
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Functional Pearl: Holey Generators!

ANONYMOUS AUTHOR(S)

An attractive feature of testing frameworks like QuickCheck is their domain-specific languages for custom

generators of random test data. Programmers value such handcrafted generators for two reasons: they can

guarantee invariants, such as ordering constraints on binary search trees, by construction, and they can control

the distributions of generated values.

How easy is it to tune distributions to achieve desired properties? Surprisingly hard, as it turns out! We

investigate the distributions produced by some familiar generation strategies for unlabeled binary trees and

observe that it is quite challenging to achieve both a good distribution of tree sizes and a good distribution of

tree shapes. The fundamental issue is locality of control—the way QuickCheck generators for recursive data

structures are naturally written as recursive functions makes it unnatural to express generators that exert

global control over distributional properties.

We propose instead a novel abstraction, holey generators, that makes a sequence of global random choices

about where to incrementally extend a tree. This abstraction supports much more direct control over dis-

tributions; we show how changing a single parameter yields bushy, stringy, left-leaning, right-leaning, and

(most challenging) uniformly distributed trees. Moreover, the core applicative combinators for building holey

generators can be extended with a monadic interface, supporting generators for data with invariants, like

ordered trees and heaps. Finally, we evaluate holey generators in practice, showing that they easily achieve

testing performance comparable to expert-tuned classic generators. We concentrate on the case of binary tree

structures, with and without invariants; at the end, we discuss prospects for generalizing to other data types.

1 INTRODUCTION
This book fills a much needed gap.

— Saul Gorn

Property-based testing (PBT) is a popular bug-finding technique, particularly in the Haskell commu-

nity where QuickCheck [3] is the de facto testing tool of choice. QuickCheck allows users to define

properties—Boolean-valued functions that validate a system’s behavior on a single given input—and

test that they return True on many randomly generated arguments. The process of generating these

random arguments can be automated much of the time, but to efficiently generate data structures

with invariants, like binary search trees (BSTs), the programmer must write generators: functions
expressed using QuickCheck’s domain-specific language which return randomly-chosen structures

that are valid with respect to the invariants.

A simple QuickCheck generator for BSTs might be written like this:

data Tree = Leaf | Node Tree Int Tree

genBST :: (Int, Int) -> Gen Tree

genBST (lo, hi) | lo >= hi = return Leaf

genBST (lo, hi) =

oneof [return Leaf,

do

x <- choose (lo, hi)

l <- genBST (lo, x - 1)

r <- genBST (x + 1, hi)

return (Node l x r)]

This produces valid BSTs by generating a value in a range and recursively generating children

whose keys fall in appropriate smaller ranges. It uses QuickCheck’s monadic Gen abstraction and

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia
2022.

1

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

0 5 10 15 20 25 30
Tree Sizes

0

100000

200000

300000

400000

500000

Oc
ur

re
nc

es

Tree Shapes (ordered by depth)

50

100

150

200

250

300

350

Oc
ur

re
nc

es

Fig. 1. Left: The size distribution of one million generated BSTs. Right: the shape distribution of BSTs of size
8, ordered shortest to tallest by depth (note that the smallest possible depth is 4).

combinators such as choose (which samples from a discrete range) and oneof (which invokes a

generator chosen at random from a list) to build up larger generators from smaller ones.

This rather naïve generator is not very useful for finding bugs, as many have observed. To see

why, let’s look at the distribution of values that it produces (Figure 1). Each of these graphs points

to a serious problem. The first shows that most of the values produced by this generator have

size 1 or 2; these are far too small to catch many bugs, and even if they could, there is no point in

trying Leaf 500,000 times! The second plot, showing the different shapes of size-8 trees that were

generated, highlights that some shapes of trees are more popular than others. The generator seems

to prefer the short, bushy trees on the left of the graph over the tall, stringy trees on the right.

But wait—doesn’t QuickCheck provide tools for addressing exactly these kinds of issues? Yes, it

does! The “real-world” version of the above generator would be closer to this:

genBST :: (Int, Int) -> Gen Tree

genBST bnd = sized (aux bnd)

where

aux (lo, hi) n | lo >= hi || n <= 1 = return Leaf

aux (lo, hi) n =

frequency [(1, return Leaf),

(5, do

x <- choose (lo, hi)

l <- aux (lo, x - 1) (n `div` 2)

r <- aux (x + 1, hi) (n `div` 2)

return (Node l x r))]

This version uses two different techniques to get better distributional control. First, it uses sized to

extract QuickCheck’s hidden size parameter and pass it around as the n parameter to the recursive

aux function. By cutting off generation when n reaches 1 and halving it as the generator recurses,

we ensure that the tree does not get too large. If the size parameter is set to 30 for example, this

generator will not produce trees that are more than log
2
(30) ≈ 5 nodes deep. (During testing, the

size parameter automatically ranges from 0 to 99; even at its maximum value, generated trees

cannot be more than 6 nodes deep.) Additionally, this version replaces the oneof combinator (which

makes uniform choices) with frequency (which annotates choices with weights), preferring Nodes to

Leafs at a 5-to-1 ratio.

Does this fix our problems? Sadly, not really. Take a look at the graphs now:

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

0 2 4 6 8 10 12 14
Tree Sizes

0

25000

50000

75000

100000

125000

150000

175000

Oc
ur

re
nc

es

Tree Shapes (ordered by depth)
0

20000

40000

60000

80000

100000

120000

Oc
ur

re
nc

es

Fig. 2. Left: The size distribution of one million generated trees using the tuned generator. Right: the shape
distribution of the tuned generator for trees of size 8, with x axis ordered by depth.

The sizes are more reasonable: using sized prevents very large trees and puts a bit more weight on

mid-sized trees, between 6 and 12 nodes. But the shape distribution is much worse: every size-8 tree

generated has depth exactly 4, leading to only 95 of the possible 1430 shapes occurring at all, with

two of the shapes accounting for nearly a quarter of the total draws! This doesn’t work either.

One could go down a rabbit hole here, attempting to solve this problemwith increasingly complex

generators. Some experienced QuickCheck users like to dynamically compute frequency weights

using the size parameter, randomly split the size in different parts of the tree, and employ other

sophisticated tuning strategies. These techniques can get testers closer and closer to the their

desired behavior, but they require more and more effort and expertise to implement. Ultimately

we are left with a question: why is it so difficult to achieve declarative control over tree sizes and

shapes?

The problem with the methods we’ve discussed so far is that control over distributions is applied

locally, without regard for broader context. When we recursively build a binary search tree by

building left and right subtrees, the recursive calls don’t know how their results will be used in

assembling a larger tree. In BSTs, this lack of communication results in generated trees with a short

and bushy structure; long, stringy trees are very unlikely to occur.

What we need is a generic way for different parts of the generation process to depend on one

another: decisions made to generate one subtree should be able to influence the decisions made

to generate the next ones. In other words, instead of local control, we want global control over
the distribution. Global control is difficult to achieve because it requires more complex program

structure than straightforward recursive functions. We will need a better abstraction than classic

QuickCheck generators if we hope to have a usable interface that allows for global control.

But why (you might ask), if we want more control over the distribution of tree shapes, do we not

use a system like FEAT [4] instead of classic QuickCheck? This is a reasonable question! FEAT can

generate values of any algebraic datatype at any specified size, with a controllable distribution,

so in particular it can certainly generate binary trees that are better distributed than what we’ve

seen. The problem with FEAT is that it has trouble with generators for data satisfying additional

invariants (like binary search trees).

To see why, notice that the classic QuickCheck generator above relies on Haskell’s do-notation

to sequence generators that depend on one another:

do

x <- choose (lo, hi)

l <- aux (lo, x - 1) (n `div` 2)

r <- aux (x + 1, hi) (n `div` 2)

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

return (Node l x r)

Here, the calls to aux take x as an argument, which is only available after the call to choose. FEAT

does not support this kind of monadic dependency: it only provides an Applicative abstraction that

runs two component generators independently and combines their results.[15]
1
It appears that

FEAT and similar interfaces do not provide enough power for our use cases.

So... what to do? Classic QuickCheck generators provide a powerful monadic interface but give

only local control over the distributions of shapes and sizes of the values generated. We do not

seem to have a way to build generators that (a) allows users to write in an easy-to-use expressive

monadic style, while also (b) providing global control over the distributional choices that influence
the structures they generate.

The first step in addressing a problem is to understand that you have it. Accordingly, the first

contribution of this paper is to bring this problem to the attention of the larger community. The

deficiencies of local control appear in lots of abstractions for generating random data. All recursive

QuickCheck generators must deal with the same issues that motivate this exploration, since they use

the same inherently problematic local distribution control methods. This is clearly not a satisfactory

state of affairs, and we hope this paper serves as a call to arms for PBT researchers to study the

problem of global distributional control more closely.

Solving this problem in general appears quite challenging (see Section 7). As a first step, we

attack the case of binary trees, with and without invariants, developing an approach to the problem

of generation with global control and monadic invariants that solves this case. This holey generator
technique is a new method for writing generators that combines global control with a monadic

interface for invariant maintenance.

