio-temporal segments to have a se-
mantic interpretation, the grouping cues need to go beyond
appearance or motion similarity. These cues alone often
over-fragment an object into distinctly moving parts. We
believe we can do better by exploiting foreground topology
provided by our figure-ground representation.

Specifically, we compute the set of connected compo-
nents Cl for each foreground map fl: Cl = {Cl

k, k =
1 · · · |Cl|}. f lC assigns a foreground connected component
to each trajectory point at frame l: f lC : P l → Cl where
P l the pixels of frame l. We use the term foreground topol-
ogy to describe the assignment of trajectories to connected
components.

• Foreground topology cannot indicate when two trajec-
tories should be grouped together: we cannot know,
without additional information, whether a connected
component in the foreground map is a single agent or
a group of agents.

• Foreground topology can indicate when two trajecto-
ries cannot be grouped together if assigned to differ-
ent connected components (assuming object connect-
edness).

Nevertheless, indicating separation is as useful as indicat-
ing attraction: an attractive force of value 0 can indicate
either no attraction or lack of information. A strong repul-
sive force indicates dissimilarity and as such is useful in the
grouping process ([27]).
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Figure 4. Left: Asymmetry of trajectories under body deformation and agent interaction. Long trajectories are shown in light blue and short
ones in dark blue. Trajectories often die at occlusions or self-occlusions. This is the case even for occluding trajectories since descriptors get
corrupted by sudden background change. Right: Spectral embedding. Circles denote the centering points and color denotes the embedding
affinity given by the embedding affinity matrix Ŵ = S · λ · S′ (red denotes high and blue low affinity). Notice the discriminability of
our embedding (column 1). Using no figure-ground (last column) or partitioning all foreground trajectories at once even with the use of
repulsion (column 2) may result in severe leakages.

Moving agents have periods of entanglement and periods
of separation during which there is free space between their
masses (see fig 2). We define two trajectories tri and trj

as disconnected if in any frame of their time overlap they
belong to different connected components. We introduce
repulsions between disconnected trajectories:

Rij =

{
1 if ∃ t s.t. f tC((p, t)

i
indi(t)

) 6= f tC((p, t)
j
indj(t)

)

0 otherwise
Large temporal context is crucial for effectiveness of repul-
sion: long trajectories will propagate the separation to the
entangled frames (see also Fig. 2). Short trajectories that do
not survive the entanglement period, will not see the sepa-
ration.

3.2. Motion affinity A

Between each pair of trajectories tri and trj we compute
an affinity score Aij measuring motion similarity:

Aij = exp (−Dij

g
), Dij = d · max

t∈tijs ···tijf
||~uit− ~u

j
t ||2 (1)

where ~uit = pi
indi(t+b)

− pi
indi(t)

is the velocity of tri at

frame t, d =

∑t
ij
f

k=t
ij
s

|pi
indi(k)

−pj

indj(k)
|

(tijf −t
ij
s )

is the mean euclidean

distance between tri and trj , indi(t) is the function that
maps a frame index t to the trajectory point index of tri or
to 0 if the trajectory is not on for that frame and tijs · · · t

ij
f

is the time overlap between tri and trj . We used g = 330
and b = 3. We set Aij = 0 for trajectories that their time
intersection is less that b frames.

When two objects are static or move similarly we cannot
decide on their grouping. It is when they start moving dif-
ferently with respect to each other that we gain certainty for
their separation. The affinity model of equation 1 penalizes
the maximum velocity difference between a pair trajecto-
ries, similar to [4]. In this way, we squeeze the most infor-
mation available during the trajectories time intersection.

3.3. Trajectory asymmetry
Previous literature on trajectory clustering for video seg-

mentation mostly focuses on rigid or nearly rigid motions
and treats all trajectories equally. Multi-body factorization
literature even requires all trajectories in a shot to have the
same length. However, by the very nature of a deformable
agent, some of the covering trajectories are expected to have
longer lifespan than others. The imbalance of trajectory
lifespans can have a large impact on the grouping result:
• Affinities between long trajectories reflect large time

window. Long trajectories propagate their affinities
further in time since they have large number of neigh-
bors thanks to their longevity. They usually cover the
rigid part of the torso or the head.
• Affinities between short trajectories reflect short time

window and are less reliable due to accidental mo-
tion similarity. Accidentalness is way more frequent
for short tracks as intuition suggests (see also Fig. 4).
They usually cover the limbs since limb motion causes
frequent self-occlusions.

