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TCOM 370  NOTES 99-4B

APPENDIX TO NOTES 4 :

EXAMPLE OFAMPLITUDE/PHASE DISTORTION

Consider the periodic rectangular pulse train of Notes 99-2, page 6, with
period T=1, amplitude A=1,  and duration of each pulse τ = 0.25.

For this pulse train we found a0=
A

T

τ   and  an = 2
n

A
π

 sin(πnf0τ), with bn =0

Figure 1  below (from Notes 99-2, page 7) shows the reconstruction of the
pulse train using the a0 + first 9 coefficients an of the Fourier series, that is,
using up to the term a9. (These coefficients are: a0= 0.25 and  a1 through a9

respectively  0.4502    0.3183    0.1501    0.0000   -0.0900   -0.1061   -0.0643
0.0000    0.0500)

Figure 1

This corresponds to perfect transmission of a band of frequencies between 0
and 9 Hz only of the original pulse train (since f0=1 Hz).
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Amplitude Distortion Only:

Suppose the pulse train is passed through a fixed linear channel for which
the frequency response is not ideal.  Consider a frequency response shown
below which attenuates higher frequencies more than lower ones, with the
amplitude response remaining 1 between f=0 and 1 Hz, dropping linearly to
0.5 at f=7 Hz, and staying at this value to f=9 Hz, beyond which the response
is 0 (i.e. no transmission beyond 9 Hz.).

Suppose that the phase response is ideal, and the constant "p" in the above
plot is 0.  This corresponds to a special case of a linear phase characteristic,
that of a horizontal straight line passing through the origin.  The delay is the
same (0 delay) for all frequencies in this case.

Now each input frequency ancos(2πnf0t) appears at the output with modified
amplitude, as Gnancos(2πnf0t)  where Gn is the amplitude response G(nf0) of
the channel at frequency nf0=n Hz.

(Fine detail:  Since the bn are all 0 the amplitude of the n-th harmonic is An=|an|.  Whether
we use  ancos(2πnf0t) or Ancos(2πnf0t) is clearly immaterial when an is positive.  When an

is negative then ancos(2πnf0t)=|an|cos(2πnf0t+π) and after modifying the amplitude by
G(nf0) we get at the output again the result Gnancos(2πnf0t) by absorbing π as a negative
sign outside the cosine. )
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For this channel we have G0=1,  G1=1, G2=1−0.5/6, G3=1−1/6, G4=1−1.5/6,
G5=1−2/6, G6=1−2.5/6, G7=0.5, G8=0.5, G9=0.5.  The dc+9-coefficient
reconstruction at the output of the channel is now

a0 + a1cos(2πt) + G2a2cos(2π2t) + G3a3cos(2π3t) + G5a5cos(2π5t) +
G6a6cos(2π6t) + 0.5a7cos(2π7t) + 0.5a9cos(2π9t);

Figure 2 shows this reconstruction.  Note the slight widening of the pulses
compared to those in Figure 1.  The non-ideal amplitude response used here
is not severe enough to cause a very significant distortion.

Figure 2
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Amplitude and Delay (Phase) Distortion

Suppose the pulse train is passed through the same fixed linear channel as
above (frequency response figure on page 2), but now let the constant phase
shift imparted by the channel be p= −0.2π.  This means that the delay for the
f=1 Hz component is 0.1 and the delay for  the f=9 Hz component is 0.011
(Note that cos(2πf[t−d])=cos(2πft − 2πfd), so that delay of d for an f Hz
component is a phase shift of −2πfd.  If the phase shift is the same for each
frequency, then delay varies inversely with frequency).

The dc+9-coefficient reconstruction at the output of the channel is now

a0 + a1cos(2πt−0.2π) + G2a2cos(2π2t−0.2π) + G3a3cos(2π3t−0.2π) +
G5a5cos(2π5t−0.2π) + G6a6cos(2π6t−0.2π) + 0.5a7cos(2π7t−0.2π) +
0.5a9cos(2π9t−0.2π);

Figure 3 shows this reconstruction.  The non-ideal phase response here
causes a very significant  delay distortion in addition to the amplitude
distortion.

Figure 3
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