The presentation proceeds in two stages. In the first (Section 2), we introduce the basic idea of

our technique and demonstrate how to use it to generate unlabeled binary trees using a simple

applicative interface; Section 3 then shows how to instantiate this interface to obtain a uniform

distribution over tree shapes of a given size. In the second stage (Section 4), we introduce the rest of

the holey abstraction and explain how it gives global control over the distributions of labeled tree

types with constraints on labels, like BSTs. Section 5 demonstrates that our newfound distributional

control makes it painless to write a holey generator that performs as well as a painstakingly-tuned

classic one on a slate of tests drawn from How To Specify It! [11]. Finally, Section 7 discusses future

directions, including ways of generalizing the holey approach beyond binary trees, as well as other

methods for distributional control.

2 HOLE-FILLING GENERATORS
As we learned through our experiments in Section 1, the fundamental problem behind the poor

distributions generated by classic QuickCheck generators is that they make random decisions about

the shape of their outputs locally, without taking into account the context that the generated value

will be placed into. Our goal, then, is to design an abstraction that empowers users to make random

choices that depend on the global state of the structure that’s been generated so far, while still

allowing the programmer to write generators in a familiar recursive style. It is not easy to do this

with the classic generator abstraction, since a generator (like any function) cannot observe the

context in which it has been invoked without the programmer explicitly threading around some

kind of state, which would interrupt the “recursive style” of generator writing.

1
Technically, FEAT can support a monadic interface, but random generation using it is intractable. The bind

(>>= :: Enumerate a -> (a -> Enumerate b) -> Enumerate b) would need to eagerly enumerate all of the values of

type a to generate a single value of type b.

4

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

Fig. 3. Generating a tree with hole filling

In this section we describe our abstraction, explain why it works, and discuss how to use it to

obtain specific distributions.

Filling Holes. To untie the knot created by recursive generators, we subtly shift how we think

about generating values. Instead of generating entire structures recursively in one go, we take a

step-by-step approach where structures are generated by repeatedly replacing one leaf, somewhere

in the structure, with a node.

We can operationalize this new perspective by defining a recursive generator type Holey a as a

sort of state machine whose states are binary tree structures of type a with “holes at the leaves.”

Each transition in this state machine represents the “filling” of a hole by replacing it with either a

new node constructor (with two new holes as children), or a leaf constructor. The state machine

presentation of Holey a is suggestive of how it can be run: to generate a value of type a, we repeatedly

transition the system some number of times and take the final state element as the resulting value.

Figure 3 shows the process of building an unlabeled binary tree through repeated hole-filling.

Concretely, this machine state is represented as (1) a value of type a recording the tree that has

been constructed so far, plus (2) a “skeleton” of a binary tree that we call an HTree, whose structure

mirrors that of the value a exactly.

data Hole = Here | L Hole | R Hole

data HTree = HoleLeaf | DoneLeaf | HNode HTree HTree deriving (Eq,Ord,Show)

The HTree has two kinds of leaves: HoleLeafs, which mark the location of a hole, and DoneLeafs, which

mark leaves in the current tree which cannot be further extended with a new node.
2

Formally, a Holey a is a record with three fields.

data Holey a = Holey

{ done :: a,

treeOfHoles :: HTree,

fill :: Hole -> Holey a

}

The first is done :: a, the current state of the partially-completed tree of type a. The second is an HTree

whose structure mirrors that of the done value, but whose leaves mark either completed sub-trees,

or holes which can yet be filled. The final field is the transition function fill :: Hole -> Holey a,

which, given the location of a hole in the HTree as a path from its root to the leaf, returns a new

state where the hole in question has been filled with a new structure, possibly containing more

holes. In the case that fill is called with a path to a hole that is not actually present in the HTree,

the generator will fail. In practice, this will never happen, since fill is only used by the function

that runs the holey generator.

2
In a Holey gen for unlabeled trees, all of the leaves in the HTree are HoleLeafs. Because of this, the content of this section
works just as well with Holey a defined without the HTree field, using the only done field as the state. While we will not

see trees with labels until Section 4, it seems best to introduce the full Holey abstraction here.

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

Given a Holey a, we can repeatedly fill randomly chosen holes from the hole tree to build up a

final value of type a. Crucially, since we have access to the HTree when we pick which hole to fill,

the choice of hole can depend on the structure of the hole tree, and by proxy, the entire structure

that has been generated so far. Moreover, since hole-filling adds one node at a time, we can control

exactly how large our structures will be! A Holey a generator separately gives control over the

shapes of your trees using global hole choices and control over the sizes by choosing the number

of holes to be filled.

Generators ’n Combinators. To help users effectively build holey generators, we provide an

instance for the Haskell Applicative typeclass, which defines a way of combining two independent

holey generators. A precondition for this is that wemust also provide an instance for the Functor type-

class: a function fmap which lifts a function between binary tree types a -> b to Holey a -> Holey b.

Given f :: a -> b and r :: Holey a, we update r by applying f to the partial tree done r and post-

composing the transition function fill r with a recursive call fmap f to transform the next states.

instance Functor Holey where

fmap f r = r {fill = fmap f . fill r, done = f (done r)}

The applicative interface for Holey is more interesting, as it substantiates parts of the dis-

cussion that, so far, have been mostly hand-waving. The applicative “combination function"

<*> :: Holey (a -> b) -> Holey a -> Holey b is where all the action happens.

instance Applicative Holey where

pure x =

Holey

{ treeOfHoles = DoneLeaf,

fill = (error "No holes left to fill!"),

done = x

}

rf <*> rx | isDone rf = done rf <$> rx

rf <*> rx | isDone rx = ($ done rx) <$> rf

rf <*> rx =

Holey

{ treeOfHoles = HNode (treeOfHoles rf) (treeOfHoles rx),

fill = \case

L h -> fill rf h <*> rx

R h -> rf <*> fill rx h

Here -> error "No holes left to fill!",

done = done rf (done rx)

}

When we combine two holey generators into one with <*>, the combined generator’s remaining

holes are those of the two arguments—that is, the tree of holes of the combined generator has as

subtrees the two trees of the argument generators. Since the treeOfHoles of the combined generator

has two subtrees, a call to fill will provide a Hole which is either L h or R h. In the former case, the

hole h on the left argument rf is filled; in the latter case, the hole h in rx.

Critically, the HTree manipulations in <*> ensure that the shape of the current HTree tracks the

shape of the current partial value being generated. When two nontrivial (i.e., “both sides not pure”)

generators are combined with <*> (as in UNode <$> holeyUTree <*> holeyUTree) the internal HTree gains

an HNode. But, if either of the two argument generators have no holes, they can be combined with

the other without adding a node to the HTree using the fmap function from the functor instance

(written infix with <$>). This means that the internal state of the generator can stay in sync with

the value it is generating.

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

The applicative interface also requires a function pure :: a -> Holey a, which constructs a “triv-

ially holey” generator from a value. Given x :: a, it returns the generator with no holes to fill.

We next define a combinator we call orFill, which emulates a common use of the oneOf function in

QuickCheck: to provide a base case to a recursively-defined generator. For a base-case value (usually

a leaf) x and a holey generator r, we define x `orFill` r to be the generator whose current tree is a

leaf node x, with a single hole that, when filled, results in the generator r. This combinator commonly

provides the outermost structure of a generator, choosing between stopping the recursion at a leaf

or continuing with a recursive call.

orFill :: a -> Holey a -> Holey a

orFill x r = Holey {treeOfHoles = HoleLeaf, fill = \Here -> r, done = x}

With these combinators, we can write a simple holey generator for unlabeled trees.

data UTree = ULeaf | UNode UTree UTree deriving (Eq, Ord, Show)

holeyUTree :: Holey UTree

holeyUTree = ULeaf `orFill` (UNode <$> holeyUTree <*> holeyUTree)

Sampling from Holey Generators.
When deciding what holes to fill next, the generator can (1) inspect its internal state to find out

the shape of the value that is has built so far, (2) pick one of the holes it sees, and (3) update its

internal state in tandem with updates to the value being generated. This leaves the question of

choosing a hole in step (2). How one makes these random choices determines the distribution over

shapes that the generator will denote, and a good distribution makes all the difference in finding

bugs quickly. To this end,we define a HoleWeighting to be a function HTree -> [(Int,Hole)] mapping

states of the hole tree to a list of weighted holes in that tree to choose from. Holes with higher

weight are chosen with higher probability, and lower weights are chosen with lower probability.

Formally, given the weighted list [(n1,h1),(n2,h2), ... (nk,hk)], we sample which hole to fill next

from the categorical distribution over the holes h1 ... kh with probabilities equal to the associated

weight divided by the sum of all the weights.

type HoleWeighting = HTree -> [(Int,Hole)]

Given a HoleWeighting, we can begin to sample from our random generators. In practice, we

will accomplish this by interpreting holey generators into standard QuickCheck generators in

QuickCheck’s Gen monad and then sample from those. The interpretation function recursively from

Holey a into Gen a is a straightforward translation of the intuitive semantics of holey generators: it

iteratively fills holes until done.

recursively :: HoleWeighting -> Holey a -> Gen a

recursively f p = sized $ go p 0

where

go r _ _ | isDone r = return (done r)

go r n target | n == target = return (done r)

go r n target = do

i <- frequency (second pure <$> f (treeOfHoles r))

go (fill r i) (n + 1) target

The auxiliary function go :: Holey a -> Int -> Int -> Gen a defines a single iteration of a loop that

will run until either all of the holes have been filled (the first guard), or the structure has reached

the desired size (the second). The “body” of the loop passes the tree of holes to the user-specified

hole-weighting function, then samples a hole from it. This hole is filled, and the loop proceeds.