Clustering all trajectories at once introduces noisy affini-
ties computed from short trajectories that confuse the em-
bedding since short trajectories often outnumber long ones.
Limiting ourselves to long trajectories would create sparse
clusters not covering the objects densely. Instead, we fol-
low an intuitive two step priority clustering. We thresh-
old trajectory length at a minimum value lenmin (we use
lenmin = 15 frames). We denote by T L trajectories with
length larger than lenmin and by T S the rest of the trajecto-
ries. We have two steps:

1. In the first step we partition only trajectories in T L

using spectral clustering as described in section 3. The
output is a set of trajectory clusters Kk, k = 1 · · ·K
that ideally captures the skeleton of the scene, the basic
moving entities. 2. In the second step we embed all tra-
jectories in T and compute the approximate affinity ma-
trix Ŵ = S · λ · S′ where S are the K largest general-
ized eigenvectors and λ the corresponding eigenvalues of
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Figure 5. Segmentation in moseg dataset. 2d row: Brox et al [4]. 3rd row: Our method. Our system imposes object connectedness
constraints: we successfully recover the cars in columns 2 and 3 and the bus in column 1 does not leak to the vehicle in the back. Our
clusters can be interpreted as entities moving compactly in the scene rather than groups of similar motion: in column 5 the head is grouped
with the torso despite the dissimilar motion and in cases of articulation (columns 4 and 6) we recover the whole body of the person. In last
column, the body of the ladies was not found salient enough and was mistakenly assigned to background. Image best seen in color.

(Weq, Deq). For each trajectory tri ∈ T S and for each
cluster Kk computed in the previous step, we compute a

mean affinity score: Amean(i, k) =
∑

j:trj∈Kk Ŵ(i,j)

|Kk| . Let
a∗i = maxk Amean(i, k) be the maximum affinity of trajec-
tory tri to any of the clusters found in the previous step. If it
is larger than twice the second best mean affinity, we assign
tri to the corresponding cluster. In this way, we densify our
output tracklets without loosing robustness.

3.3.1 Discretization
Discretizing using k-means on the embedding coordinates
or our graph nodes would treat all trajectories equally since
short trajectories would influence the positions of the clus-
ter centers. Along with k-means clustering, we compute ad-
ditional clusters centered on long trajectories: we consider
the embedding affinity matrix Ŵ = S · λ · S′. For each
trajectory tri we compute a corresponding cluster N (i):
N (i) = {trk such that Ŵ(i, k) > q} where q a thresh-
old. We discard clusters that have interior repulsion among
their trajectories as they do not respect object connected-
ness. We further discard clusters that do not obey a fist order
motion model (clusters that do not exhibit time continuity).
If necessary, we merge clusters whose concatenation forms
cluster with space and time continuity and no interior repul-
sion. Finally, we greedily choose clusters from largest to
smallest in size till most of the trajectories are covered. The
robustness of the embedding allows a greedy approach like
this one to give reasonable results.

4. Experiments
First we test our method in moseg, a recently released

dataset for video segmentation ([4]). We used the trajecto-
ries and the evaluation software delivered with the dataset.
We test on the first 50 frames for each sequence (when the

sequence had less than 50 frames we used the whole se-
quence). We show results in the Table 4. Our results are
comparable to state of the art albeit using way less trajecto-
ries (only what was found as foreground) and simpler dis-
cretization, thanks to the discriminability of our embedding.
See also Fig. 5.

To test the performance of our system for tracking multi-
ple interacting and deforming agents, we introduce figment
(figure untanglement), a challenging dataset of basketball
clips. It contains 18 video sequences of 50-80 frames each,
part of the basketball dataset of [19]. The groundtruth
bounding box based player trajectories provided with the
dataset were not sufficient for our purposes. Instead, we
labelled player and background masks every 7-8 frames in
each video sequence by marking superpixels to obtain seg-
mentation masks for each player and the background re-
spectively. We computed superpixels using the publicly
available code of [1].

