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TCOM 370  NOTES 99-8

ERROR CONTROL:  BLOCK CODES

THE NEED FOR ERROR CONTROL

The physical link is always subject to imperfections (noise/interference,
limited bandwidth/distortion, timing errors) so that individual bits sent over
the physical link cannot be received with zero error probability.  A bit error
rate (BER) of 10

-6
, which may sound quite low and very good, actually leads

on the average to an error every 
1

10
-th second for transmission at 10 Mbps.

Even with better links, say BER=10
-7

, one would make on the average one
error in transferring a binary file of size 1.25 Mbytes.  This is not acceptable
for "reliable" data transmission.

We need to provide in the data link control protocols  (Layer 2 of the ISO 7-
layer OSI protocol architecture) a means for obtaining better reliability than
can be guaranteed by the physical link itself.

Note:   Error control can be (and is) also incorporated at a higher layer, the
transport layer.

 ERROR CONTROL TECHNIQUES

Error Detection and Automatic Request for Retransmission (ARQ)

This is a "feedback" mode of operation and depends on the receiver being
able to detect that an error has occurred. (Error detection is easier than error
correction at the receiver).  Upon detecting an error in a frame of transmitted
bits, the receiver asks for a retransmission of the frame.  This may happen at
the data link layer or at the transport layer.  The characteristics of ARQ
techniques will be discussed in more detail in a subsequent set of notes,
where the delays introduced by the ARQ process will be considered
explicitly.   A very simple example of coding to allow error detection is the
addition of a parity bit to 7-bit ASCII characters; by examining the parity of
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the received 8 bits, one can decide if a single error occurred during
transmission of the 8-bit byte.

Forward Error Correction (FEC)

FEC improves reliability by sending enough extra (redundant) bits that allow
data bits to be received correctly even though some transmission errors may
have occurred.  A simple way to add redundancy for error correction is to
simply repeat  bits.  Even though this is not an efficient way to use
redundancy, it serves as a very simple example.  For example, each data bit to
be transmitted may be repeated three times, and at the receiver a decision is
based on the majority bit-type in each group of three bits.  Clearly, with this
scheme we are able to recover from one error in each group of three bits, but
at a cost of slowing down the useful data rate to one-third of the original rate,
or we need three times the bandwidth.

The term "forward" in FEC signifies that the transmitter does the work of
encoding for error control before forwarding bits to the receiver.  The
receiver does the best it can do to correct any errors.  Thus the receiver does
not rely only on ARQ to obtain frames correctly (there may be little or no
"feedback" from the receiver in these cases.)  FEC may be used when an
ARQ feedback channel is not available, or when ARQ can only be used to a
limited extent (e.g. only one or two ARQ's permitted per frame), or when
ARQ is not desirable in the application, e.g video (where real-time operation
is needed).

Generally we may employ both error correction and error detection
techniques in transmitting frames of binary digits.  In a typical scenario we
may encode the data with enough redundancy or overhead to allow the
receiver to correct  certain types of errors.  (For illustration, consider a
repetition code.)  The decoded bits may then be checked to see if they are
free from error (the error detection part).  For example, we may have applied
the repetition code to data bits that already had a parity bit added, and we can
check the parity of the decoded bits.  If errors are detected, the frame may be
discarded or an ARQ request may be sent.

Useful techniques for adding redundancy to data bits to enable error detection
or error correction are often based on the ideas of block coding.  (Another
type of coding technique is convolutional coding, but we will not discuss it
here.)
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ERROR DETECTION BY PARITY CHECKING

As an example of this, we have seen that in asynchronous transmission of 7-
bit ASCII characters an 8-th bit may be added. This is called a "parity" bit
and depending on the scheme used, the parity bit may be a bit that makes the
total number of 1's in the 8-bit byte an even number ("even parity") or an odd
number ("odd parity").  At the receiver, the parity of every 8-bit received byte
is checked.  If the parity differs from what is expected (odd or even), the
receiver detects that an error has occurred.

(Actually it detects that either one, or three, or in general an odd number of
errors, have occurred.  An even number of errors will leave the parity
unchanged!  If the BER for the link to begin with is fairly small, the
probability of more than one error for the byte is small anyway.)