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

NLNNLLNLL

NNLLNLNLL

NNLLNNLLL

NNLNLLNLL

NNNLLLNLL

NNNLLNLLL

NLNLNLNLL

NLNLNNLLL

NLNNLNLLL

NLNNNLLLL

NNLNLNLLL

NNLNNLLLL

NNNLNLLLL

NNNNLLLLL
0

200

400

600

800

1000

NLNNLLNLL

NNLLNLNLL

NNLLNNLLL

NNLNLLNLL

NNNLLLNLL

NNNLLNLLL

NLNLNLNLL

NLNLNNLLL

NLNNLNLLL

NLNNNLLLL

NNLNLNLLL

NNLNNLLLL

NNNLNLLLL

NNNNLLLLL
0

500

1000

1500

2000

Fig. 4. Frequency of each of the size-4 trees, ordered by increasing depth, in a draw of 10,000 trees from a
depth-weighted distribution (left) and an inverse-depth-weighted distribution (right). X-axis labels are trees
“serialized” by a preorder traversal (N = Node, L = Leaf).

Controlling the Distribution. Of course, we are still waiting to answer the most important

question: How does one choose the HoleWeighting function? Ideally, one chooses it to ensure that

the important parts of the input space are adequately explored. If, for example, the programmer

suspects that bugs may be revealed by input trees that are long and stringy, they could assign

weights to the holes that are exponentially growing with the depth of each hole. This way, in a

partially completed tree, the deeper-down holes in the tree are exponentially more likely to be

filled, leading to a “chain reaction,” where deep trees beget deeper trees.

depthWeighted :: HoleWeighting

depthWeighted t = (\h -> (f h, h)) <$> holes t

where

f h = 4 ^ holeDepth h

In the left part of Figure 4, we present a graph showing all of the trees of size 4 and their relative

frequencies in a draw of 10,000 trees from a holey generator using depthWeighted. From left to right,

the trees are ordered by increasing depth.

Conversely, suppose the programmer believes that a bug will make itself known if tested

against trees that are short and squat? They could consider weighting deeper holes lower, as

in inverseDepthWeighted below.

inverseDepthWeighted :: HoleWeighting

inverseDepthWeighted t = (\h -> (f h, h)) <$> hs

where

hs = holes t

maxDepth = maximum (holeDepth <$> hs)

f h = 4 ^ (maxDepth - holeDepth h)

This hole weighting gives holes exponentially more weight the closer they are to the root (compared

to the current deepest hole). The graph in the right part of Figure 4 shows the opposite story from

the graph in Figure 4, with shorter, squatter trees now much more likely.

What if the programmer believes that the bug will rear its head on inputs that are severely left

or right skewed? In this case, they could heavily weight holes which are left-leaning; the weighting

function below operationalizes this by weighting holes exponentially based on how many “left

turns” there are on a path from the root down to the hole. The corresponding histogram for this

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

weighting is in Figure 5, where the x-axis is ordered using the natural lexicographic order on binary

trees.

leftWeighted :: HoleWeighting

leftWeighted t = (\h -> (f h, h)) <$> holes t

where

f Here = 1

f (L h) = 4 * f h

f (R h) = f h

NNNNLLLLL

NNNLNLLLL

NNNLLNLLL

NNNLLLNLL

NNLNNLLLL

NNLNLNLLL

NNLNLLNLL

NNLLNNLLL

NNLLNLNLL

NLNNNLLLL

NLNNLNLLL

NLNNLLNLL

NLNLNNLLL

NLNLNLNLL
0

1000

2000

3000

4000

Fig. 5. Frequency of each of the size-4
trees, ordered lexicographically, in a draw
of 10,000 trees from a left-weighted distri-
bution.

All three of these hole weightings induce QuickCheck

generators that are very difficult to express using the

classic recursive generation style. Again, this boils down

to the lack of local control: all of the hole weightings

described above leverage the global view of the HTree to

choose which holes to fill next.

An ultimate demonstration of the power and control

we claim to be able to harness with hole weightings would

be to give a hole weighting which induces a uniform
distribution over the set of shapes of possible values, for

every fixed size. It’s not at all clear how to accomplish

this with classic QuickCheck generators using traditional

tuning idioms—even for the simple case of binary trees

that we consider in this paper—so demonstrating how uniformity can be accomplished with holey

generators would truly show the flexibility of our technique. (This is not to say that a uniform

distribution is necessarily what’s wanted for testing—generally it is not. But it is an excellent

challenge for any method that claims to be able to control the distribution of tests.)

So, do holey generators allow us to encode the uniform distribution? It turns out that they do!

But it will take a bit of explaining to get us there.

As a first cut, let’s try choosing to fill each hole in the tree uniformly at random.

unweighted :: HoleWeighting

unweighted t = map (1,) (holes t)

This gets much closer to uniformity than the tuned classic QuickCheck generator (as shown in

Figure 6), but it doesn’t actually give rise to the uniform distribution of trees of a fixed size. Why

not? The problem is that there are almost always multiple ways to arrive at the same tree through

repeated node insertion, which makes some trees more heavily weighted in the distribution than

others. But this failure yields an important insight: we “just” need to correct for all of the possible

ways that a tree could have been reached. This will be the core of our solution in the next section.

3 UNIFORM TREES
Now with a clearer picture of the challenge ahead, let’s more precisely define the goal. We need to

derive a function uniform :: HoleWeighting which, when plugged into the recursive generator for

binary trees, yields the uniform distribution on trees of every fixed size. More specifically, uniform

needs to assign weights to every hole in every possible tree so that filling n holes according to those

weights generates a uniformly chosen tree of size n. Formally, we would like that, for every n ≥ 0,

the distribution denoted by generate (resize n (genUTree uniform)) is the uniform distribution on

trees of size n. That is, the probability of each tree should be
1

Cn
, where Cn is the n-th Catalan

Number: the number of unlabled, ordered, binary trees with n nodes [7].

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

NNNNLLLLL

NNNLNLLLL

NNNLLNLLL

NNNLLLNLL

NNLNNLLLL

NNLNLNLLL

NNLNLLNLL

NNLLNNLLL

NNLLNLNLL

NLNNNLLLL

NLNNLNLLL

NLNNLLNLL

NLNLNNLLL

NLNLNLNLL
0

200

400

600

800

1000

1200

NNNNLLLLL

NNNLNLLLL

NNNLLNLLL

NNNLLLNLL

NNLNNLLLL

NNLNLNLLL

NNLNLLNLL

NNLLNNLLL

NNLLNLNLL

NLNNNLLLL

NLNNLNLLL

NLNNLLNLL

NLNLNNLLL

NLNLNLNLL
0

200

400

600

800

1000

1200

Fig. 6. Frequency Charts, k = 4, n = 10000. Left: unweighted holey generator. Right: classic QuickCheck
Generator

For the case of binary trees, this problem is tractable. The key insight is to think of choosing

the next hole as a random walk down the hole tree: a process that starts at the root of the tree and

makes independently random choices to “go left” or “go right” until it reaches a leaf. The weight

(or probability) of each hole in uniform h will be the probability of that random walk ends up at

that hole: the product of the probabilities of the choices it made along the way. The challenge of

constructing uniform then reduces to the challenge of setting the random walk probabilities in such

a way that the resulting hole weighting induces the uniform distribution on trees of each size.

Somewhat surprisingly, we can derive an efficiently computable solution for these random walk

probabilities, where the probability of taking a left or right turn at a specific node during the walk

depends only on the sizes of the left and right subtrees rooted at that node.

We also impose the helpful invariant that the generation process will be uniform “at every step.”

This need not be the case—if you know that you intend to produce a uniformly random tree of size

n by repeated node insertion, there is no reason a priori to insist that the terminating this process

after k steps yield a uniformly random tree of size k . However, we will adopt this invariant as it
greatly reduces the difficulty of computing the probabilities.

Calculating theWeights. To find the right randomwalk probabilities, let’s examine what happens

when we add a node to a partially built tree by filling a hole chosen by the random walk. By

determining what must be true of the walk probabilities in order for the outcome of this addition

to be a uniformly chosen tree, we will derive constraints on the probabilities that can be turned

into a method for computing them.

Suppose we have so far generated a tree t of size n, and that we’ve chosen the next hole to fill by

taking a random walk down the tree. Let t' be the new tree (of size n + 1) after filling this hole with
a node. What is the probability that this hole is on the left side of the tree (i.e., that the first step in

the random walk was to the left)? Formally, we would like to find Pn (d | l , r): the probability that,

when our walk encounters a tree of size n with left subtree of size l and right subtree r , it turns in
the direction d ∈ {L,R}. These probabilities are sufficient to define the random walk, and hence the

probabilities of filling each hole in every possible tree. To fix some more notation, let Pn (l , r) be the
overall probability of generating a tree of size n with left and right subtrees of size l and r , and let

Pn (l , r ,d) be the probability of generating a tree of size n with a left subtree of size l and a right

subtree of size r and then taking the first step in the walk down the tree to a hole in direction d .
For the moment, let’s suppose that both the left and right subtrees of t' are nonempty—we will

return to the edge cases later. Let 1 ≤ k ≤ n − 1 be the size of the left subtree of t' (and n − k the

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

size of the right subtree). Given this setup, there are only two possibilities for the sizes of the two

immediate subtrees of t: either the hole was chosen on the left, and it has a left subtree of size k − 1
and right subtree of size n − k , or the hole was chosen on the right and it has a left subtree of size k
and a right subtree of size n − k − 1. These two options are shown in diagram form in Figure 7.