For evaluation, each trajectory cluster is optimally as-
signed to one labelled mask based on maximum intersec-
tion. Given this assignment, clustering error measures for
each clip the percentage of wrongly labelled pixels (pix-
els carrying a label of a cluster not assigned to their mask)
and averages across all clips. Per region clustering error
measures percentage of wrongly labelled pixels per mask
and averages across all labelled masks in the dataset. If
in a clip most of the trajectories belong to background, a
segmentation algorithm assigning everything to one clus-
ter can get low clustering error. In contrast, per region
clustering error is a stricter metric, since it balances the
different labelled masks. Missing a region entails an er-
ror of 100% for that one. Over-segmentation measures the
number of clusters assigned to each labelled mask on aver-
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density clustering error per region clustering error over-segmentation extracted objects
our method 3.22% 3.76% 22.06% 1.15 25
Brox et al. [4] 3.32% 3.43% 27.06% 0.4 26

Figure 6. Results on moseg dataset. Extracted objects counts labelled masks with less that 10% clustering error.

Figure 7. Segmentation and tracking in figment dataset. 2d row: Detection results from [7]. 3rd row: Segmentation results from Brox et
al. [4]. 4rth row: FG-̃r-asym. (our method without repulsion) 5th row: Our method. Free space between agents causes sudden drop of
normalized attraction affinities between foreground trajectories. Leakage to background or between agents is controlled. In hard cases,
motion similarity and free space separation is still insufficient. Repulsion can still separate agents that are close and move similarly: notice
the corrections in the boxes in the last row. White denotes the background cluster. Image best seen in color.

age. These metrics are also used for scoring performance
in moseg. Due to the different nature of figment dataset, we
introduce additional metrics to measure tracking quality: a
frequent phenomenon tracking is for clusters to leak across
multiple agents. Leakage measures the percentage of leak-
ing clusters, clusters having large intersection over union
score (more than 1/2 of the one with their assigned mask)
with more that one labelled masks for at least one frame.
Recall measures the percentage of recalled pixels of a la-
belled mask by only the single best cluster (best is the one
of the assigned to that mask clusters having the highest re-
call, where we set recall to 0 for the frames a cluster leaks)
and averages across all masks. It measures how semanti-
cally meaningful the output tracklets are, how well they can
track in isolation, without allowing merging. Finally, since
recall does not have a space and time dimension (high re-
call may correspond to good space coverage but short in
time tracking or the inverse), tracking time measures the
number of frames the recall per frame for a labelled mask
is above 20% and averages across all labelled masks. To

calculate recall and tracking time we dilated trajectories by
a radius of 8 pixels. For all metrics we averaged over our
video sequences using trim mean : we discared the top and
bottom 10% of the metric values and took the mean of the
remaining ones.

To quantify the contribution of the different compo-
nents of our system (figure-ground representation, topol-
ogy driven repulsion and trajectory asymmetry) we evaluate
the following versions of our framework (tilde denotes that
component was not used, FG=figure-ground, r=repulsion,
asym=asymmetry):
FG-̃r - ãsym : clustering all foreground trajectories at once
with attraction A and discretization using k-means.
FG-r-ãsym: clustering all foreground trajectories at once
with A and R and discretization using k-means.
FG-̃r-asym : 2 stage priority clustering of foreground tra-
jectories with only A and discretization using both k-means
and asymmetric clusters.

The metrics clustering error and recall should be consid-
ered simultaneously, since an algorithm with 0 output does
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density clustering error per region clustering error over-segmentation recall leakage tracking time
our method 5.21% 4.73% 20.32% 1.57 31.07% 16.52% 75.13%
FG-̃r - ãsym 4.43% 11.13% 33.63% 1.29 20.41% 23.57% 50.77%
FG-r-ãsym 3.28% 5.12 % 26.24% 2.07 18.89% 21.16% 46.63%
FG-̃r-asym 5.57% 12.91% 31.32% 1.36 26.95% 21.16% 65.79%
Brox et al. [4] 0.57% 20.74% 86.43% 0 0.46 % 81.55% 1.03%

Figure 8. Results on figment dataset.

not make any errors but also has 0 recall and tracking time.
Our full method outperforms previous work as well as the
partial versions of our system, verifying the importance of
the various components of our framework. (see also fig 7
and 4).

5. Conclusion
We presented a method for video segmentation based on

spectral clustering of trajectories. Assuming connectedness
of the objects to be segmented, our system first computes
a figure-ground segmentation of the video and then assigns
repulsive forces between foreground trajectories that belong
to different connected components in any frame. Informa-
tion from foreground topology combined with motion infor-
mation produces a robust trajectory embedding and guides
the discretization procedure of the eigenvector solution. We
showed segmentation results on challenging videos of mul-
tiple interacting agents. We introduced a new dataset for
tracking under entanglement which we plan to enlarge with
scenes from different entanglement scenarios (boxing, foot-
ball, volleyball, crowded scenes).
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