
Solutions to Homework Set 4,  March 4 1999

Problem 1

(a)
00 → 00000
01 → 01101
10 → 10110
11 → 11011

Recall that for linear block codes, the minimum Hamming distance equals the
minimum Hamming weight.  The minimum Hamming weight of non-zero codewords
equals 3, thus dmin=3.

[Note that this code is indeed a linear (block) code.  Linearity follows from the fact
that the code is a systematic code for which a G matrix can befound easily; first part
of the 2x5 G matrix is a 2x2 identity matrix and the other three columns of G can be
chosen to always produce the desired three parity bits from the message word.]

(b)  Since dmin=3, at most 1 error can be corrected.
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Problem 2

(a) Without loss of generality, assume even parity.  The codewords then have even
number of 1’s, and thus dmin=2.  (Once again, note that an even-parity bit scheme
always produces a linear block code; the kx(k+1)G matrix for this is easily seen to be
the kxk identity matrix with one more column of all "1"s.  For a linear block code, we
can find dmin by finding the minimum Hamming weight of the non-zero codewords.
For even parity, this is clearly 2).

[Note that if we assume odd parity, then the resulting code is not linear!  However,
this code is closely related to the even-parity one and in fact has exactly the same
minimum distance and hence the same capabilities for error detection.  For odd



parity, the all-zero data word does not produce the all-zero codeword.  In fact the all-
zero sequence is not a valid codeword.  This shows immediately that the code is not
linear, since a linear code must always have the all-zero sequence as one codeword
(corresponding to the all-zero data word).  It is easy to see that to get a codeword of
the odd-parity code corresponding to some input word d, we can start with the
corresponding even-parity codeword and then flip the last (parity) bit, i.e. add (mod-
2)  the sequence e=00…01 to that codeword.  Thus if G is the matrix producing the
even-parity codewords, we now have for the odd-parity code c=dG + e where the
sum is a modulo-2 sum. This is not of the linear form.  But it shows that the distance
between any two codewords of the even-parity code is the same as that for the
corresponding two codewords of the odd-parity code.  Thus the two codes have
exactly the same min. distance.]

(b)  The code can be broken down into 2 concatenated (4+1) parity codes, each having
d’min=2.  Since 2 different length-10 codewords can have the same first or last parts,
dmin for the (10,8) code is still 2.  Thus the code is still guaranteed to detect 1 error.
The rate of the code is 8/10=0.8.

(c)  Code (a) will never detect 2 errors (P=0).
Code (b) will detect 2 errors if they are in separate parts (first 4 bits and its parity bit,
and the other 4 bits plus parity bit) of its 10-bit codewords .  Given 2 errors, they can
both be in one part, or the other part, or 1 in each.  Total number of 2-error patterns is

10

2
F
HG

I
KJ =45, total number of 2-error patterns with one error in each group of 5 bits is

5x5=25.   Thus, 5/9 of 2-bit errors will be detected.
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Here we ignored terms of order p3 and higher since they are much smaller than the p2

term.  Plug in p=10-3 to get  numerical quantities.



(c)  The message data rate must be reduced by 4/7 in order to accommodate the use of the
code in a fixed transmission-rate link.  Thus if you were able to send 7 bits per sec.
without coding, with coding the useful message data rate is only 4 bits per sec.

Problem 6

(a)  Recall that H(7,4) codewords are generated as:
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where ci and di are row vectors of the codeword and the data word, respectively.  We
can then add even parity to ci by multiplying it with a new generator matrix:
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where ci’ is the row vector representing a new codeword after adding the parity bit.
Note that the last column in G2 always adds a bit “1” if the number of 1’s in ci is odd.

Now plug (1) into (2):
GdGGdc iii == 21'

From the last equation it follows:
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(b)  First recall that minimum Hamming distance equals minimum Hamming weight for
of non-zero codewords, for linear block codes.  For H(7,4) code, the minimum
Hamming distance is 3.  If an even parity is added to the codeword with Hamming
weight of 3, the result is a modified codeword with Hamming weight of 4.  Observe
that this codeword still has the minimum Hamming weight for the new code.
Therefore, the minimum Hamming weight for the modified code is 4, as is the
minimum Hamming distance.



(c)  The new code is still guaranteed to correct only single bit errors.  If 2 bits are in error,
the Hamming distance between the received codeword and the transmitted codeword
will be 2.  There might exist another valid codeword whose Hamming distance to the
received codeword is also 2.  Therefore, the receiver cannot necessarily reconstruct
the original codeword for double bit errors.

H(8,4) code can detect 3-bit errors because the minimum Hamming distance is 4.

(Solutions of other 2 problems given out in class)