Fig. 7. The ways of getting to a binary tree of size
n + 1 with k nodes on the left, and n −k nodes on
the right.

This realization about the specific trees t and t'

gives an important insight about the random walk

probabilities. Since there are only two possible ways

that we could have arrived at a tree with a left/right

split like t', namely (k,n − k), the probability of

generating a tree with that split has to be equal to

the sum of the probabilities of (1) generating a tree

of size n with left/right split (k − 1,n − k) and then

the randomwalk going left, and (2) generating a tree

of size n with left/right split (k,n − k − 1) and then

the random walk going right. Symbolically, we have:

Pn (k − 1,n − k, L) + Pn (k,n − k − 1,R) = Pn+1 (k,n − k) (1)

But of course, the choices made during shape generation are all independent, and so the probability

of encountering a tree with a particular left/right balance and then going left is the product of the

probabilities of seeing such a tree, times the probability of going left at such a tree. So, we can

re-write equation (1) as:

Pn (k − 1,n − k)Pn (L | k − 1,n − k) + Pn (k,n − k − 1)Pn (R | k,n − k − 1) = Pn+1 (k,n − k) (2)

But some of these probabilities are knowable. By the uniform-at-every-step assumption, the proba-

bility of encountering an n-node tree with left/right subtrees of size l and r is precisely the fraction

of n node trees with subtrees of those sizes:

Pn (l , r) =
ClCr

Cn

Moreover, the probabilities of going left and right are complements, since the walk always goes

somewhere with probability 1:

Pn (L | l , r) + Pn (R | l , r) = 1

Using these facts we can simplify equation (2) to:

Ck−1Cn−k

Cn
Pn (L | k − 1,n − k) +

CkCn−k−1

Cn
(1 − Pn (L | k,n − k − 1)) =

CkCn−k

Cn+1
(3)

To simplify notation somewhat, we define Pn (k) to be Pn (L | k,n − k − 1). Rewriting (3), we can
plainly see that this equation defines a recurrence relation on Pn (k), for 1 ≤ k < n − 1

Ck−1Cn−k

Cn
Pn (k − 1) +

CkCn−k−1

Cn
(1 − Pn (k)) =

CkCn−k

Cn+1
(⋆)

Given a base case for this recurrence, we can solve it and find the values of Pn (k), as desired. The
base case for this recurrence is derived from the two cases we ignored in our original analysis:

when the left or right subtree of the tree t' that resulted after the node addition were empty, or in

other words, in the cases k = 0 and k = n. By an analysis similar to the one that brought us to the

above solution, we find that the following two equations must hold on the boundary:

C0Cn−1

Cn
(1 − Pn (0)) =

C0Cn

Cn+1

Cn−1C0

Cn
Pn (n − 1) =

CnC0

Cn+1

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

Intuitively, these equations hold because there is exactly one way to reach a tree with left/right

split (0,n) or (n, 0): by having a tree with split (0,n − 1), and (n − 1, 0), and going to the right and

left, respectively. Solving, this yields the base case:

Pn (0) = 1 −
C2

n

Cn−1Cn+1
(⋆⋆)

Using (⋆) and (⋆⋆), we can easily compute Pn (k) for 0 ≤ k ≤ n − 1. Through some serious algebraic

simplification using the combinatorial fact
Cn
Cn+1
= n+2

2(2n+1) , we arrive at the equations:

Pn (0) =
3

(n + 1) (2n + 1)
Pn (k) =

2n − 2k − 1

n − k + 1

(
n + 2

2n + 1
− Pn (k − 1)

k + 1

2k − 1

)
Correctness. While the above discussion hopefully conveys intuition, it does not constitute a

proof. To derive the equations above, we chose a generation scheme—pick holes to fill via a random

walk down the graph—and inferred constraints based on what must be true for iterating that

process give a uniform distribution over trees of every size. But this by no means proves that

using a hole-weighting function that picks holes by a random walk using the probabilities Pn (k)
must induce the uniform distribution! To prove this, we need to be a bit more formal about our

calculations with probabilities.

We begin by defining a random function called add. When given a tree, add takes a random walk

down it by making independent left/right choices with our probabilities Pn (k), and inserts a Node

with Children children in place of the leaf at the bottom of its path. Formally, we define

add(Leaf) = Node Leaf Leaf

add(Node l r) =

Node add(l) r with probability Pn (|l |)

Node l add(r) with probability 1 − Pn (|l |)

We then define the formal analogue of our Holey uniform generator as a sequence of random

variables Tn defined
3
by iterating the add function.

T0 = δLeaf Tn+1 = add(Tn)

By a routine induction we can see that the add function always sends trees of size n to trees of size

n + 1, and so the trees Tn have support in the set of trees of size n, which we denote Treen .

Before prove uniformity, we need a lemma about the way the add function “balances” probabilities

between different trees. The proof can be found in the Appendix.

Lemma 3.1. For all n ≥ 0 and all t of size n + 1, we have
∑

t ′∈Treen P(add(t
′) = t) = Cn

Cn+1

The lemma must hold in order to show that, in aggregate, the add function behaves P(add(t ′) =
t) = 1

Cn+1
: that every tree t ′ of size n has an equal chance of getting to any tree of size n + 1.

Now we can prove that the random variables Tn are in fact uniformly distributed over the trees

of size n:

Theorem 3.2. For all n ≥ 0 and all t of size n, P(Tn=t) = 1

Cn

Proof. The proof proceeds by induction on n. The base case is trivial, since there is only one

tree of size 0, namely Leaf. For the inductive step, let t be a tree of size n + 1. Then, unrolling

definitions,

P(Tn+1=t) = P(add(Tn)=t)

3δLeaf is the “delta” random variable with law P (δLeaf = Leaf) = 1

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

Because the events {Tn = t ′}t ′∈Treen are disjoint, we have that

P(add(Tn)=t) =
∑

t ′∈Treen

P(Tn=t
′, add(t ′)=t)

Because the randomness in Tn and the add function is independent, we have∑
t ′∈Treen

P (Tn=t
′, add(t ′)=t) =

∑
t ′∈Treen

P(Tn=t
′) · P(add(t ′)=t)

By the induction hypothesis, P (Tn=t
′) = 1

Cn
, and so∑

t ′∈Treen

P(Tn=t
′) · P(add(t ′)=t) =

∑
t ′∈Treen

1

Cn
· P(add(t ′)=t)

=
1

Cn

∑
t ′∈Treen

P(add(t ′)=t).

But by Lemma 3.1,

∑
t ′∈Treen P(add(t

′)=t) = Cn
Cn+1

, and so we arrive at:

1

Cn

∑
t ′∈Treen

P(add(t ′)=t) =
1

Cn

Cn

Cn+1
=

1

Cn+1

Stringing these equalities all together, we obtain P(Tn+1=t) =
1

Cn+1
, as desired. □

Implementation. Now that we know it’s correct, there are a few things to note about our solution

to the uniform generation problem for binary trees. The first is that, in principle, these numbers

need only be computed once! While there are O (n2) probablities required to generate a tree of size

n, the same random walk probabilities can be used to generate any kind of binary tree of any size

less than or equal to n, forever. This is incredibly convenient for using this distribution in practice:

the combinatorics only need to be done once, and then can be re-used for any number of generation

runs, in any number of tests, for any binary tree data type.

The second thing to remark is that the assumptions that we made in deriving these probabilities—

uniform at every step, and that holes are chosen by a random walk from root to leaf—are not

only simplifying assumptions that helped us derive the solution, but they also lend themselves

nicely to a simple implementation of the HoleWeighting corresponding to the uniform distribution.

Given a program to compute the probabilities Pn (k) (Figure 8), we use the fact that each step

in the random walks are independent to compute the probability of a given hole being filled by

multiplying out the probabilities of walking down the path to that particular hole. We can then

use these hole probabilities to compute the HoleWeighting function for the uniform distribution by

simply enumerating the holes in a tree and computing their probabilities.

calcProbs :: HTree -> Hole -> Rational

calcProbs HoleLeaf Here = 1

calcProbs t@(HNode l _) (L h) = (leftProbs (size t) !! (size l)) * (calcProbs l h)

calcProbs t@(HNode l r) (R h) = (1 - ((leftProbs (size t) !! (size l)))) * (calcProbs r h)

calcProbs DoneLeaf _ = error "Impossible: can't walk down to a done."

calcProbs _ _ = undefined

uniform :: HoleWeighting

uniform t = let hs = holes t in zip (weightify $ map (calcProbs t) hs) hs

With the HoleWeighting in hand, we can an plug it into our Holey generator for the UTree type, and

read off uniformly-at-random trees to our heart’s content.

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

leftProbs :: Int -> [Ratio Integer]

leftProbs n = take n $ snd <$> iterate go (1,p0)

where

n' = toInteger n

p0 = 3 % ((n' + 1) * (2 * n' + 1))

go (k,pk_pred) =

let k' = toInteger k in

let a = (2 * n' - 2 * k' - 1) % (n' - k' + 1) in

let b = (n' + 2) % (2 * n' + 1) in

let c = (k' + 1) % (2 * k' - 1) in

let pk = 1 - a * (b - c * pk_pred) in

(k+1,pk)

Fig. 8. Code to compute the random walk probabilities.