Parity bits are computed using modulo-2 (mod-2) arithmetic on binary
digits, for which 0+0=0, 0+1=1, and 1+1=0.  [This can be implemented using
an "exclusive-or" electronic gate.]  Suppose we write each ASCII character in
row-form, starting from most significant bit (msb, bit position 6) to least
significant bit (lsb, bit position 0).  Then for even parity  the parity bit =
[lsb+bit 1 + ... + msb]; if the even parity bit is added mod-2 to this sum, the
result is zero.  For example, if the character bits are 1110000, then the even
parity bit is 1 and the mod-2 sum of all 8 bits is 0.  At the receiver the even
parity condition is checked by obtaining the mod-2 sum of the 8 bits.  This
sum will not be 0 if a single error has occurred. A similar consideration
applies for odd parity.

Parity checking may be extended to work for a block of characters in a
frame.  For each character there is a parity bit provided, as above.  Suppose
we write each character in the sequence of M characters in row-form, and
precede the character with the character parity bit (bit position 7; here even
parity is assumed):
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STX w/parity 1 0 0 ... 1 0
Byte 1 parity msb bit 5 ... bit 1 lsb(bit 0)
Byte 2 parity msb bit 5 ... bit 1 lsb(bit 0)

.

.

.
Byte M parity msb bit 5 ... bit 1 lsb(bit 0)
ETX w/parity 0 0 0 ... 1 1

Here the STX and ETX characters also have parity bits before them, and the
m-th Byte is the m-th Character with a parity bit before it.

We then add a final byte called the block check character (BCC):

BCC p7 p6 p5 ... p1 p0

It is computed to maintain the parity of each longitudinal column from lsb to
msb at a specified parity (say even).  Thus the BCC is a character for which
bit n = pn is a parity bit for the set of bits in position n of the M+2 characters
above it, for n=0,.1, ..., 6.  The last bit p7 of the BCC is computed to maintain
its own parity as for each character in the frame.

It is then clear that if Char-m is the m-th character, and we think of it as a 7-
bit row, then the modulo-2 sum of the rows STX + Char-1 + Char-2 + ... +
Char-M + ETX = BCC(6:0), the last 7 bits of BCC (for even parity).

The BCC allows error patterns to be detected that would otherwise go
undetected with just character parity. For example, an even number of errors
in one character is not detected by character parity alone, but will be detected
in the block scheme as long as the same pattern of errors does not occur in
another character.
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BLOCK CODES

The addition of a parity-check bit to a character or a sequence of data bits is
an example of a block coding technique, albeit a simple one for error
detection only.  More generally, block codes can be used for more powerful
error detection capability and for error correction capability.

Definition:

An (N,k) binary block code provides a codeword of N bits for each
k-bit data word that is to be transmitted, N>k.

In general, for an (N,k) block code, to transmit k bits of data we convert it to
an N-bit string according to a specific rule, and send out the N bits.  Thus
there is some redundancy added, we now have to transmit N bits instead of
only k.  The conversion of k bits to N bits can take place in many different
ways.  A simple example is a (3,1) block code in which each bit to be
transmitted is converted to a 3-bit string by repeating it twice.

We see that there are 2k data words of length k, and from the set of 2N

possible combinations of N bits, a particular (N,k) code uses only a subset
of 2k codewords of length N and assigns a codeword to each data word.

For example, an (8,7) binary block code is being used whenever we transmit
ASCII characters with a single parity bit. For a given character, the even
parity bit is a particular one of the two possible (1 or 0) to make the
codeword parity turn out even.  More generally, N-k can be larger than unity.

Repetition Code

Suppose we have k data bits.  To gain resilience against transmission errors
we may repeat each bit 2 times, so that the total size of the transmitted word
is N=3k.  Let the probability be pe that any individual transmitted bit is
received in error (i.e., pe is the BER for the physical link).  Now for each bit
sent out in this scheme, as long as we have no more than one error in its three
positions we are able to receive it correctly (using majority logic).  Let us
calculate the probability of data block error, that is the probability of
receiving at least one of the k data bits in error.
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We assume that bit errors occur independently  with the same probability pe
for each bit. For each bit, since it is repeated twice, the probability of error is
the probability of 2 or 3 errors out of three.   This is

(32 ) pe2(1-pe)+ (33 )pe3 = 3pe2 - 2pe3

which for small pe can be approximated as 3pe2.  (Consider for example
pe=10-6; then 2pe3 is about 10-6 times smaller than the first term 3pe2).  Thus
the probability of successful transmission of a bit is approximately
1-3pe2.

Finally, the probability of successful transmission of all k bits is
(1-3pe2)k, because we are assuming independence  of bit errors for the
transmitted bits; the probability of no error for k bits is the product of the
probabilities of no error for each of the k bits.

