| | 108ASE5
Ethernet | 10BASE2
CheaperNet | StarLAN1BASE5
StarLAN | 10BROAD36
Broadband | 10 BASE - T | | |------------------------|---|-------------------------------|--------------------------|-----------------------------|--|--| | Medium | Coaxial cable
50 ohms-10 mm | Coaxial cable
50 ohms-5 mm | Twisted pair unshielded | Coaxial cable
75 ohms | 2 simplex
twisted pair
unshielded | | | Signals | 10 Mbps-Manch | 10 Mbps-Manch | 1 Mbps-Manch | 10 Mbps-DPSK | 10 Mbps-Manch | | | Maximum segment | 500 m | 185 m | 500 m | 1,800 m | 100 m | | | Maximum
distance | 2.5 km | 0.925 km | 2.5 km | 3.6 km | 1 km | | | Nodes per
segment | 100 | 30 | | | 2 | | | Collision
detection | Excess current | | 2 active hub inputs | Transmission
≠ reception | Activity on
receiver and
transmitter | | | Notes | Slot time = 512 bits; gap time = 96 bits; jam = 32 to 48 bits | | | | | | ## IEEE 802.3 networks. (from Walrand 1991) The IEEE 802.3 networks use twisted pairs or coaxial cables. Some use optical fibers. The baseband network use Manchester encoding. The broadband network uses differential phase shift keying (DPSK). The figure shows the maximum segment length, the maximum distance between nodes, and the maximum number of nodes per segment. The figure also indicates the methods used for collision detection. The slot time is used to schedule retransmissions, and the gap time is the minimum time between two successive packets.