NNNNLLLLL

NNNLNLLLL

NNNLLNLLL

NNNLLLNLL

NNLNNLLLL

NNLNLNLLL

NNLNLLNLL

NNLLNNLLL

NNLLNLNLL

NLNNNLLLL

NLNNLNLLL

NLNNLLNLL

NLNLNNLLL

NLNLNLNLL
0

100

200

300

400

500

600

700

800

Fig. 9. Frequencies of size-4 trees in a draw of 10,000 from the uniform distribution. Compare to Figure 6.

Figure 9 shows the frequencies of all size-4 trees over a draw of 10,000 from the generator

recursively genUTree uniform. In expectation, one should find y = 10,000
C4

≈ 714 of each of theC4 = 14

trees. Of course, estimated probabilities will vary between draws, but we can see that all of the

empirical frequencies deviate only slightly from this line, which is drawn in red through the top of

the chart.

It’s worth stepping back to consider what we’ve demonstrated here. Global control of the choices

made during generation has given us complete access to shape the underlying distribution. This

mechanism is powerful enough to encode combinatorially complex distributions like the uniform

distribution over fixed sizes, simply by weighting which holes to fill.

4 GENERATING HOLEY GENERATORS
We’ve established that Holey generators give powerful control over distributions, but they can’t yet

generate interesting structures—so far, they have really only been able to produce unlabeled trees.

In this section, we show how to generate holey generators, reintroducing the monadic power of

classic QuickCheck generators without giving up the control we fought so hard to obtain.

Decorating the Trees. The holeyUTree generator from Section 2 is rather bare. Indeed, it is boringly

self-similar, defining an infinite tree of generators that all generate simple UNodes. What we need is

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

a way to decorate that tree with data. We can attempt to do this manually in a couple of different

ways:

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Eq, Ord, Show)

badGenHoleyTree1 :: Holey (Tree Int)

badGenHoleyTree1 = Leaf `orFill` (Node <$> badGenHoleyTree1 <*> pure 0 <*> badGenHoleyTree1)

badGenHoleyTree2 :: Holey (Tree Int)

badGenHoleyTree2 =

Leaf `orFill`

(Node <$> (Node <$> leaf <*> pure 1 <*> leaf)

<*> pure 3

<*> (Node <$> leaf <*> pure 5 <*> leaf))

where

leaf = pure Leaf

The first generator technically produces a labeled tree, but all of the labels are 0, so it’s not good

for much. The second is a bit more interesting, but it bottoms out after a few levels because every

label needs to be written in manually. However, there’s a good idea hiding here: if we had a way of

building holey generators with labels already embedded inside, we could sample shapes from those

trees without an issue!

To further illustrate this point, consider this holey generator that produces trees whose labels

increase with depth:

incHoleyTree :: Int -> Holey (Tree Int)

incHoleyTree k =

Leaf `orFill` (Node <$> incHoleyTree (k + 1) <*> pure k <*> incHoleyTree (k + 1))

Sampling from incHoleyTree 1 >>= recursively uniform with size 3 would produce trees like

Node Leaf 1 (Node (Node Leaf 3 Leaf) 2 Leaf) and

Node (Node Leaf 2 Leaf) 1 (Node Leaf 2 Leaf)

with a nice uniform distribution over their shapes! The key here is that incHoleyTree 1

represents an infinite tree of hypothetical nodes in a Holey structure that will eventually produce a

tree via the hole-filling procedure from Section 2. Each node is hypothetical because recursively

might choose to not expand that hole, leaving only a Leaf. But if the procedure does expand the

node, the label that will appear in the node has already been chosen. This process is illustrated in

Figure 10. All we need now is to replace these silly deterministic algorithms with random ones.

1

2 2

333 3

...

Fig. 10. A single binary tree, cho-
sen from an infinite Holey struc-
ture.

Of course, we know how to do this—we can just use classic

QuickCheck! This program in QuickCheck’s Gen monad randomly

generates a Holey generator:

genHoleyTree :: Gen (Holey (Tree Int))

genHoleyTree = do

x <- arbitrary

l <- genHoleyTree

r <- genHoleyTree

return (Leaf `orFill` (Node <$> l <*> pure x <*> r))

This function works just like the deterministic algorithm above,

but it uses monadic sequencing to thread randomness through the program. This generator works

just like incHoleyTree, but instead of incrementing the decorated labels down the tree it samples a

new one each time using arbitrary. Every random seed gives a different holey generator with a

different set of labels, and shapes can be sampled from that tree as desired.

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

Now we can use genHoleyTree to get a distribution over labeled trees that is uniform over their

shapes, we first run genHoleyTree and then we fill holes with recursively:

genTree :: Gen (Tree Int)

genTree = genHoleyTree >>= recursively uniform

What have we gained?. Before continuing, let’s reflect on the many benefits of layering Gen and

Holey.

A Cleanly Staged Interface. The type Gen (Holey a) is really a staged approach to generation. The

first stage of generation controls the labels that might be in the tree, and the second controls

the shapes of the actual trees generated. This is quite a natural interface to work with. Since

these generators ultimately live in the usual Gen monad, they are entirely compatible with existing

QuickCheck generators. Furthermore, by separating the random generation of labels from the

recursive expansion procedure, it is relatively difficult to “get it wrong.” Structure is handled by the

Holey abstraction, labels are handled by Gen, and the two are only interleaved at the last moment.

Additionally, staging generation like this can lead to efficiency improvements. If a variety of shapes

is deemed more important than a variety of labels, the tester can sample a single Holey a and use it

to sample many different shapes of trees.

Distributional Control. This was illustrated above—it is easy to see that the distribution of deco-

rated trees is exactly the same as the one that we got from genHoleyUTree. We’ll need to relax this

control a bit when preconditions come into play, but in many cases generating a holey generator

gives the same level of control that was provided by the original abstraction discussed in Section 2.

Size Control. The way that generators like this are staged also makes size control a joy. A holey

generator like genHoleyTree really has two sizes that one might care about. The first is the size of the

labels in the tree—the range that they are chosen from—which is controlled by sized on the first

line of the generator. The second is the size of of the tree itself, which as we know is controlled by

Gen’s size parameter when recursively is called. At first, it would seem that controlling both of these

sizes with the same size parameter is a poor choice. Should we make one an explicit argument to

the generator?

Actually, there is no need! Since generation of labels happens before generation of trees, we can

leverage the holey generator’s staging to stage the sizes too. Take a look at a modified version of

genBST:

genBSTResize :: Gen (Tree Int)

genBSTResize = do

g <- resize 30 genHoleyBST

resize 5 (recursively uniform g)

We call QuickCheck’s resize function twice to resize the two different aspects of BST size!

Enforcing Preconditions. Finally, we arrive at generators that enforce preconditions. The ones
we present here, for BSTs and for binary heaps, are scarcely more complicated than genHoleyTree,

but they are quite a bit more interesting and useful.

Our generator for BSTs follows the same strategy that testers use in classic QuickCheck, tracking

the minimum and maximum labels allowed in each subtree:

genHoleyBST :: Gen (Holey (Tree Int))

genHoleyBST = sized (\n -> aux (-n, n))

where

aux (lo, hi) | lo > hi = return (pure Leaf)

aux (lo, hi) = do

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

x <- choose (lo, hi)

l <- aux (lo, x - 1)

r <- aux (x + 1, hi)

return (Leaf `orFill` (Node <$> l <*> pure x <*> r))

The labels in this tree are constrained by the bounds that are passed from one recursive call to the

next, and the tree is forced to “bottom out” with a Leaf if the range for the given subtree is empty.

Similarly, this generator for binary heaps ensures ordering from the top to the bottom of the tree:

genHoleyHeap :: Gen (Holey (Tree Int))

genHoleyHeap = sized aux

where

aux hi | hi <= 0 = return (pure Leaf)

aux hi = do

x <- choose (0, hi)

l <- aux x

r <- aux x

return (Leaf `orFill` (Node <$> l <*> pure x <*> r))

We can run these holey generator generators just like genHoleyTree, either with fancy staged

sizing or by simply inheriting QuickCheck’s size control.

genBST :: Gen (Tree Int)

genBST = genHoleyBST >>= recursively uniform

NNNNLLLLL

NNNLNLLLL

NNNLLNLLL

NNNLLLNLL

NNLNNLLLL

NNLNLNLLL

NNLNLLNLL

NNLLNNLLL

NNLLNLNLL

NLNNNLLLL

NLNNLNLLL

NLNNLLNLL

NLNLNNLLL

NLNLNLNLL
0

100

200

300

400

500

600

700

800

Fig. 11. Frequency of each of the size-4
shapes of BSTs in a draw of 10,000 using
the uniform hole weighting.

The distribution of this generator, shown in Figure 11

has a great variety of shapes, but it isn’t exactly uniform.

This is a side-effect of the BST invariant that the gener-

ator is required to enforce. You see, while genHoleyTree

produces infinite trees of hypothetical labels, genHoleyBST

gives finite trees. This is obvious from a simple count-

ing argument—BSTs do not allow duplicate elements

and the initial range is finite, therefore the hypothet-

ical tree must also be finite—but the mechanics of ex-

actly what happens is interesting. We’ll use Figure 12

as an example. If we assume that lo = 1 (i.e., we are in

a subtree where 1 is the smallest valid label), then there

are no valid labels to the left of 1 nor are there any to the right of 3. Accordingly, the branches of

the Holey generator are cut off at those points, meaning that those parts of the tree will never be

expanded to a Node.

4

1

3

...

...

...