Also, (1-3pe2)k  is approximately 1- k3pe2.  [Use the approximation (1-p)m is
approx. 1-mp for p<<1 and mp <<1.  Consider typical numbers where k may
be of the order of 10 or 100 and pe is of the order of 10-6.]

Therefore the probability of receiving a block of k data bits in error (from
the 3k transmitted bits) is k3pe2.  For pe=10-4 and k=4 we find that the
probability of block error is approximately 1.2x10-7.  This is much better
than sending k data bits directly without coding.  Without coding, the
probability of at least one error for the k-bit word is 1-(1-pe)k ≈ kpe, because
the probability of no error is (1-pe)k.  We find that kpe = 4x10-4 for k=4 and
pe= 10-4.  Thus the repetition code gives much better performance.  However,
the price we have to pay is that the effective data rate is one-third of the bit
rate for the link.

In general, for an (N,k) block code we define the "rate" to be 
k
N .   This is

the factor by which the actual transmission rate is multiplied to get the rate at
which the original binary data is transmitted.

• What we would like are codes with good rates (close to unity) that provide
good error performance.
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LINEAR BLOCK CODES

A linear (N,k) block code is one for which a k-by-N  binary generator
matrix G with 0 or 1 entries can be defined, such that a codeword row c
corresponding to a data word row d (the binary words c and d are rows of N
bits and k bits, respectively) is obtained as

c = dG

where the binary addition operations involved are modulo-2 operations.

Hamming Code

As an example, the so-called Hamming (7,4) code has the G matrix

G = 







1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 

The codeword corresponding to the data word [1010] is therefore

[1010]G = [1010001].

(This is an example of a systematic code.  Here the codeword is always
formed with the dataword to which is appended an extra set of bits.  The G
matrix has the identity matrix forming its first 4 columns).

This Hamming code is a rate 
4
7  code, and it has a very interesting property, as

we will see below.
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Hamming Distance

• The Hamming distance between any pair of codewords is  the number
of bit positions at which they differ.

For example, the Hamming distance between codewords [1010001] and
[1000110] is 4.  (This is also the same as the number of 1's in the result for
the modulo-2 vector sum [1010001]+[1000110].)  It turns out that for the
Hamming (7,4) code, every pair of codewords has a Hamming distance of 3
or more between them.  Thus the minimum distance dmin between
codewords is dmin=3 for this particular code.

The minimum distance is an important parameter of a linear code.  Clearly,
for good error correction capability, we want the codewords to be as "far
apart" from each other as possible, so that an error in transmitting a codeword
will still keep it nearest to the transmitted codeword rather than move it closer
to some other codeword.  (This is an argument based on the geometry of
codeword locations in N-space).  This also suggests how we should decode;
we choose from the received N-bit word that codeword that is closest to it
from amongst all the 2k codewords, and put out the corresponding k-bit data
word as the final output.  This can be implemented efficiently in a variety of
ways, including table look-up.

Since dmin=3 for the Hamming (7,4), it follows that we can actually correct
(dmin-1)

2   =1 error in the transmission of each seven-bit codeword.  We can

show that in this case the probability of correct reception of the 4-bit data
word is approx. 21pe2, which for pe=10-4 is approximately  2.1x10-7.  This is
very close to the performance of the rate 1/3 repetition code, but here the rate
is much better at 4/7.

[More generally, Hamming (2
m
− 1, 2

m
− m− 1) block codes with dmin=3 can be

found for all integer m.  These allow single errors to be corrected  in

codewords of size 2
m
− 1, the rate getting very close to 1 as m grows.  The

(7,4) code above was a special case of this with m=3]
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Hamming Weight and Hamming Distance

The minimum Hamming distance dmin is an important parameter of a
linear block code.  The Hamming weight of a codeword is easier to
compute, it is simply the number of 1's in the codeword.  For a linear block
code, if c1 and c2 are codewords then so is c1 + c2.  Also, the Hamming
distance between c1 and c2 is the Hamming weight of c1 + c2. Actually, c1 +
c2 must also be a valid codeword because it must correspond to the message
d1 + d2  (d1 produces codeword c1 and d2 produces c2).  To find the
Hamming distance dmin for the linear block code we should consider all
pairwise sums of distinct codewords and look at their Hamming weights.

• Since the pairwise sums themselves form all codewords, the minimum
Hamming distance is simply the minimum Hamming weight for all the
non-zero codewords in the code!


