ICFP 2020

Denotational Recurrence Extraction
for
Amortized Analysis

Joe Cutler Dan Licata Norman Danner

{ LS
/ \ 3
P w
v»_’ 2"‘/
-, Gl
Y £
’
> b & “
:} lr'
|- Q". A "

w
\\
2 55
’9‘-’ Lo ""‘.
KRR
e s 2
Pl

A T
o B RS
Ll 2
| e N LR

Wesleyan University

Informal Recurrence Extraction

mergesSort : int list — int list
mergeSort || = ||

mergeSort xs = let (1,r) = split xs in

seSort r)

merge (mergeSort 1,merg

‘ n

TmergeSort (TL) — Tsplit (n) Tmerge (Tl) 2fpmergeSort (§>

How do we make this informal process formal?

Formally Extracting
Recurrences

Source Language Recurrence Language \

I'-M:A —><<F>>F|IM||1<C><<<A\>>

Result of running M
Cost to evaluate M J

Functions get translated to (size or use-cost)
recurrences in the traditional sense
(A— B) =(A) - Cx(B) Monadic translation
(A X B) =(A) x (B) to recurrence language

into writer monad

| Ax. M| = (0, Az. || M]])
[(M,N)|| = (m [|M|] + 71 || N||, (72 || M ||, 72 || N]]))

3

Proving Extraction

Correctness
Cost-Indexed Bounding Theorem
Big-IStep For M : A if M " v,
Operational S ti
perationa neman 165 then n < m || M|
M i, V and v C2. 7o || M|

Size-Abstraction Semantics

)\C LP Poset

Prior Work & Limitations

This technique works for:

STLC Inductive Types PCF Let-Polymorphism
[PLPV '13] [ICFP "15] [POPL '20] [arxiv:2002.07262]
but it can’t handle...

This Work:
Amortized Analysis by
Formal Recurrence Extraction

Examples in the Paper:

Binary Counter Splay Trees

e,

6

Binary Counter

type bit = 0 | 1 Cost model:
Cons operations incur 1 cost

inc : bit list — bit list Tinc(()) — 1

inc || = [1] | B | B

inc (0 ::bs) =1: bs Lin (n> o maX(l’ L4 Line (n 1))
inc (1::bs) = 0:: (inc bs)

set : nat — bit list
set 0 = ||

set (S n) = inc (set n)

Tinc(n) € O(n)
Tser(n) € O(nlog, n)

Binary Counter, Formally

inc : bit list — bit list
inc [] = [1]

inc (0::bs)=1: bs

inc (1 ::bs) =0: (inc bs)

‘.

inc| :bit list — C
C lncl, =1
>\ inc||, (0 : bs) =

inc

pose® [[linc| J(n) € O(n) —=> [llset|](n) € O(nlog, n)

8

Amortized Analysis

Cons . Credits _ Credits = Amortized
---- " - ™ -

New Source Language *

Credits in Context Credit Modality
' M: A !c A
(Affine type system) (Graded modal types!)
Attaching Credits Transferring Credits
'+, M: A ', M:1.A T''e: Ay N : C

I'Fqicsave.(M):!\.A T'F,ip transfer!.x =M to N :C

Creating Credits Spending Credits
F|_a_|_CMIA Fl_aMIA
['F, create.(M): A ['4tc spend (M) : A

Binary Counter in)\

type bit = unit & ljunit

inc : bit list — bit list
inc || = |create;(inr (savei()))]
inc ((inl_) :: bs) = (create;(inr (saveq()))) :: bs

inc ((inrx) :: bs) = transfer . = x to spend, ((inl()) :: (inc bs))

Extracting Amortized
Recurrences

Creating Credits Incurs a Cost

|create,(M)|| = (a +my || M|, w2 || M]])

Spending Credits Frees up Cost
|Ispend,, (M)|| = (—a + m [[M][, 72 || M]])

Extraction Erases the Modality
(lcA) = (A)
|save.(M)|| = ||M]
|transfer x = M to N|| = 1let (¢,z) = ||M|| in (¢ + w1 ||N||, 72 || N||)

Binary Counter... Again

type bit = unit & ljunit

inc : bit list — bit list
)A inc || = [create;(inr (savei()))]
inc ((inl_) :: bs) = (create;(inr (save;()))) :: bs

inc ((inrz) :: bs) = transfer _ = x to spend, ((inl()) :: (inc bs))

‘.

inc||,: (unit +unit) list — (unit + unit) list

C llinc|, []=2
>\ inc||, (inl_:: bs) =2

inc||, (inr_: bs) = ||inc|| _ bs

It

pose® [llinc| J(n) =2 —> [[|set|][(n) =2n € O(n)

13

Proving Extraction

Correctness
Amortized Cost Indexed Bounding Theorem
!Big-Step | For M : A if M " v,
Operational Semantics then n < m |M]|
n
M \l, U and v ;fal T2 HMH

Key Corollary

For closed terms typed in a context with no credits,
recurrence-predicted amortized cost
is a bound on real evaluation cost

14

Thank you!

!CA - Affine type system & modality for tracking credits
HM H - Automatic recurrence extraction translation
n < m ||M]| - Correctness proof relative to operational semantics by logical relations

- Expressive enough to handle non-trivial analyses like splay trees
(not handled by existing techniques)