Fig. 12. A Holey generator for
BSTs, pruned to enforce the in-
variant (assumes lo = 1).

What does any of this have to do with uniformity? Well, in the

pathological case where the hypothetical tree has n labels and we

want a tree of size n, there is only one tree to choose! So clearly

there is no way to get a uniform distribution there. As the number

of nodes in the tree increases things get much better, but recall

from Section 3 that our uniformity argument still assumes that any

node can be expanded to yield a new node with two children (this

is how we get to Cn as the number of total trees of size n). If that
is not true for some nodes, then the uniformity argument cannot

continue to hold in general.

This sounds unfortunate, but it is not the end of the world. If

the range of labels allowed in the tree is sufficiently large, then the

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

tree will be as good as infinite from the perspective of hole-filling. After all, filling n holes can’t

possibly explore more than n nodes deep in the hypothetical tree.

Additionally, while properties like uniformity suffer a bit from the addition of precondition

constraints, your size almost certainly does not. This is because of the way hole-filling works:

recursively tries to fill the appropriate number of holes no matter what, even if those holes are

in unexpected places. If one part of the tree gets stuck due to a constraint, the rest of the size is

allocated to another part of the tree without issue. The only potential problem arises if there are

simply not enough nodes available in the hypothetical Holey tree, but this is rare. In our experiments,

we found that as long as the range of potential labels is at least
3

2
the total number of desired nodes,

the tree will be large enough to avoid worries. Since such a tight bound would lead to distributional

issues, there is no reason to cut it that close.

We’ve successfully extended the Holey framework to generate the kinds of binary trees with

invariants that occur in actual testing scenarios. These generators give the user fine control over

their size and shape distributions, but does any of this actually help with testing? Yes, in fact it

does, as we shall see next.

5 PUTTING IT INTO PRACTICE
To find out how holey generators perform in a realistic testing scenario, we needed a case study

with many properties to experiment with. We found one in How to Specify It! [11], a tutorial on
property-based testing that uses binary search trees as its running example, with all the code

available online [10]. In this case, the trees represent finite maps, so contain both keys and values;

the implementation itself is small but not trivial, consisting of 62 non-blank non-comment lines of

Haskell code, with the following API:

find :: Ord k => k -> BST k v -> Maybe v

nil :: BST k v

insert :: Ord k => k -> v -> BST k v -> BST k v

delete :: Ord k => k -> BST k v -> BST k v

union :: Ord k => BST k v -> BST k v -> BST k v

A Case Study with a Wealth of Properties. The code is accompanied by a test-suite of 49

properties from the paper—testing that each operation preserves the invariant, that expected

postconditions hold, that various algebraic laws are satisfied, that behavior is consistent with a

‘reference implementation’ using lists of key-value pairs, and so on. The repository also includes 31

properties generated by QuickSpec [21], of which 11 duplicate properties presented in the paper.

Seven properties in the paper quantify over pairs of equivalent trees (containing the same keys and

values), which require a special generator
4
; we discard these and all duplicate properties, resulting

in 57 different properties that we can use to evaluate binary tree generators.

The repository also contains eight buggy versions of the implementation, with bugs ranging

from blatant (insert discards the tree it is passed, always returning a tree with a single node) to

more subtle (when taking a union of trees with some keys in common, the specification says that

values from the left argument should be preferred, but the buggy implementation does not do so

consistently). We evaluate generators by measuring the average number of tests needed to provoke
failure, for every failing property. In each case we took this average over 1,000 failing runs of

QuickCheck, which translates into up to 200,000 tests per property (to find 1,000 counterexamples).

4
Since two independently generated trees are highly unlikely to be equivalent, then we must generate such pairs of trees

together, for example by generating one of the pair, extracting its keys and values, and then generating the other tree by

choosing one of those keys to be at the root, splitting the keys and values into those for each subtree, and then generating

the subtrees by the same method.

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

We ran a very large number of tests of non-failing properties, so it is very unlikely that we missed

a potential failure.

Three Approaches to Generation. In all our tests, we generated keys in the range 0 to size, where
size is the QuickCheck size parameter. Thus there are size + 1 possible keys, and when size is small,

two independently generated keys are quite likely to be equal, while, when size is large, this is
unlikely.

API-based Generation. The How to Specify It! experiment originally used the following tree

generator, which inserts a random list of keys and values into the empty tree:

instance Arbitrary Tree where

arbitrary = do kvs <- arbitrary :: Gen [(Key,Val)]

return $ foldr (uncurry insert) nil kvs

We call this an ‘API-based’ generator, because it uses the API under test to generate test cases; this

kind of generator is simple to write, and has the merit that generated trees are guaranteed to satisfy

the invariant—provided insert is correct. There is a risk that testing may be incomplete, though, if

some trees cannot be built at all using insert alone.

Using this generator we found 122 failing bug/property combinations; every bug provoked many

properties to fail, ranging from 9 to 23 depending on the bug. Every bug can be found with fewer

than 10 random tests using the right property—but this is a bit like saying that a bug is easy to

provoke once you know the right test to run; it’s true, but not useful. It is not obvious in advance

which property will be most effective at finding each bug.

Not all failures are found fast, though. To give us an idea of how well the generator worked

overall, we computed the total number of tests needed (on average) to falsify all failing bug/property
combinations (see Figure 13). We also looked at the hardest properties to falsify: the three hardest

all involved a buggy delete, and they were (in order):

prop_DeleteDelete k k' t = delete k (delete k' t) =~= delete k' (delete k t)

prop_DeletePost k t k' = find k' (delete k t) === if k==k' then Nothing else find k' t

prop_qs_24 k t t' = delete k (union (delete k t) t') ==== delete k (union t t')

The very hardest of these, propDeleteDelete, required over 190 random tests to find a counterexample,

on average.

Classic Generation. Next we replaced the generator with one in the classic style, very like genBST

on page 2, except that we generate keys in the range 0 . . . size, and of course we also generate a

random value in each node. As on page 2, we control tree size by halving the size bound in each

recursion, and we favor branches over leaves by a ratio of 5-to-1.

Method Total cost Worst property

Original API-based 1607 193

Classic 1345 135

Holey 1075 103

Tuned API-based 1260 155

Tuned Classic 1006 96

Fig. 13. The holey generator competes with the others in terms
of average number of tests needed to provoke all failures, and the
failure of the most difficult property. Smaller is better.

The first surprise was that we

found four more failures! Recall that

the most blatant bug causes insert

to return a single-node tree, no mat-

ter its arguments. When this version

of insert is used in the API-based

generator, it causes every generated

tree to consist of only zero or one

nodes, so properties that only fail for

larger trees cannot be falsified. This

is a graphic illustration of the risks of

API-based generators.

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

As well as finding more failures, the classic generator did so at lower total cost (Figure 13); the

same three properties were hardest to falsify, but fewer tests were needed to do so.

Holey Generation. Finally, we implemented a holey version of the generator. First we wrote an

auxiliary

holeyTree :: Int -> Int -> Gen (Holey Tree)

very like aux in the definition of genHoleyBST on page 17; holeyTree lo hi chooses keys randomly

(consistently with the invariant), and returns a Holey Tree that can be filled to obtain a tree of any

size from 0 to hi-lo+1 (because there are hi-lo+1 possible keys). It remains to decide what size of

tree to generate.

It might be tempting to generate trees with exactly size nodes, but this would be a mistake,

because then properties with two trees as arguments would only be tested with arguments of the

same size. Instead it’s customary to treat the size parameter as a bound, so that the values generated
at size + 1 are a superset of those generated at size. We achieve this by choosing the tree size

uniformly in the range 0 . . . size:

instance Arbitrary Tree where

arbitrary = sized $ \n -> do

ht <- holeyTree 0 n

treeSize <- choose (0,n+1) -- OBS! n+1 different keys

resize treeSize (recursively uniform ht)

This results in a nice variety of test data, including small trees with keys drawn from a small set,

small trees with keys drawn from a large set, and even trees containing every possible key.

Repeating our measurements, we found that the holey generator found all the failures at an even

lower total cost, and falsified the hardest property (still the same one) in little more than half the

number of tests we started with (Figure 13). These improvements are useful, if not dramatic. The

second- and third-hardest properties to falsify are actually different in this case: they test the same

bug in delete as before.5

prop_qs_27 t k t' = union t (delete k (union t t')) ==== union t (delete k t')

prop_qs_30 k t t' = union (delete k (union t t')) t ==== union t (delete k t')

Tuning. One may wonder why this bug in delete is harder to find, and inspecting a generated

counterexample provides a clue:

*BSTSpec> quickCheck prop_DeleteDelete

*** Failed! Falsified (after 2 tests):

Key 0

Key 1

Branch (Branch Leaf (Key 0) 0 Leaf) (Key 1) (-1) Leaf

[] /= [(Key 0,0)]

Recall that prop_DeleteDelete tests that deleting keys in either order yields the same result; in this

case, because a comparison is the wrong way around, the buggy delete only works at the root of

the tree. As a result, if we try to delete Key 0 first, then it is not deleted. To falsify the property, we

need to choose two different keys, both present in the tree, with one of them located at the root.

What is the probability that a randomly chosen key is present in a generated tree? We can

measure this and find that, for the holey generator, it is 50%. This makes sense: we chose the tree

size uniformly in the range 0 to the maximum, so on average a generated tree contains half the

possible keys. But for the API-based generator, the probability is 36%, and for the classic generator

5
These properties are not equivalent since union is not commutative.

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

Fig. 14. The “tuned classic” generator: performance vs “holey” on the hardest properties, and distribution of
generated tree sizes.

it is only 29%. Thus these generators may perform worse for tests involving delete, simply because

they test deletion of a key that is not present in the tree more of the time.

With this in mind, we can tune the other two generators to generate larger trees, so that a random
key is more likely to be present. Since tests in which a key is present in a tree, and is not present in
a tree, are arguably equally important, we aim for a 50% presence-probability.

6
For the API-based

generator, one might have expected it to generate trees containing half the keys already, since

it inserts a random list of keys and values, and QuickCheck generates lists with a length chosen

uniformly from 0 . . . size. However, since the keys in the list are chosen independently, then some

are duplicates, and do not contribute to the final tree size. We can tune this generator by increasing

the lengths of the lists, and we discovered empirically that lists
5

3
longer resulted in trees containing

half the keys on average.

The classic generator is a bit harder to tune. We can (a) reduce the size bound by a smaller factor

in each recursion, instead of dividing by 2, and (b) weight branch nodes more highly. We discovered

empirically that we needed to do both: we removed the size bound altogether, and weighted branch

nodes 7× higher than leaves, and by so doing achieved a membership-probability of 48.4%, which
was the best we could do.

Tuning did result in better performance (Figure 13), and indeed the tuned classic generator

exhibits a slightly lower total cost, and a slightly better worst-property cost, than the holey generator.

However, the picture is not clear-cut: if we look at the five hardest properties to falsify (now the same

ones for both generators), then we see that while tuning has much improved the classic generator’s

performance for the two previously-hardest properties, it has also worsened it significantly for the

three next hardest. Moreover, while the average tree size is now about right, the distribution of tree

sizes is still skewed towards either empty or larger trees (Figure 14); this may explain the poorer

performance on three of the harder properties, since in a larger tree, a random key that is present
is less likely to be at the root.

Lessons.What have we learned? Firstly, that the natural way to write a holey generator resulted in

better performance than the natural way to write either an API-based or classic generator. Secondly,

6
The reader may feel it is less important to test delete often with keys that are not present in the tree, but consider insert:
both inserting a new key, and updating the value associated with an existing key, are important cases. If you are tempted to

suggest using different distributions to test insert and delete, be aware that some properties call both functions with
the same key. Likewise, the reader may wonder whether we should generate keys from trees, instead of independently, by

choosing one of the keys in the tree. But consider that some properties are parameterised on a key and two trees—which
tree should one choose a key from in such cases? Customizing generation for each property leads to ad hoc decisions and

complexity, and consequently risks errors which reduce the effectiveness of testing, and are hard to discover—this way lies

madness! We prefer to focus on making generation work well for all the properties we write.

21

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

while it is possible to tune a classic generator to get comparable fault-finding power, it is quite

painful to do so because the effect of tweaking each parameter is unpredictable; one is reduced to

performing trial-and-error experiments to see if the goal is achieved. This process is fraught, and

may be difficult for non-experts. By contrast, it is much easier to specify the desired outcome with

holey generators, making them more accessible for average users.

6 RELATEDWORK
Generator tuning and distributional control have been topics of interest to the testing community

for some time now. Here are some good ideas that are related to ours.

FEAT and Friends. As discussed in the introduction, FEAT [5] is almost a solution to the problem of

local distributional control. A FEAT enumerator can generate interesting structures with whatever

size and shape distribution the programmer desires, but it cannot do so efficiently under complex

semantic constraints. In the next section, we discuss potential ways to bring FEAT in the fold,

combining it with the ideas we present here, but for now it is not quite what we’re after.

However, FEAT is not the only tool that gives attractive, global distributional control. Rather

than rely on a correct-by-construction generators, [2] use a backtracking scheme that narrows a

generator’s distribution, avoiding values that fall outside of an executable constraint. This technique

is made surprisingly efficient with the help of Haskell’s laziness, but fundamentally this approach

can still run into trouble when constraints are particularly sparse (i.e., when few values satisfy

them relative to the total number of values). In those cases, a manual generator, tuned using our

techniques, is preferable.

Derived Generators. Distributional properties like size and shape often require manual tuning

to get just right, but some properties can be enforced automatically with the help of some pre-

computation. The DRAGEN tool uses metaprogramming to automatically derive generators for

algebraic data types, which ensure that the constructors in the data type being generated appear

at a predetermined rate [18]. For example, a DRAGEN generator for a tree with multiple Node

constructors can be derived to ensure a particular ratio between Node1 and Node2. A related tool

gives similar control over any algebraic data type defined in the “à la carte” tradition [17]. These

automatically derived generators are quite impressive, but as with FEAT and its ilk, they cannot

express generators that enforce complex preconditions.

Automatic Distributional Control. While we focus onmanually tuned generators in this discussion,

there is a myriad of automatic approaches that manipulating a generator’s distribution. Tools exist

that guide test distributions using code coverage [12, 23], a variety of optimization functions [13],

common examples [22], and even machine learning[8, 19]. Many of these approaches still ultimately

rely on local tuning, which makes certain distributions more difficult to obtain than others, but

in specific use-cases these tools are sometimes the best option for low-effort high-reward test

generation.

7 CONCLUSIONS AND FUTUREWORK
What have we learned? In Section 1, we learned that the current state of the art for QuickCheck

generators gives inadequate control to the user, even in the well-studied case of binary-tree data

structures. In Section 2, we learned how to achieve better control in the setting of unlabeled binary

trees with the help of Holey trees. We took a detour though the combinatorics of uniform generation

in Section 3 to demonstrate the flexibility our abstraction. Our technical contributions concluded

in Section 4, where we found that a staged approach—generating Holey generators—allows us to

capture binary-tree-based data structures with invariants. Finally, in Section 5 we presented a case

22

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

study based on How To Specify It! that shows that holey generators compare favorably even with

carefully-tuned classic ones.

To wrap up, let’s look at where we might go from here.

Alternative Abstractions. We considered some other choices when defining our generator ab-

straction; while we think that the current presentation is best for current purposes, we plan to

explore other options moving forward.

One interesting alternative is a different definition of Holey:

data Holey a where

Pure :: a -> Holey a

(:*:) :: Holey (a -> b) -> Holey a -> Holey b

OrFill :: a -> Holey a -> Holey a

This is essentially the free applicative [1] with an extra operation for delimiting recursion, and it

is similar to existing approaches that use a free applicative structure to connect generators and

parsers [9]. Amazingly, an argument due to Elliott [6] shows that, for our purposes, these definitions

are essentially equivalent! Filling a hole in this symbolic version of Holey corresponds to a symbolic
derivative and filling a hole in the state-machine version corresponds to an automatic derivative;
moreover, the two operations are implemented with almost exactly the same code. We opted for the

state-machine version presented here because it fit better with our presentation, but we are excited

to work more with the syntactic version and explore further connections between generators and

derivatives.

Another intriguing option is to eschew Holey entirely and generate FEAT generators instead—i.e.,

produce something like genFeatBST :: Gen (Enumerate a). Indeed, it seems this should work: FEAT

and Holey both suffer from the same applicative limitations, and wrapping either in Gen gives

considerably more power. However, there seem to be a few reasons to prefer holey generators: they

are both more efficient (FEAT may incur exponential cost when computing the size of a space) and

more consistent (given certain constraints, FEAT will generate a tree that is too small, whereas

Holey will simply choose to fill other holes). Still, FEAT does provide uniform generation of much

more complex types than binary trees, so we plan to explore this avenue as a potential way to

generalize our approach.

Generalizing to More Complex Types.More broadly, we are considering a number of strategies

that might generalize the approach we discuss in this paper to work beyond binary trees.

First, it’s important to understandwhy our current technique doesn’t generalize well. As discussed

in Section 2, to achieve global control, a Holey generator carefully maintains a binary HTree which

matches the structure of the tree it is generating. Attempting to generate ternary-or-larger trees

using this API will necessarily break the synchronization between the internal HTree and the tree

being generated. If the data type being generated has a ternary constructor, the recursive generator

expression g = pure Leaf `orFill` Node `fmap` g <*> g <*> g will internally yield unbalanced HTrees

like HNode (HNode HoleLeaf HoleLeaf) HoleLeaf, as the Holey API attempts to interpret <*>s as binary

nodes.

One potential approach could be to change the HTree type to mirror the constructors of the

tree type being generated. This seems technically feasible—Template Haskell or GHC Generics

[14, 20] come to mind as a way of constructing a new Holey type from an algebraic data type—but

unappealingly ugly. More elegant might be to replace the HTree with a rose tree [16], but then the

generator would have less static information to use during generation.

In either case, a larger problem is that it becomes difficult to know how to set hole weights. To

see why, consider what it would take to achieve a uniform distributon like the one from Section 3

for general trees. Even for fixed-arity trees, the combinatorial logic we used wouldn’t yield an

23

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

efficiently-computable formula, and for mixed arity trees, the “uniform at each stage” assumption

breaks down entirely.

Although these generalizations seem challenging, there are a number of paths forward that seem

promising. We hope to follow them, and find a unifying abstraction that gives the user fine-grained

distributional control while generating all of their favorite data types.

APPENDIX
Lemma 3.1. For all n ≥ 0 and all t of size n + 1, we have

∑
t ′∈Treen P(add(t

′) = t) = Cn
Cn+1

Proof. By induction on t . The t = Leaf case is vacuous. Suppose n ≥ 1. Let t = N (l , r), and
suppose that |l | = k (and so |r | = n − k .)
First, consider the case where 1 ≤ k ≤ n − 1. If l and r both have nonzero size, then there are

only two ways to arrive at t by adding a node to a tree t ′ of size n. Either t ′ has a left subtree of
size k − 1 (and add took the left branch), or t ′ has a right subtree of size n − k − 1 (and add took

the right branch). For any tree of size n with any other split of nodes in its left/right subtrees,

P (add(t ′) = t) = 0. Therefore, denoting by T (a,b) the set of a + b + 1-node trees with left subtrees

of size a and right subtrees of size b, we have:∑
t ′∈Treen

P (add(t ′) = t) =
∑

t ′∈T (k−1,n−k)

P (add(t ′) = t) +
∑

t ′∈T (k,n−k−1)

P (add(t ′) = t)

Re-writing t ′ inside the sums as N (l ′, r ′), and the t as N (l , r), the right hand side of the above is

equal to: ∑
N (l ′,r ′)∈T (k−1,n−k)

P (add(N (l ′, r ′)) = N (l , r)) +
∑

N (l ′,r ′)∈T (k,n−k−1)

P (add(N (l ′, r ′)) = N (l , r))

Again, most of these terms drop away. On the left side, P (add(N (l ′, r ′)) = N (l , r)) = 0 if either

r , r ′ or the add goes right: the only way to get to a tree in T (k,n − k) by adding a node to a tree

in T (k − 1,n − k) is if you fill on the left, and the right subtrees were the same in the first place. A

similar argument goes for the right hand side. Thus, we have:∑
N (l ′,r ′)∈T (k−1,n−k)

Pn (k − 1)P (add(l
′) = l)P (r = r ′) +

∑
N (l ′,r ′)∈T (k,n−k−1)

(1 − Pn (k))P (add(r
′) = r)P (l = l ′)

Again, yet more terms drop out: the P (r = r ′) and P (l = l ′) are zero for r , r ′ and l , l ′, and so we

are left with ∑
l ′∈Treek−1

Pn (k − 1)P (add(l
′) = l) +

∑
r ′∈Treen−k−1

(1 − Pn (k))P (add(r
′) = r)

Pulling out the constants from both sides, we have

Pn (k − 1)
∑

l ′∈Treek−1

P (add(l ′) = l) + (1 − Pn (k))
∑

r ′∈Treen−k−1

P (add(r ′) = r)

But by the induction hypothesis, ∑
l ′∈Treek−1

P (add(l ′) = l) =
Ck−1

Ck

and ∑
r ′∈Treen−k−1

P (add(r ′) = r) =
Cn−k−1

Cn−k
.

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Functional Pearl: Holey Generators! ICFP’22, September 11–16, 2022, Ljublijana, Slovenia

Substituting in, we have

Pn (k − 1)
∑

l ′∈Treek−1

P (add(l ′) = l) + (1 − Pn (k))
∑

r ′∈Treen−k−1

P (add(r ′) = r)

= Pn (k − 1)
Ck−1

Ck
+ (1 − Pn (k))

Cn−k−1

Cn−k

But, we have picked the Pn (k) to satisfy (⋆), the equation from Section 3! Multiplying (⋆) through

by
Cn

CkCn−k
yields

Pn (k − 1)
Ck−1

Ck
+ (1 − Pn (k))

Cn−k−1

Cn−k
=

Cn

Cn+1

as required.

Now consider the case where k = 0 (the k = n case is symmetric). If t has an empty left subtree

and a right subtree of size n, then the only trees t ′ for which P (add(t ′) = t) are trees of the form
N (leaf, r ′), where |r ′ | = n − 1. Thus,∑

t ′∈Treen

P (add(t ′) = t) =
∑

r ′∈Treen−1

P (add(N (leaf, r ′)) = N (leaf, r))

But just like the last case, add(N (leaf, r ′)) = N (leaf, r) exactly when add goes right, and add(r ′) =
r . So, ∑

r ′∈Treen−1

P (add(N (leaf, r ′)) = N (leaf, r)) =
∑

r ′∈Treen−1

(1 − Pn (0))P (add(r
′) = r)

= (1 − Pn (0))
∑

r ′∈Treen−1

P (add(r ′) = r)

but by the IH,

(1 − Pn (0))
∑

r ′∈Treen−1

P (add(r ′) = r) = (1 − Pn (0))
Cn−1

Cn
.

By (⋆⋆), 1 − Pn (0) =
C2

n
Cn−1Cn+1

, and so

(1 − Pn (0))
Cn−1

Cn
=

C2

n

Cn−1Cn+1

Cn−1

Cn
=

Cn

Cn+1

as desired. □

REFERENCES
[1] Paolo Capriotti and Ambrus Kaposi. 2014. Free applicative functors. arXiv preprint arXiv:1403.0749 (2014).
[2] Koen Claessen, Jonas Duregård, and Michal H. Palka. 2015. Generating constrained random data with uniform

distribution. J. Funct. Program. 25 (2015). https://doi.org/10.1017/S0956796815000143

[3] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs.

In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal, Canada, 268–279. https:

//doi.org/10.1145/351240.351266

[4] Jonas Duregård, Patrik Jansson, and MengWang. 2012. Feat: Functional Enumeration of Algebraic Types. In Proceedings
of the 2012 Haskell Symposium (Copenhagen, Denmark) (Haskell ’12). Association for Computing Machinery, New

York, NY, USA, 61âĂŞ72. https://doi.org/10.1145/2364506.2364515

[5] Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: Functional Enumeration of Algebraic Types. SIGPLAN
Not. 47, 12 (sep 2012), 61âĂŞ72. https://doi.org/10.1145/2430532.2364515

[6] Conal Elliott. 2021. Symbolic and automatic differentiation of languages. Proceedings of the ACM on Programming
Languages 5, ICFP (2021), 1–18.

25

https://doi.org/10.1017/S0956796815000143
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1145/2430532.2364515

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

ICFP’22, September 11–16, 2022, Ljublijana, Slovenia Anon.

[7] A. Cayley Esq. 1859. LVIII. On the analytical forms called trees.âĂŞPart II. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 18, 121 (1859), 374–378. https://doi.org/10.1080/14786445908642782

arXiv:https://doi.org/10.1080/14786445908642782

[8] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&fuzz: Machine learning for input fuzzing. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 50–59.

[9] Harrison Goldstein and Benjamin C. Pierce. 2022. Parsing Randomness: Unifying and Differentiating Parsers and

Random Generators. arXiv:2203.00652 [cs.PL]

[10] John Hughes. 2019. The code used in How to Specify It! https://github.com/rjmh/how-to-specify-it. (2019).
[11] John Hughes. 2019. How to Specify It! 20th International Symposium on Trends in Functional Programming (2019).

[12] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage guided, property based testing.

PACMPL 3, OOPSLA (2019), 181:1–181:29. https://doi.org/10.1145/3360607

[13] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-Based Testing. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). Association
for Computing Machinery, New York, NY, USA, 46âĂŞ56. https://doi.org/10.1145/3092703.3092711

[14] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A Generic Deriving Mechanism for Haskell.

In Proceedings of the Third ACM Haskell Symposium on Haskell (Baltimore, Maryland, USA) (Haskell ’10). Association
for Computing Machinery, New York, NY, USA, 37âĂŞ48. https://doi.org/10.1145/1863523.1863529

[15] Conor McBride and Ross Paterson. 2008. Applicative programming with effects. Journal of functional programming 18,

1 (2008), 1–13.

[16] Lambert Meertens. 1988. First steps toward the theory of rose trees. In IFIP Working Group 2.1.
[17] Agustín Mista and Alejandro Russo. 2019. Deriving compositional random generators. In Proceedings of the 31st

Symposium on Implementation and Application of Functional Languages. 1–12.
[18] AgustínMista, Alejandro Russo, and John Hughes. 2018. Branching processes for QuickCheck generators. In Proceedings

of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17,
2018, Nicolas Wu (Ed.). ACM, 1–13. https://doi.org/10.1145/3242744.3242747

[19] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020. Quickly generating diverse valid test inputs

with reinforcement learning. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1410–1421. https://doi.org/10.1145/3377811.

3380399

[20] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Machinery, New

York, NY, USA, 1âĂŞ16. https://doi.org/10.1145/581690.581691

[21] Nicholas Smallbone, Moa Johansson, Koen Claessen, and Maximilian Algehed. 2017. Quick specifications for the busy

programmer. Journal of Functional Programming 27 (2017).

[22] Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and Andreas Zeller. 2020. Inputs from Hell

Learning Input Distributions for Grammar-Based Test Generation. IEEE Transactions on Software Engineering (2020).

[23] Michal Zalewski. 2018. AFL quick start guide. http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt.

26

https://doi.org/10.1080/14786445908642782
https://arxiv.org/abs/https://doi.org/10.1080/14786445908642782
https://arxiv.org/abs/2203.00652
https://doi.org/10.1145/3360607
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/3242744.3242747
https://doi.org/10.1145/3377811.3380399
https://doi.org/10.1145/3377811.3380399
https://doi.org/10.1145/581690.581691
http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt

	Abstract
	1 Introduction
	2 Hole-Filling Generators
	3 Uniform Trees
	4 Generating Holey Generators
	5 Putting it into Practice
	6 Related Work
	7 Conclusions and Future Work
	References

